Какими свойствами обладают линейные неравенства с одной переменной

- Равносильные неравенства
- Решение неравенств
Линейное неравенство с одной переменной – это неравенство, которое можно привести к виду:
ax > b или ax < b.
Где x – это переменная, a – коэффициент, а b – свободный член.
Если a > 0, то, разделив обе части неравенства на a, получим:
x > | b | или x < | b |
a | a |
Данные неравенства и определяют все значения переменной x, при которых данное неравенство будет верным. Оба неравенства можно изобразить с помощью числовых промежутков:
Обратите внимание, что в строгих неравенствах значение, с которым сравнивается переменная, не входит в множество значений самой переменной. В нестрогих неравенствах оно будет входить в множество допустимых значений:
если x ⩾ | b | , то x ∈ [ | b | ; +∞) или если x ⩽ | b | , то x ∈ (-∞; | b | ] |
a | a | a | a |
Если a < 0, то, разделив обе части неравенства
ax > b или ax < b
на a и поменяв в них знак на противоположный, получим:
x < | b | или x > | b |
a | a |
Все возможные значения данных неравенств мы уже рассмотрели выше.
Если a = 0, тогда неравенство примет вид:
0 · x > b или 0 · x < b
В первом случае: 0 · x > b, x ∈ (-∞; +∞), если b отрицательное число, в противном случае неравенство не имеет решений. Во втором случае: 0 · x < b, x ∈ (-∞; +∞), если b положительное число, в противном случае неравенство не имеет решений.
Равносильные неравенства
Равносильные неравенства – это неравенства, у которых совпадает множество решений. Неравенства, не имеющие решений, тоже считаются равносильными.
Неравенство, равносильное данному, получится, если:
- Перенести слагаемое из одной части неравенства в другую, изменив знак слагаемого на противоположный.
- Умножить или разделить обе части неравенства на одно и то же положительное число.
- Умножить или разделить обе части неравенства на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный.
Решение неравенств
Решить неравенство с одной переменной – это значит, найти все значения этой переменной, при которых данное неравенство верно, или убедиться, что таких значений у переменной нет.
Все неравенства с одной переменной решаются одинаково с помощью преобразований, которые могут выполняться в любом порядке. Список возможных преобразований, которые могут быть использованы для решения неравенств:
- освобождение от дробных членов,
- раскрытие скобок,
- перенос всех членов, содержащих переменную, в одну часть, а остальных – в другую (члены с переменными, как правило, переносят в левую часть неравенства),
- приведение подобных членов,
- деление обеих частей неравенства на коэффициент при переменной.
Пример 1. Решить неравенство и изобразить множество решений на координатной прямой:
-8x — 2 > 14
Решение: Переносим -2 в правую часть:
-8x > 14 + 2
-8x > 16
Делим обе части неравенства на -8:
-8x : (-8) < 16 : (-8)
x < -2
Отмечаем множество значений x на координатной прямой:
Ответ: (-∞; -2)
Пример 2. Решить неравенство и изобразить множество решений на координатной прямой:
6(y + 12) ⩾ 3(y — 4)
Решение: Сначала раскрываем скобки:
6y + 72 ⩾ 3y — 12
Переносим 72 в правую часть, а 3y в левую и делаем приведение подобных слагаемых:
6y — 3y ⩾ -12 — 72
3y ⩾ -84
Делим обе части неравенства на коэффициент при неизвестном (на 3):
(3y) : 3 ⩾ (- 84) : 3
y ⩾ -28
Отмечаем множество значений y на координатной прямой:
Ответ: [-28; +∞)
Свойства числовых неравенств
- Свойство 1. Если a > b и b > c, то a > c (Пример: 8 > 4 и 4 > 3 => 8 > 3)
- Свойство 2. Если a > b, то a + const > b + const. Const-произвольное число (Пример: x — 3 > 0 <=> x — 3 + 8 > 0 + 8)
- Свойство 3. Если a > b и m > 0, то am > bm;
Если a > b и m < 0, то am < bm. m-произвольное число.
