Какими свойствами обладают противоположные грани параллелепипеда
На этом уроке мы дадим определение параллелепипеда, обсудим его строение и его элементы (диагонали параллелепипеда, стороны параллелепипеда и их свойства). А также рассмотрим свойства граней и диагоналей параллелограмма. Далее решим типовую задачу на построение сечения в параллелепипеде.
Тема: Параллельность прямых и плоскостей
Урок: Параллелепипед. Свойства граней и диагоналей параллелепипеда
Тема урока
На этом уроке мы дадим определение параллелепипеда, обсудим его строение, свойства и его элементы (стороны, диагонали).
Параллелепипед
Параллелепипед образован с помощью двух равных параллелограммов АВСD и А1B1C1D1, которые находятся в параллельных плоскостях. Обозначение: АВСDА1B1C1D1 или АD1 (рис. 1.).
Рис. 1. Параллелепипед
Свойства параллелепипеда
1) Все грани параллелепипеда – параллелограммы.
Так как плоскости АВС и А1B1C1 параллельны, а плоскость АА1В1 пересекает их соответственно по прямым АВ и А1В1, то из свойств параллельных плоскостей следует, что прямые АВ и А1B1 параллельны. А так как и прямые АА1 и ВВ1 параллельны по условию, то АВВ1А1 параллелограмм. Аналогично, можно рассмотреть и другие грани.
2) Ребра АА1, ВВ1, СС1, DD1 равны.
Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны. Значит, отрезки параллельных прямых АА1, ВВ1, СС1, DD1, которые заключены между параллельными плоскостями АВС и А1B1C1, равны.
3) Имеются три четверки равных и параллельных ребер: 1 – АВ, А1В1, D1C1, DC, 2 — AD, A1D1, B1C1, BC, 3 — АА1, ВВ1, СС1, DD1.
4) Имеются равные углы (с сонаправленными сторонами). Например, углы А1АВ и D1DC.
Свойство 1 (Грани параллелепипеда)
Противоположные грани параллелепипеда параллельны и равны.
Например, плоскости параллелограммов АА1В1В и DD1C1C параллельны, так как пересекающиеся прямые АВ и АА1 плоскости АА1В1 соответственно параллельны двум пересекающимся прямым DC и DD1 плоскости DD1C1. Параллелограммы АА1В1В и DD1C1C равны (т. е. их можно совместить наложением), так как равны стороны АВ и DС, АА1 и DD1, и равны углы А1АВ и D1DC.
Свойство 2 (Ребра параллелепипеда)
Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
Рис. 2. Диагонали параллелепипеда
Рассмотрим диагонали параллелепипеда А1C и D1B (рис. 2). Они также являются диагоналями четырехугольника A1D1CB. В этом четырехугольнике стороны A1D1 и BC параллельны и равны, а значит, A1D1CB – параллелограмм (по признаку параллелограмма). А в параллелограмме диагонали А1C и D1B пересекаются в одной точке О и делятся этой точкой пополам.
Рис. 3.
Рассмотрим теперь четырехугольник АВС1D1 (рис. 3). В этом четырехугольнике стороны С1D1 и АВ параллельны и равны, а значит, АВС1D1 – параллелограмм (по признаку параллелограмма). А в параллелограмме диагонали С1А и D1В пересекаются в одной точке и делятся этой точкой пополам. Эти диагонали также пересекаются в точке О, так как мы уже выяснили, что середина диагонали D1В – это точка О. Следовательно, все диагонали параллелепипеда А1C, С1А и D1В, DВ1 пересекаются в одной точке и делятся этой точкой пополам.
Задача 1
В параллелепипеде АВСDА1B1C1D1 постройте сечение плоскостью AD1M, где М – середина ребра ВС. Определите вид полученного сечения.
Рис. 4.
Решение: (рис. 4)
Соединим точки А и D1. Точки А и D1 лежат и в плоскости сечения и в плоскости АА1D1. Значит, АD1– линия пересечения этих плоскостей.
Проведем прямую МN параллельно прямой АD1. Плоскости АА1D1 и ВСС1 параллельны, значит, плоскость АМN рассекает их по параллельным прямым МN и АD1. Итак, АМND1 – искомое сечение.
Четырехугольник АМND1 — трапеция с основаниями АD1 и МN, так как АD1 и МN лежат на параллельных прямых.
Заметим, что средняя линия М1N1 в треугольнике АDD1 равна отрезку МN. Этот факт понадобится нам дальше для решения задач на нахождения периметра.
