Какими свойствами обладают гладкие мышцы

Какими свойствами обладают гладкие мышцы thumbnail

Пластичность гладкой мышцы

Важным свойством гладкой мышцы является ее большая
пластичность т. е. способность сохранять приданную растяжением длину без
изменения напряжения. Различие между скелетной мышцей, обладающей малой
пластичностью, и гладкой мышцей с хорошо выраженной пластичностью, легко
обнаруживается, если их сначала медленно растянуть, а затем снять растягивающий
груз. Скелетная мышца тотчас же укорачивается
после снятия груза. В отличие от этого гладкая мышца после снятия груза остается
растянутой до тех пор, пока под влиянием какого-либо раздражения не возникает ее
активного сокращения.

Свойство пластичности имеет очень большое значение для нормальной
деятельности гладких мышц стенок полых органов, например мочевого пузыря:
благодаря пластичности гладкой мускулатуры стенок пузыря давление внутри него
относительно мало изменяется при разной степени наполнения.

Возбудимость и возбуждение

Гладкие мышцы менее возбудимы, чем скелетные: их пороги
раздражения выше, а хронаксия длиннее. Потенциалы действия большинства
гладкомышечных волокон имеют малую амплитуду (порядка 60 мв вместо 120 же в
скелетных мышечных волокнах) и большую продолжительность — до 1—3 секунд. На
рис. 151 показан потенциал действия одиночного волокна мышцы матки.

Рефрактерный период продолжается в течение всего периода потенциала действия,
т. е. 1—3 секунд. Скорость проведения возбуждения варьирует в разных волокнах от
нескольких миллиметров до нескольких сантиметров  в секунду.

Существует большое число различных типов гладких мышц в теле животных и
человека. Большинство полых органов тела выстлано гладкими мышцами, имеющими
сенцитиальный тип строения. Отдельные волокна таких мышц очень тесно примыкают
друг к другу и создается впечатление, что морфологически они составляют единое
целое.

Однакоэлектронномикроскопические исследования показали, что мембранной и
протоплазматической непрерывности между отдельными волокнами мышечного синцития
не существует: они отделены друг от друга тонкими (200—500 Å) щелями. Понятие
«синцитиальное строение» является в настоящее время скорее физиологическим, чем
морфологическим.

Синцитий — это функциональное образование, которое обеспечивает то,
что потенциалы действия и медленные волны деполяризации могут беспрепятственно
распространяться с одного волокна на другое. Нервные окончания расположены
только на небольшом числе волокон синцития. Однако вследствие беспрепятственного
распространения возбуждения с одного волокна на другое вовлечение в реакцию всей
мышцы может происходить, если нервный импульс поступает к небольшому числу
мышечных волокон.

 

В некоторых гладких мышцах, например в ресничной мышце глаза или
радиальной мышце радужной оболочки, волокна расположены  раздельно
(дискретный тип строения) и каждое из них имеет самостоятелную иннервацию,
подобно волокнам  скелетной мышцы.

Рис. 151. Потенциал действия одиночного гдадкомышечного волокна
матки, зарегистрированный внутриклеточным
микроэлектродом.

Сокращение гладкой мышцы

При большой силе одиночного раздражения может возникать сокращение гладкой
мышцы. Скрытый период одиночного сокращения этой мышцы значительно больше, чем
скелетной мышцы, достигая, например, в кишечной  мускулатуре кролика 0,25—
1 секунды. Продолжительность самого сокращения тоже велика (рис. 152):
в желудке кролика она достигает 5 секунд, а в желудке лягушки — 1 минуты и
более. Особенно медленно протекает расслабление после сокращения. Волна
сокращения распространяется по гладкой мускулатуре тоже очень медленно, она
проходит всего около 3 см в секунду. Но эта медленность сократительной
деятельности гладких мышц сочетается с большой их силой. Так, мускулатура
желудка птиц способна поднимать 1 кг на 1см2 своего поперечного сечения.

 

Рис. 152.Сокращение гладкой мышцы желудка лягушки при одиночном
раздражении (справа) и для сравнения — икроножной мышцы (слева) (по Э.
Стерлингу). S — момент раздражения гладкой мышцы. Отметка времени — 2
секунды.

Тонус гладкой мышцы

Вследствие медленности сокращения гладкая мышца даже при редких ритмических
раздражениях (для желудка лягушки достаточно 10—12 раздражений в минуту) легко
переходит в длительное состояние стойкого сокращения, напоминающее тетанус
скелетных мышц. Однако энергетические расходы при таком стойком сокращении
гладкой мышцы очень малы, что отличает это сокращение от тетануса
поперечнополосатой мышцы.