Смысл свойства 3 заключается в следующем:
- если обе части неравенства умножить на одно и то же положительное число,то знак неравенства следует сохранить;
- если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства следует изменить(знак “<” на “>”, знак “>” на “<”);(для нестрогих неравенств)
Из свойства 3, в частности, следует, что, умножив обе части неравенства a > b на -1, получим: -a < -b.
- Свойство 4. Если a > b и c > d, то a + c > b + d (Пример: 8 > 4 и 3 > 2 => 8 + 3 > 4 + 2)
- Свойство 5. Если a,b,c,d –положительные числа и a > b, c > d то ac > bd (Пример: 8 > 4 и 3 > 2 => 8 * 3 > 4 * 2)
Линейные неравенства
Определение. Решением неравенства с одной переменной называется значение переменной, которое обращает его в верное числовое неравенство.
Рассмотрим, например, неравенство 2х + 5 < 7.
Решение:
Нас интересуют такие числа х, при которых 2х + 5 < 7— верное числовое неравенство.
Давайте упростим наше неравенство.
1) Согласно свойству 2 к обеим частям неравенства прибавили одно и то же число “-5”, получили:
2х + 5 — 5 < 7 — 5.
2х < 2
Получили более простое неравенство.
2) На основании свойства 3 можно разделить обе его части на положительное число 2, полученное неравенство:
х < 1
Что это значит? Это значит, что решением неравенства является любое число х, которое меньше 1. Таким образом, множеством решений данного неравенства является множество чисел x < 1 (или иначе в виде числовой прямой (-∞;1])
Свойства позволяют руководствоваться при решении неравенств следующими правилами:
- Правило 1. Любой член неравенства можно перенести из одной части неравенства в другую с противоположным знаком, не изменив при этом знак неравенства.
- Правило 2. Обе части неравенства можно умножить или разделить на одно и то же положительное число, не изменив при этом знак неравенства.
- Правило 3. Обе части неравенства можно умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный.
Применим эти правила для решения линейных неравенств, т.е. неравенств, сводящихся к виду
ах + b > 0
где а и b — любые числа, за одним исключением: а ≠ 0.
Если а = 0, то рассматриваем 2 случая:
1) Если b > 0, то x может быть любое число
2) Если b < 0, то решения нет
Пример 1:
Решить неравенство
Зх — 5 ≥ 7х — 15.
Решение.
Руководствуемся правилом 1 перенесем член 7х в левую часть неравенства, а член -5 — в правую часть неравенства, не забыв при этом изменить знаки и у члена 7х, и у члена -5. Тогда получим:
Зх — 7х ≥ -15 + 5
-4х ≥ -10
Согласно правилу 3 разделим обе части последнего неравенства на одно и то же отрицательное число -4, не забыв при этом сменить знак неравенства. Получим:
х ≤ 2,5.
Это и есть решение заданного неравенства.
Как мы условились, для записи решения можно использовать обозначение соответствующего промежутка числовой прямой: (-∞; 2,5].
Ответ: (- ∞; 2,5].
Пример 2:
Решить неравенство
3x + 2 > 2(x + 3) + x
Решение.
Раскроем скобки во второй части неравенства:
3x + 2 > 2x + 6 + x
Руководствуясь правилом 1, перенесем члены «с иксом» в левую часть неравенства, а «без икса» в правую:
3x — 2x — x > 6 — 2
0x > 4
0 > 4
Получаем противоречие.
Решения нет.
Пример 4:
Решить неравенство
2(x — 1) + 3 > 2x — 5
Решение.
Раскроем скобки во второй части неравенства:
2x — 2 + 3 > 2x — 5
Руководствуясь правилом 1, перенесем члены «с иксом» в левую часть неравенства, а «без икса» в правую:
2x — 2x > 2 — 5 — 3
0x > -6
0 > -6
Получаем верное неравенство.
В данном случае можно взять любое число x, так как от него не зависит решение.
Ответом является вся числовая прямая.
В заключение заметим, что, используя свойства числовых неравенств и правила, мы в этом параграфе учились решать не любое неравенство с переменной, а только такое, которое после ряда простейших преобразований (типа тех, что были выполнены в примерах из этого параграфа) принимает вид ax > b, такие неравенства называются линейными. Далее мы изучим методы для решения более сложных неравенств.
Перейти к тесту
Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».