Итоги урока по теме «Параллелепипед», «Стороны параллелепипеда, диагонали», свойства
Итак, мы рассмотрели параллелепипед и его свойства. На следующих уроках мы продолжим рассмотрение тетраэдра и параллелепипеда.
Список рекомендованной литературы по теме «Параллелепипед», «Диагонали параллелепипеда», «Стороны параллелепипеда»
1. Геометрия. 10-11 класс : учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е издание, исправленное и дополненное – М. : Мнемозина, 2008. – 288 с. : ил.
2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил.
3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. – 6-е издание, стереотип. – М. : Дрофа, 008. – 233 с. :ил.
Рекомендованные ссылки на ресурсы интернет
1. КакПросто (Источник)
2. Фестиваль педагогических идей «Открытый урок» (Источник)
3. MyShared (Источник)
Рекомендованное домашнее задание по теме «Параллелепипед и его свойства», «Диагонали, стороны параллелепипеда»
1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е издание, исправленное и дополненное – М.: Мнемозина, 2008. – 288 с.: ил.
Задания 10, 11, 12 стр. 50
2. Постройте сечение прямоугольного параллелепипеда АВСDА1B1C1D1 плоскостью, проходящей через точки:
а) А, С, В1
б) В1, D1 и середину ребра АА1.
3. Ребро куба равно а. Постройте сечение куба плоскостью проходящей через середины трех ребер, выходящих из одной вершины, и вычислите его периметр и площадь.
4. Какие фигуры могут получиться в результате пересечения плоскостью параллелепипеда?
На этом уроке все желающие смогут изучить тему «Прямоугольный параллелепипед». В начале урока мы повторим, что такое произвольный и прямой параллелепипеды, вспомним свойства их противоположных граней и диагоналей параллелепипеда. Затем рассмотрим, что такое прямоугольный параллелепипед, и обсудим его основные свойства.
Тема: Перпендикулярность прямых и плоскостей
Урок: Прямоугольный параллелепипед
Определение параллелепипеда
Поверхность, составленная из двух равных параллелограммов АВСD и А1В1С1D1 и четырех параллелограммов АВВ1А1, ВСС1В1, СDD1С1, DАА1D1, называется параллелепипедом (рис. 1).
Рис. 1 Параллелепипед
То есть: имеем два равных параллелограмма АВСD и А1В1С1D1 (основания), они лежат в параллельных плоскостях так, что боковые ребра АА1, ВВ1, DD1, СС1 параллельны. Таким образом, составленная из параллелограммов поверхность называется параллелепипедом.
Таким образом, поверхность параллелепипеда — это сумма всех параллелограммов, из которых составлен параллелепипед.
Свойства параллелепипеда
1. Противоположные грани параллелепипеда параллельны и равны.
(фигуры равны, то есть их можно совместить наложением)
Например:
АВСD = А1В1С1D1 (равные параллелограммы по определению),
АА1В1В = DD1С1С (так как АА1В1В и DD1С1С – противоположные грани параллелепипеда),
АА1D1D = ВВ1С1С (так как АА1D1D и ВВ1С1С – противоположные грани параллелепипеда).
2. Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
Диагонали параллелепипеда АС1, В1D, А1С, D1В пересекаются в одной точке О, и каждая диагональ делится этой точкой пополам (рис. 2).
Рис. 2 Диагонали параллелепипеда пересекаются и деляться точкой пересечения пополам.
3. Имеются три четверки равных и параллельных ребер параллелепипеда: 1 – АВ, А1В1, D1C1, DC, 2 – AD, A1D1, B1C1, BC, 3 – АА1, ВВ1, СС1, DD1.
Прямой параллелепипед
Определение. Параллелепипед называется прямым, если его боковые ребра перпендикулярны основаниям.
Пусть боковое ребро АА1 перпендикулярно основанию (рис. 3). Это означает, что прямая АА1 перпендикулярна прямым АD и АВ, которые лежат в плоскости основания. А, значит, в боковых гранях лежат прямоугольники. А в основаниях лежат произвольные параллелограммы. Обозначим, ∠BAD = φ, угол φ может быть любым.
Рис. 3 Прямой параллелепипед
Итак, прямой параллелепипед — это параллелепипед, в котором боковые ребра перпендикулярны основаниям параллелепипеда.
Прямоугольный параллелепипед
Определение. Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию. Основания являются прямоугольниками.
Параллелепипед АВСDА1В1С1D1 – прямоугольный (рис. 4), если:
1. АА1⊥ АВСD (боковое ребро перпендикулярно плоскости основания, то есть параллелепипед прямой).