Причины, вследствие которых гладкие мышцы сокращаются и расслабляются много
медленнее, чем скелетные, полностью еще не выяснены. Известно, что миофибриллы
гладкой мышцы так же, как и скелетной мышцы, состоят из миозина и актина. Однако
в гладких мышцах нет поперечной исчерченности, нет мембраны Z и они гораздо
богаче саркоплазмой. По-видимому, эти особенности структуры гладких мышечных
волн и обусловливают медленный темп сократительного процесса. Этому
соответствует и относительно низкий уровень обмена веществ гладких
мышц.

Автоматия гладких мышц

Характерной особенностью гладких мышц, отличающей их от скелетных, является
способность к спонтанной автоматической деятельности. Спонтанные сокращения
можно наблюдать при исследовании гладких мышц желудка, кишок, желчного пузыря,
мочеточников и ряда других гладкомышечных органов.

Автоматия гладких мышц имеет миогенное происхождение. Она присуща самим
мышечным волокнам и регулируется нервными элементами, которые находятся в
стенках гладкомышечных органов. Миогенная природа автоматии доказана опытами на
полосках мышц кишечной стенки, освобожденных путем тщательной препаровки от
прилежащих к ней нервных сплетений. Такие полоски, помещенные в теплый растввр
Рингера-Локка, который насыщается кислородом, способны совершать автоматические
сокращения. При последующей гистологической проверке было обнаружено отсутствие
в этих мышечных полосках нервных клеток.

В гладких мышечных волокнах различают следующие спонтанные колебания
мембранного потенциала: 1) медленные волны деполяризации с длительностью цикла
порядка нескольких минут и амплитудой около 20 мв; 2) малые быстрые колебания
потенциала, предшествующие возникновению потенциалов действия; 3) потенциалы
действия.

Читайте также:  Лечебные свойства маточного молочка и при каких заболеваниях

На все внешние воздействия гладкая мышца реагирует изменении частоты
спонтанной ритмики, следствием которой являются сокращения и расслабления мышцы.
Эффект раздражения гладкой мускулатуры кишки зависит от соотношения между
частотой стимуляции и собственной частотой спонтанной ритмики: при низком тонусе
— при редких спонтанных потенциалах действия — приложенное раздражение усиливает
тонус при высоком же тонусе в ответ на раздражение возникает расслабление, так
как чрезмерное учащение импульсации приводит к тому, что каждый следующий
импульс попадает в  рефрактерную фазу от предыдущего.

Источник

Гладкие мышцы

Гладкие мышцы представлены в полых органах, кровеносных сосудах и коже. Гладкие мышечные волокна не имеют поперечной исчерченности. Клетки укорачиваются в результате относительного скольжения нитей. Скорость скольжения и скорость расщепления аденозинтрифосфата в 100-1000 раз меньше, чем в скелетных мышцах. Благодаря этому гладкие мышцы хорошо приспособлены для длительного стойкого сокращения без утомления, с меньшей затратой энергии.

Гладкие мышцы являются составной частью стенок ряда полых внутренних органов и участвуют в обеспечении функций, выполняемых этими органами. В частности, они регулируют кровоток в различных органах и тканях, проходимость бронхов для воздуха, перемещения жидкостей и химуса (в желудке, кишечнике, мочеточниках, мочевом и желчном пузыре), сокращение матки при родах, размер зрачка, кожного рельефа.

Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм, толщину 2-10 мкм (рис. 5.6).

Гладкие мышцы относятся к непроизвольным мышцам, т.е. их сокращение не зависит от воли макроорганизма. Особенности двигательной деятельности желудка, кишечника, кровеносных сосудов и кожи в известной степени определяют физиологические особенности гладких мышц этих органов.

Характеристика гладкой мускулатуры

  • Обладает автоматизмом (влияние интрамуральной нервной системы носит корригирующий характер)
  • Пластичность — способность долго сохранять длину без изменения тонуса
  • Функциональный синтиций — отдельные волокна разделены, но имеются особые участки контакта — нексусы
  • Величина потенциала покоя — 30-50 мВ, амплитуда потенциала действия меньше, чем у клеток скелетных мышц
  • Минимальная «критическая зона» (возбуждение возникает, если возбуждается некоторое минимальное число мышечных элементов)
  • Для взаимодействия актина и миозина необходим ион Ca2+который поступает извне
  • Длительность одиночного сокращения велика

Особенность гладких мышц — их способность проявлять медленные ритмические и длительные тонические сокращения. Медленные ритмические сокращения гладких мышц желудка, кишечника, мочеточников и других полых органов способствуют перемещению их содержимого. Длительные тонические сокращения гладких мышц сфинктеров полых органов препятствуют произвольному выходу их содержимого. Гладкие мышцы стенок кровеносных сосудов, также находятся в состоянии постоянного тонического сокращения и влияют на уровень артериального давления крови и кровоснабжение организма.