Раз уж ты оказался на этой теме, то ты наверняка уже знаком с темой «Линейные уравнения».
Если нет, то лучше скорей отправляйся исправлять это недоразумение.
Без усвоенной темы «Линейные уравнения» спокойное плавание в «Линейных неравенствах» не гарантировано.
Итак, надеюсь, ты уже знаком с линейными уравнениями, поэтому можно смело покорять неравенства!
Что такое «линейные неравенства»?
Если ты ознакомился с линейными уравнениями, то уже знаком с Васей, который раздавал яблоки своим друзьям. Давай вернемся к примеру с Васей (может, и нам что-то перепадет?).
Так вот, предположим, что у Васи больше, чем яблок. Все свои яблоки он хочет раздать поровну троим друзьям. По сколько яблок получит каждый друг?
Если обозначить через количество яблок, которое достанется каждому из трех друзей, то получим следующее линейное неравенство:
Дальше мы делим обе части составленного неравенства на и получаем:
Таким образом, каждый друг щедрого Васи получит больше, чем яблока.
Ну вот и справились с неравенством!
Сейчас я введу формализованное определение линейного неравенства и будем разбираться с ним дальше.
Линейные неравенства — это неравенства вида:
где и – любые числа, причем ; — неизвестная переменная.
Например:
Все приведенные выше неравенства являются линейными.
Во всех них «сидит» очень важная особенность: в таких неравенствах нет иксов в квадрате, в кубе и т.д., кроме того в этих неравенствах нет деления на икс и икс не находится под знаком корня.
Чтобы лучше распознавать линейные неравенства, настоятельно рекомендую тебе еще раз заглянуть в раздел «Скрытые» линейные уравнения или…» темы «Линейные уравнения. Начальный уровень.».
Линейные неравенства обладают не меньшим талантом «скрываться».
Чтобы не попасть впросак и с легкостью преобразовывать любые неравенства надо знать и успешно применять 3 очень важных правила. Эти знания здорово упростят тебе жизнь на пути в решении неравенств.
Правила преобразования неравенств
Два неравенства равносильны, если они имеют одинаковые решения.
Решить неравенство – значит найти все значения переменной, при которых неравенство обращается в верное числовое неравенство.
Для упрощения процесса нахождения всех корней неравенства проводятся равносильные преобразования, то есть проводится замена данного неравенства более простым, при этом не должны потеряться никакие решения и не должно возникнуть никаких посторонних корней.
В общем, это все пока только слова. Давай разбираться прямо на правилах.
ПРАВИЛО 1. Любой член неравенства можно переносить из одной части неравенства в другую, меняя при этом знак на противоположный (т.е. при переносе через знак неравенства знаки при слагаемых меняются на противоположные).
Например,
Таким образом, можно с уверенностью сказать, что равносильно .
Или вот такой пример:
В теме «Линейные уравнения» говорилось, что для удобства принято переносить слагаемые с переменной в левую часть, а остальные в правую – так и поступим:
Здесь все должно быть понятно, перейдем к следующему правилу.
ПРАВИЛО 2. Обе части неравенства можно умножить/разделить на одно и то же положительное число, при этом получится неравенство, равносильное данному.
Вернемся к нашим двум предыдущим примерам.
В первом примере мы остановились на . Применим правило 2, разделив обе части неравенства на положительное число :
Заметил, знак неравенства как был «больше», так и сохранился? Все это потому, что мы делили на положительное число.
Давай закрепим на втором примере, где мы остановились на . Разделим обе части неравенства на :
Делили на положительное число , поэтому знак неравенства сохранился.
Почему так акцентируется внимание на том, что знак неравенства сохраняется? А вот потому, что в отличие от преобразований линейных уравнений, преобразования линейных неравенств имеют свою особенность, можно даже сказать «подводный камень». Что это за «камень» должно прояснить правило 3.
Заметил важное отличие от правила 2? Все верно:
- При умножении/делении на положительное число знак неравенства сохраняется
- При умножении/делении на отрицательное число знак неравенства меняется на противоположный
Например:
Делим на отрицательное число , тогда знак неравенства меняется на противоположный:
Заметил, знак (меньше) заменили на знак (больше)?