2. ∠ВАD = 90°, т. е. в основании лежит прямоугольник.
Рис. 4 Прямоугольный параллелепипед
Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда. Но есть дополнительные свойства, которые выводятся из определения прямоугольного параллелепипеда.
Итак, прямоугольный параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию. Основание прямоугольного параллелепипеда — прямоугольник.
Свойства прямоугольного параллелепипеда
1. В прямоугольном параллелепипеде все шесть граней прямоугольники.
АВСD и А1В1С1D1 – прямоугольники по определению.
2. Боковые ребра перпендикулярны основанию. Значит, все боковые грани прямоугольного параллелепипеда — прямоугольники.
3. Все двугранные углы прямоугольного параллелепипеда прямые.
Рассмотрим, например, двугранный угол прямоугольного параллелепипеда с ребром АВ, т. е. двугранный угол между плоскостями АВВ1 и АВС.
АВ – ребро, точка А1 лежит в одной плоскости – в плоскости АВВ1, а точка D в другой – в плоскости А1В1С1D1. Тогда рассматриваемый двугранный угол можно еще обозначить следующим образом: ∠А1АВD.
Возьмем точку А на ребре АВ. АА1 – перпендикуляр к ребру АВ в плоскости АВВ1, AD перпендикуляр к ребру АВ в плоскости АВС. Значит, ∠А1АD – линейный угол данного двугранного угла. ∠А1АD = 90°, значит, двугранный угол при ребре АВ равен 90°.
∠(АВВ1, АВС) = ∠(АВ) = ∠А1АВD= ∠А1АD = 90°.
Аналогично доказывается, что любые двугранные углы прямоугольного параллелепипеда прямые.
Теорема
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Примечание. Длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда, являются измерениями прямоугольного параллелепипеда. Их иногда называют длина, ширина, высота.
Дано: АВСDА1В1С1D1 – прямоугольный параллелепипед (рис. 5).
Доказать: .
Рис. 5 Прямоугольный параллелепипед
Доказательство:
Прямая СС1 перпендикулярна плоскости АВС, а значит, и прямой АС. Значит, треугольник СС1А – прямоугольный. По теореме Пифагора:
Рассмотрим прямоугольный треугольник АВС. По теореме Пифагора:
Но ВС и AD – противоположные стороны прямоугольника. Значит, ВС = AD. Тогда:
Так как , а , то. Поскольку СС1 = АА1, то что и требовалось доказать.
Следствие — Диагонали прямоугольного параллелепипеда равны
Диагонали прямоугольного параллелепипеда равны.
Обозначим измерения параллелепипеда АВС как a, b, c (см. рис. 6), тогда АС1 = СА1 = В1D = DВ1 =
Рис. 6
Куб
Определение. Прямоугольный параллелепипед, у которого все три измерения равны, называется кубом.
Все грани куба – это равные квадраты.
Задача 1 Найти диагональ куба
Найти диагональ куба с ребром 1 (рис. 7).
Рис. 7
Решение:
см.
Ответ: см.
Задача 2
Рисунок
Дан куб АВСDА1В1С1D1 (рис. 8). Докажите, что плоскости АВС1 и А1В1D перпендикулярны.
Рис. 8
Доказательство:
Прямые ВС1 и В1С перпендикулярны как диагонали квадрата ВВ1С1С.
Прямая DC перпендикулярна плоскости ВВ1С1, а значит, и прямой ВС1, которая лежит в этой плоскости.
Имеем, прямая ВС1 перпендикулярна двум пересекающимся прямым В1С и DC плоскости, значит А1В1D. Значит, прямая ВС1 перпендикулярна плоскости А1В1D.
Плоскость АВС1 проходит через перпендикуляр ВС1 ко второй плоскости А1В1D, значит, плоскости АВС1 и А1В1D перпендикулярны по признаку, что и требовалось доказать.
Итоги урока по теме «Прямоугольный параллелепипед и его измерения (ребра, основание, площадь, диагональ, поверхность, площадь поверхности)»
Итак, мы познакомились с прямоугольным параллелепипедом и прямым параллелепипедом, рассмотрели его основные свойства. Этой важной геометрической фигуре будет посвящен и следующий урок.
Список литературы по теме «Прямой параллелепипед», «Ребра прямоугольного параллелепипеда», «Основание параллелепипеда», «Поверхность параллелепипеда», «Длина диагонали параллелепипеда»
- И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е изд., испр. и доп. – М.: Мнемозина, 2008. – 288 с.: ил.
- Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил.
- Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. – 6-е изд., стереотип. – М.: Дрофа, 2008. – 233 с.: ил.
Домашнее задание для закрепления темы «Основание параллелепипеда», «Поверхность параллелепипеда», «Основание прямоугольного параллелепипеда», «Вершины параллелепипеда», «Основание прямого параллелепипеда», «Измерения параллелепипеда»
- И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е изд., испр. и доп. – М.: Мнемозина, 2008. – 288 с.: ил.
- Задания 8, 14 стр. 68.
- Каково взаимное расположение двух смежных граней прямого параллелепипеда? А не смежных?
- Найдите угол между диагональю параллелепипеда и его гранями в прямоугольном параллелепипеде с измерениями a, b, c.
- Найдите площадь поверхности прямого параллелепипеда АВСDА1В1С1D1, если AB = 5 см, AD = 4 см, AA1 = 7 см, а двугранный угол при ребре AA1 равен 30°.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- ФМ Класс (Источник).
- Интернет-портал Webmath.exponenta.ru (Источник).
- Я класс (Источник).
Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».
Что такое параллелепипед
Что за слово такое мудреное – «параллелепипед»? Что за многогранник скрывается за этим словом? Что-то должно быть связано с параллельностью, не правда ли?
Так и есть:
Параллелепипед – многоугольник, образованный пересечением трех пар параллельных плоскостей.
Если слишком сложно, просто посмотри на картинку.
Какую фигуру из планиметрии (геометрии с «плоскими» фигурами) напоминает параллелепипед?
Немного похоже на параллелограмм, правда? Только «потолще» и слово подлиннее.
Основные понятия
Смотри, запоминай и не путай!
Высота – перпендикуляр, опущенный из любой вершины параллелепипеда на противоположную грань.
Та грань, на которую опущена высота, называется основанием.
Свойства параллелепипеда
- Все грани параллелепипеда – параллелограммы.
- Противоположные грани параллелепипеда параллельны и равны.
Внимание: передняя и задняя грани параллелепипеда равны, верхняя и нижняя – тоже равны, но не равны (не обязаны быть равны) передняя и верхняя грани – потому что они не противоположные, а смежные.
- Боковые ребра параллелепипеда равны:
- Диагонали параллелепипеда пересекаются и точкой пересечения делятся пополам.
Точка пересечения диагоналей называется центром параллелепипеда.
Прямой параллелепипед
Прямым называется параллелепипед, у которого боковые ребра перпендикулярны основанию.
Вот так:
У прямого параллелепипеда в основании – параллелограмм, а боковые грани — прямоугольники.
Прямоугольный параллелепипед
Прямоугольным называется параллелепипед, у которого в основании прямоугольник, а боковые ребра перпендикулярны основанию.
Это такая обувная коробка:
У прямоугольного параллелепипеда все грани – прямоугольники.
Давай-ка теперь выведем одну интересную формулу для диагонали прямоугольного параллелепипеда.
.
Видишь, как красиво? На теорему Пифагора похоже, правда? И формула эта как раз и получается из теоремы Пифагора.
Смотри:
— прямоугольный, поэтому
— тоже прямоугольный!
Поэтому
,
Подставим:
Вывели формулу.
Куб
Куб – параллелепипед, у которого все грани квадраты.
Все ребра куба равны.
Кстати, заметь, что куб – частный вид прямоугольного параллелепипеда.
Поэтому для диагонали куба действует формула, которую мы получили для прямоугольного параллелепипеда.
,
То есть
Давай убедимся в пользе этой формулы.
Представь, что у тебя задача: «Диагональ куба равна . Найти полную поверхность».
Пользуясь нашей формулой: , мы узнали, что , то есть .
Значит полная поверхность – шесть площадей квадратов со стороной -равна:
.
Видишь как быстро? И ты применяй!
ПАРАЛЛЕЛЕПИПЕД. КУБ. КОРОТКО О ГЛАВНОМ
1. Определения:
Параллелепипед — это четырехугольная призма (многогранник с гранями), все грани которой — параллелограммы. |
Прямой параллелепипед — это параллелепипед, у которого боковые грани — прямоугольники. |
Прямоугольный параллелепипед — параллелепипед, у которого все грани — прямоугольники |
Куб – параллелепипед, у которого все грани квадраты. |
Высота параллелепипеда – перпендикуляр, опущенный из любой вершины параллелепипеда на противоположную грань.
2. Свойства:
- Противолежащие грани параллелепипеда параллельны и равны.
- Диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
- Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через точку пересечения диагоналей (центр параллелепипеда), делится ею пополам.
- Все диагонали прямоугольного параллелепипеда равны между собой и равны сумме квадратов его измерений.
.
ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!
Стать учеником YouClever,
Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц»,
А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.
можно кликнув по этой ссылке.
Тетраэдр. Виды тетраэдров
Тетраэдр (четырёхгранник) — многогранник, гранями которого являются четыре треугольника (от греческого tetra — четыре и hedra — грань).
Рис. 1
У тетраэдра (4) грани, (4) вершины и (6) рёбер (Рис. 1).
Один из треугольников называется основанием тетраэдра, а три остальные — боковыми гранями тетраэдра.
В зависимости от видов треугольников и их расположения выделяют разные виды тетраэдров.
В школьном курсе чаще говорят о следующих видах тетраэдра:
— равногранный тетраэдр, у которого все грани — равные между собой треугольники;
— правильная треугольная пирамида — основание — равносторонний треугольник, все боковые грани — одинаковые равнобедренные треугольники (Рис. 3);
— правильный тетраэдр, у которого все четыре грани — равносторонние треугольники (Рис. 2).
Рис. 2 Рис. 3
Свойство правильного тетраэдра:
из определения правильного многогранника следует, что все рёбра тетраэдра имеют равную длину, а грани — равную площадь.
Параллелепипед. Виды параллелепипедов
Параллелепипедом называется многогранник, у которого (6) граней — параллелограммы.
Рис. 4
У параллелепипеда, как отмечено, (6) граней, (8) вершин и (12) рёбер (Рис. 4).
Две грани параллелепипеда, имеющие общее ребро, называются смежными, а не имеющие общих рёбер — противоположными.
Обычно выделяют какие-нибудь две противоположные грани и называют их основаниями, а остальные грани — боковыми гранями параллелепипеда.
Рёбра параллелепипеда, не принадлежащие основаниям, называют боковыми рёбрами.
Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю параллелепипеда (Рис. 5).
Рис. 5
В зависимости от видов параллелограммов и их расположения выделяют разные виды параллелепипедов:
параллелепипеды могут быть прямые и наклонные.
У прямых параллелепипедов боковые грани — прямоугольники (Рис. 5),
у наклонных — параллелограммы (Рис. 4).
Прямой параллелепипед, у которого основанием тоже является прямоугольник, называется прямоугольным параллелепипедом.
Рис. 6
Длины непараллельных рёбер прямоугольного параллелепипеда называются его линейными размерами (измерениями).
У прямоугольного параллелепипеда — три линейных размера: DA, DC, DD1 (Рис. 6).
Свойства параллелепипеда:
— противоположные грани параллелепипеда равны и параллельны.
— Все четыре диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
— Боковые грани прямого параллелепипеда — прямоугольники.
Построение сечения тетраэдра и параллелепипеда
Плоскостью сечения многогранника можно назвать любую плоскость, по обе стороны которой находятся точки многогранника.
Секущая плоскость пересекает грани многогранников по отрезкам.
Многоугольник, сторонами которого являются эти отрезки, называется сечением многогранника.
Так как у тетраэдра (4) грани, то сечением тетраэдра может быть треугольник (Рис. 7) или
четырёхугольник (Рис. 8).
Рис. 7 Рис. 8
У параллелепипеда (6) граней, поэтому сечением этого многогранника может быть треугольник (Рис. 9), четырёхугольник ( Рис. 10), пятиугольник (Рис. 11) или шестиугольник (Рис. 12).
При построении сечения надо вспомнить следующие знания из предыдущих тем:
1. если две точки прямой принадлежат плоскости, то прямая находится в этой плоскости.
2. Если две плоскости имеют общую точку, то эти плоскости пересекаются по прямой.
3. Если плоскость пересекает две параллельные плоскости, то линии пересечения параллельны.
Пример:
Задача
Построить сечение параллелепипеда плоскостью, которая проходит через точки (K), (M) и (N).
1. Проводим (MK), так как обе точки находятся в одной плоскости;
2. MK∩CC1=X — непараллельные прямые в одной плоскости пересекаются;
3. проводим (XN), так как обе точки находятся в одной плоскости;
4. XN∩D1C1=P;
5. проводим (MP), так как обе точки находятся в одной плоскости;
6. через точку (N) в плоскости основания NL∥MP, так как линии пересечения параллельных плоскостей с третьей плоскостью должны быть параллельны;
7. соединяем (N) и (L) и получаем сечение (MPNLK).