Важным свойством гладких мышц является их мистичность, т.е. способность сохранять вызванную растяжением или деформацией форму. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования органов. Например, пластичность мочевого пузыря позволяет при его наполнении мочой профилактировать повышение в нем давления без нарушения процесса мочеобразования.

Чрезмерное растяжение гладких мышц вызывает их сокращение. Это происходит в результате деполяризации мембран клеток, вызванной их растяжением, т.е. гладкие мышцы обладают автоматизмом.

Сокращение, вызываемое растяжением, играет важную роль в авторегуляции тонуса кровеносных сосудов, перемещении содержимого желудочно-кишечного тракта и других процессах.

Какими свойствами обладают гладкие мышцы

Рис. 1. А. Волокно скелетной мышцы, клетка сердечной мышцы, гладкая мышечная клетка. Б. Саркомер скелетной мышцы. В. Строение гладкой мышцы. Г. Механограмма скелетной мышцы и мышцы сердца.

Автоматизм в гладких мышцах обусловлен наличием в них особых пейсмекерных (задающих ритм) клеток. По своей структуре они идентичны другим гладкомышечным клеткам, но обладают особыми электрофизиологическими свойствами. В этих клетках возникают пейсмекерные потенциалы, деполяризующие мембрану до критического уровня.

Возбуждение гладкомышечных клеток вызывает увеличение входа ионов кальция в клетку и высвобождение этих ионов из саркоплазматического ретикулума. В результате повышения концентрации ионов кальция в саркоплазме активируются сократительные структуры, но механизм активации их в гладком волокне отличается от механизма активации в поперечно-полосатых мышцах. В гладкой клетке кальций взаимодействуете белком кальмодулином, который активирует легкие цепи миозина. Они соединяются с активными центрами актина в протофибриллах и совершают «гребок». Гладкие мышцы расслабляются пассивно.

Гладкие мышцы относятся к непроизвольным, и их сокращение не зависит от воли животного.

Физиологические свойства и особенности гладких мышц

Гладкие мышцы, так же, как и скелетные, обладают возбудимостью, проводимостью и сократимостью. В отличие от скелетных мышц, обладающих эластичностью, гладкие мышцы имеют пластичность — способность длительное время сохранять приданную им при растяжении длину без увеличения напряжения. Такое свойство важно для выполнения функции депонирования пищи в желудке или жидкостей в желчном и мочевом пузыре.

Особенности возбудимости гладкомышечных клеток в определенной мере связаны с низкой разностью потенциалов на мембране в покое (E0 = (-30) — (-70) мВ). Гладкие миоциты могут обладать автоматией и самопроизвольно генерировать потенциал действия. Такие клетки — водители ритма сокращения гладких мышц имеются в стенках кишечника, венозных и лимфатических сосудов.

Какими свойствами обладают гладкие мышцы

Рис. 2. Строение гладкомышечной клетки (A. Guyton, J. Hall, 2006)

Длительность ПД гладких миоцитов может достигать десятков миллисекунд, так как ПД в них развивается преимущественно за счет входа ионов Са2+ в саркоплазму из межклеточной жидкости через медленные кальциевые каналы.

Читайте также:  У какой кислоты наиболее выражены кислотные свойства

Скорость проведения ПД по мембране гладких миоцитов малая — 2-10 см/с. В отличие от скелетных мышц возбуждение может передаваться с одного гладкого миоцита на другие, рядом лежащие. Такая передача происходит благодаря наличию между гладкомышечными клетками нексусов, обладающих малым сопротивлением электрическому току и обеспечивающих обмен между клетками ионов Са2+ и другими молекулами. В результате этого гладкая мышца проявляет свойства функционального синтиция.

Сократимость гладкомышечных клеток отличается длительным латентным периодом (0,25-1,00 с) и большой длительностью (до 1 мин) одиночного сокращения. Гладкие мышцы развивают малую силу сокращения, но способны длительно находиться в тоническом сокращении без развития утомления. Это связано с тем, что на под/держание тонического сокращения гладкая мышца расходует в 100-500 раз меньше энергии, чем скелетная. Поэтому расходуемые гладкой мышцей запасы АТФ успевают восстанавливаться даже во время сокращения и гладкие мышцы некоторых структур организма практически постоянно находятся в состоянии тонического сокращения. Абсолютная сила гладкой мышцы составляет около 1 кг/см2.