Или вот такой пример:
Делим обе части на отрицательное число , меняя при этом знак неравенства на противоположный:
Усвоил? Тогда давай закреплять на примерах
Не пугайся, что примеры, на первый взгляд, сложней, чем мы с тобой разбирали. Мы ведь знаем все необходимые правила преобразования линейных неравенств, а значит, не пропадем.
Ну что, приступим? Как-никак, это не Эверест покорять.
1.
Раскроем для начала скобки и приведем подобные слагаемые:
А теперь можем применять наши правила преобразования линейных неравенств:
Ну вот, мы почти решили наше неравенство – осталось записать ответ в виде промежутка. Неравенство у нас нестрогое, поэтому число включается в наш промежуток. Для наглядности изображу решения на оси:
Запишем ответ: .
2.
Все, как в первом примере: раскрываем скобки, приводим подобные слагаемые, осуществляем необходимые преобразования:
Неравенство у нас нестрогое, поэтому число включается в наш промежуток:
Ответ:
3.
Думаешь это не линейное неравенство? А что мы говорили в теме Линейные уравнений об их «скрытности»?
Поспешных выводов делать не стоит, давай лучше проведем все возможные преобразования и убедимся, что это линейное неравенство, либо докажем обратное.
Сейчас будем делить обе части неравенства на отрицательное число . Что же тогда произойдет со знаком неравенства? Все верно – он поменяется на противоположный!
Неравенство нестрогое, значит, включается в наш промежуток.
Ответ:
4.
Проводим соответствующие преобразования:
Делим обе части на отрицательное число , не забывая поменять знак неравенства на противоположный:
Неравенство нестрогое, поэтому — не включается в промежуток:
Ответ:
5.
Этот пример проще, поэтому сразу запишу ход решения без комментариев:
Ответ:
Линейные неравенства с двумя переменными
В теме Линейные уравнения достаточно подробно разобрано понятие линейного уравнения с двумя переменными. Линейное неравенство представляет собой практически то же самое, только знак равенства меняется на знак неравенства .
Линейные неравенства с двумя переменными имеют вид:
- ,
где , и – любые числа, .
А вся разница с линейным неравенством с одной переменной только в том, что в неравенство добавляется еще одна переменная .
Решением неравенства с двумя переменными называется множество пар чисел , которые удовлетворяют этому неравенству (т.е. при подстановке этих точек неравенство верно).
Для решения линейных неравенств с двумя переменными, используется графический способ.
Давай разберем вот такой пример:
Решение:
Как уже упоминалось, решается такое неравенство графически.
Построим график уравнения . Как ты уже должен был знать из темы «Линейные уравнения», графиком будет прямая.
Строим график по двум точкам, через которые проходит прямая, к примеру, и . Вот, что у меня получилось:
Так как неравенство в этом примере у нас строгое, то координаты точек самого графика прямой не будут являться решением исходного неравенства. Поэтому обозначим линию пунктиром на графике:
Как можно заметить, прямая разбила плоскость на две полуплоскости. Все точки одной из полуплоскостей будут являться решением исходного неравенства.
Так как в исходном неравенстве у нас стоит знак , то мы должны выбрать те точки, которые лежат выше графика прямой. Изобразим все решения неравенства на графике:
Все решения «затушеваны» голубым цветом. Вот и все, неравенство с двумя переменными решено. Это значит, что координаты и любой точки из закрашенной области – решения неравенства.
ЛИНЕЙНЫЕ НЕРАВЕНСТВА. КОРОТКО О ГЛАВНОМ
Линейными неравенствами называются неравенства вида:
где и – любые числа, причем ; — неизвестная переменная.
Правила преобразования неравенств:
Правило 1. Любой член неравенства можно переносить из одной части неравенства в другую, меняя при этом знак на противоположный (т.е. при переносе через знак неравенства знаки при слагаемых меняются на противоположные).
Правило 2. Обе части неравенства можно умножить/разделить на одно и то же положительное число, при этом получится неравенство, равносильное данному.
Правило 3. Обе части неравенства можно умножить/разделить на одно и то же отрицательное число, меняя знак неравенства на противоположный (т.е. знак на знак , и наоборот; знак на знак , и наоборот).
ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!
Стать учеником YouClever,
Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц»,
А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.