Механизм сокращения гладкой мышцы

Важнейшей особенностью гладкомышечных клеток является то, что они возбуждаются под влиянием многочисленных раздражителей. Сокращение скелетной мышцы в естественных условиях инициируется только нервным импульсом, приходящим к нервно-мышечному синапсу. Сокращение же гладкой мышцы может быть вызвано как влиянием нервных импульсов, так и действием гормонов, нейромедиаторов, простагландинов, некоторых метаболитов, а также воздействием физических факторов, например растяжением. Кроме того, возбуждение и сокращение гладких миоцитов может произойти спонтанно — за счет автоматик.

Способность гладких мышц отвечать сокращением на действие разнообразных факторов создаст значительные трудности для коррекции нарушений тонуса этих мышц в медицинской практике. Это видно на примерах трудностей лечения бронхиальной астмы, артериальной гипертензии, спастического колита и других заболеваний, требующих коррекции сократительной активности гладких мышц.

В молекулярном механизме сокращения гладкой мышцы также имеется ряд отличий от механизма сокращения скелетной мышцы. Нити актина и миозина в гладкомышечных клетках располагаются менее упорядочение, чем в скелетных, и поэтому гладкая мышца не имеет поперечной исчерченности. В актиновых нитях гладкой мышцы нет белка тропонина и центры актина всегда открыты для взаимодействия с головками миозина. В то же время головки миозина в состоянии покоя не энергизированы. Для того чтобы произошло взаимодействие актина и миозина, необходимо фосфорилировать головки миозина и придать им избыток энергии. Взаимодействие актина и миозина сопровождается поворотом головок миозина, при котором актиновые нити втягиваются между миозиновыми и происходит сокращение гладкого миоцита.

Фосфорилирование головок миозина производится при участии фермента киназы легких цепей миозина, а дефосфорилирование — с помощью фосфатазы. Если активность фосфатазы миозина преобладает над активностью киназы, то головки миозина дефосфорилируются, связь миозина и актина разрывается и мышца расслабляется.

Следовательно, чтобы произошло сокращение гладкого миоцита, необходимо повысить активность киназы легких цепей миозина. Ее активность регулируется уровнем ионов Са2+ в саркоплазме. Нейромедиаторы (ацетилхолин, норадрсналин) или гормоны (вазопрессин, окситоцин, адреналин) стимулируют свой специфический рецептор, вызывая диссоциацию G-белка, а-субъединица которого далее активирует фермент фосфолипазу С. Фосфолигтза С катализирует образование инозитолтрисфосфата (ИФЗ) и диацилглицерола из фосфо-инозитолдифосфата мембраны клетки. ИФЗ диффундирует к эндоплазматическому ретикулуму и после взаимодействия со своими рецепторами вызывает открытие кальциевых каналов и высвобождение ионов Са2+ из депо в цитоплазму. Увеличение содержания ионов Са2+ в цитоплазме является ключевым событием для инициации сокращения гладкого миоцита. Увеличение содержания ионов Са2+ в саркоплазме достигается также за счет его поступления в миоцит из внеклеточной среды (рис. 3).

Ионы Са2+ образуют комплекс с белком кальмодулином, и комплекс Са2+-кальмодулин повышает киназную активность легких цепей миозина.

Последовательность процессов, приводящих к развитию сокращения гладкой мышцы, можно описать следующим образом: вход ионов Са2+ в саркоплазму — активация кальмодулина (путем образования комплекса 4Са2-кальмодулин) — активация киназы легких цепей миозина — фосфорилирование головок миозина — связывание головок миозина с актином и поворот головок, при котором нити актина втягиваются между нитями миозина — сокращение.

Какими свойствами обладают гладкие мышцы

Рис. 3. Пути поступления ионов Са2+ в саркоплазму гладкомышечной клетки (а) и удаления их из саркоплазмы (б)

Условия, необходимые для расслабления гладкой мышцы:

  • снижение (до 10-7 М/л и менее) содержания ионов Са2+ в саркоплазме;
  • распад комплекса 4Са2+ -кальмодулин, приводящий к снижению активности киназы легких цепей миозина — дефосфорилирование головок миозина под влиянием фосфатазы, приводящее к разрыву связей нитей актина и миозина.

В этих условиях эластические силы вызывают относительно медленное восстановление исходной длины гладкомышечного волокна и его расслабление.


Источник

Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости.) Важнейшие
функции мышечной ткани: сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечно-полосатая (скелетная) и сердечная
мышечные ткани.

Мышцы человека

Гладкая (висцеральная) мускулатура

Эта мышечная ткань встречается в стенках внутренних органах (кишечник, мочевой пузырь), в стенках сосудов, протоках
желез. Эволюционно является наиболее древним видом мускулатуры.

Состоит из веретенообразных миоцитов — коротких одноядерных клеток. Слабо выражено межклеточное вещество, клетки сближены друг с другом: благодаря этому возбуждение, возникшее в одной клетке, волнообразно распространяется на все
остальные клетки.

Гладкие миоциты, гладкая мышечная ткань

Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы
внутренних органов (к примеру, мочевого пузыря), практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает и утомляется быстро.

Читайте также:  Какое зерна какие свойства

Осуществляется сокращение с помощью клеточных органоидов — миофиламентов, которые расположены в клетке хаотично и не имеют
такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их изучим.)

Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой: человек не может управлять ей произвольно.
К примеру, невозможно по желанию сузить или расширить зрачок.

Гладкая мускулатура

Скелетная поперечно-полосатая мускулатура

Скелетная ткань образует мышцы туловища, конечностей и головы.

В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными
волокнами, имеющими до 100 и более ядер — миосимпластами. Миосимпласт представляет совокупность слившихся клеток, имеет длину
от нескольких миллиметров до нескольких сантиметром.

Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой.

Скелетная мышечная ткань, миосимпласт

Характерная черта данной ткани — поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос
на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего
все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы — саркомер.

Саркомер

Сократимость мышечной ткани обусловлена наличием в клетках миофиламентов. Саркомер — элементарная сократительная единица
мышцы. Состоит из тонкого белка — актина, и толстого — миозина. Сокращение осуществляется благодаря трению нитей актина о
нити миозина, в результате чего саркомер укорачивается.

Строение саркомера

Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они
связываются с тропонином (белком между нитями актина), что обуславливает соединение актина и миозина. При сокращении мышц выделяется тепло.

Замечу, что трупное окоченение — посмертное затвердевание мышц — связано именно с ионами кальция, которые устремляются в область
низкой концентрации (мышцы), способствуя связыванию актина и миозина. Мертвый организм не способен разорвать цикл, возникший в мышцах,
в связи с чем наблюдается стойкая мышечная контрактура: конечности очень сложно разогнуть или согнуть.

Сокращение мышц

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

В процесс возбуждения вовлекается изолированно один миосимпласт, соседние волокна не возбуждают друг друга, в отличие
от гладких миоцитов. Скелетные мышцы быстро утомляются и сокращаются мгновенно (у гладких мышц фазы сокращения и расслабления
растянуты во времени.)

Скелетные мышцы поддаются нашему осознанному контролю, их скоращение регулируется произвольно. К примеру, по желанию мы можем изменить
скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение
суставы.

Строение мышцы

Сердечная мышечная ткань

Мышечная ткань сердца — миокард (от др.-греч. μῦς «мышца» + καρδία — «сердце») — средний слой сердца, составляющий основную
часть его массы.

Миокард

Этот тип мышечной ткани удивительным образом сочетает характеристики двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое
уникальное свойство. Сердечная мышечная ткань состоит из одиночных клеток, имеющих поперечно-полосатую исчерченность.

В некоторых участках эти клетки смыкаются, образуя между собой контакты, благодаря которым возбуждение одной клетки волнообразно
передается на соседние, таким образом, охватываются новые участки миокарда. Сокращается эта ткань непроизвольно, не утомляется.

Сердечная ткань обладает уникальным свойством — автоматизмом — способностью возбуждаться и сокращаться без влияний извне,
самопроизвольно. Это легко можно подтвердить, изолировав сердце лягушки из организма в физиологический раствор: сокращения
сердца в нем будут продолжаться еще несколько часов.

Автоматизм сердца, изолированное сердце лягушки сокращается

Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных клеток, которые также называют водителями ритма. Они
спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям
ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.

Ответ мышц на физическую нагрузку

Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- «чрез, слишком» + τροφή — «еда, пища») — в них увеличивается количество мышечных волокон, объем мышечной
массы нарастает.

Гипертрофия мышц

В условиях гиподинамии (от греч. ὑπό — «под» и δύνᾰμις — «сила»), то есть пониженной активности, мышцы уменьшаются вплоть до полной
атрофии. В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.

Атрофия мышц

Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в
размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление.
Гипертрофия сердца — состояние, требующее вмешательства врача и наблюдения за пациентом.

В большинстве случае
гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

Гипертрофия сердца

Происхождение мышц

Мышцы развиваются из среднего зародышевого листка — мезодермы.

Зародыш человека

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник