Какими свойствами обладают газы физика

Какими свойствами обладают газы физика thumbnail

Этот урок посвящён изучению свойств газов, жидкостей, твёрдых тел. В начале урока мы вспомним, как взаимодействуют частицы вещества, а далее рассмотрим особенности каждого агрегатного состояния в отдельности. В конце урока мы узнаем об аморфном состоянии – промежуточном состоянии между твёрдыми и жидкими телами.

Введение

Все тела состоят из атомов или молекул (частицы вещества), которые беспорядочно двигаются, а также взаимодействуют с силами притяжения и отталкивания. Именно различиями в тепловом движении этих частиц, а также их взаимодействием при разных условиях обуславливается факт существования у вещества нескольких агрегатных состояний: газообразное, жидкое, твёрдое. Особенностям этих состояний посвящён этот урок.

Взаимодействие частиц вещества

Атом состоит из положительно заряженного ядра и отрицательно заряженных электронов, которые вращаются вокруг ядра. Атом, как и молекула, электрически нейтрален.

Рассмотрим силу взаимодействия между частицами на примере двух неподвижных молекул.

Между телами в природе существуют гравитационные и электромагнитные силы. Так как массы молекул крайне малы, то силы гравитационного взаимодействия между ними можно не рассматривать. На больших расстояниях электромагнитного взаимодействия между молекулами тоже нет.

При уменьшении расстояния между частицами (см. Рис. 1) они начинают ориентироваться так, что их обращённые друг к другу стороны будут иметь разные по знаку заряды (в целом молекулы остаются при этом нейтральными), и, в итоге, между молекулами возникают силы притяжения (максимальная сила притяжения на расстоянии 2–3 диаметров молекулы). При уменьшении расстояния между молекулами возникают силы отталкивания как результат взаимодействия отрицательно заряженных электронных оболочек атомов молекул. Следовательно, на молекулу действует сумма сил: притяжения и отталкивания (на больших расстояниях преобладает сила притяжения, на малых – сила отталкивания).

Рис. 1. Взаимодействие между молекулами

На рисунке 2 изображён график зависимости силы взаимодействия между молекулами от расстояния между ними. Красной линией показана сила притяжения, синей линией – сила отталкивания, зелёной линией – итоговый график сил. Величина  – это такое расстояние между молекулами, на котором силы притяжения становятся равными силам отталкивания (положение устойчивого равновесия).

Рис. 2. График зависимости силы взаимодействия между молекулами в зависимости от расстояния между ними

Находящиеся на расстоянии друг от друга и связанные электромагнитными силами молекулы обладают потенциальной энергией. В положении устойчивого равновесия потенциальная энергия молекул минимальна. В веществе каждая молекула взаимодействует одновременно со многими соседними молекулами, что также влияет на величину их минимальной потенциальной энергии. Кроме того, все молекулы вещества находятся в непрерывном движении, то есть обладают кинетической энергией. Таким образом, структура вещества и его свойства (твёрдых, жидких, газообразных тел) определяется соотношением между минимальной потенциальной энергией взаимодействия молекул и их запасом кинетической энергии теплового движения.

Газы

Среднее расстояние между частицами газа намного превышает размеры самих частиц, таким образом, в промежутках между столкновениями частицы газа проходят расстояния, на несколько порядков превышающие собственные размеры. Например, в воздухе (при нормальных условиях) длина свободного пробега молекулы составляет , что в тысячу раз больше среднего размера молекулы.

При таких больших расстояниях между молекулами силы межмолекулярного взаимодействия между ними очень малы. С энергетической точки зрения это означает, что потенциальной энергией взаимодействия молекул (по сравнению с кинетической энергией их движения) можно пренебречь.

Если рассматривать кинетическую энергию, то есть движение молекул газа, то стоит отметить, что каждая из них участвует не только в поступательном, но и во вращательном движении (если это не одноатомный газ), а если учитывать очень малое взаимодействие молекул газа, то эти молекулы будут принимать участие и в колебательном движении (см. Рис. 3).

Рис. 3. Виды движений молекул

Таким образом, любая молекула газа, не испытывая сильного взаимодействия с соседними, может оказаться в произвольном месте сосуда в любой момент времени, поэтому говорят, что газы не сохраняют ни форму, ни объём. Такое свойство газов широко используется в современной технике (пневматическое оборудование, тепловые двигатели и т. д.).

Читайте также:  Нектарин какие полезные свойства

Твёрдые тела

Твёрдые тела являются полной противоположностью газам. В них не происходит свободного передвижения частиц. Молекулы находятся в узлах кристаллической решётки (см. Рис. 4). То есть существует строгий периодический порядок в расположении частиц, составляющих твёрдое тело.

Рис. 4. Кристаллическая решётка NaCl (поваренная соль)

В твёрдых телах потенциальная энергия взаимодействия очень существенна, кинетическая энергия, по сравнению с потенциальной, не велика. Атомы, молекулы или ионы совершают лишь колебательные движения возле положения равновесия. Расстояния между соседними частицами примерно равны размерам самих частиц.

Виды кристаллических решёток отличаются в зависимости от вещества (главное – это периодичность и порядок). Точки пространства, в которых находятся частицы твёрдого тела, называются узлами кристаллической решётки.

Из-за стабильности и порядка в расположении частиц в узлах кристаллической решётки, физики говорят, что твёрдые тела обладают дальним и ближним порядками в расположении частиц вещества (см. далее).

Твёрдые тела сохраняют форму и объём (для примера, если подвергнуть пружинку деформации, она вернётся к предыдущей форме, не изменив при этом объём).

Дальний и ближний порядок в расположении частиц вещества

Каждую молекулу жидкости, хотя они не расположены так строго и упорядоченно, как в твёрдом теле, окружает одинаковое число молекул-«соседок» (см. Рис. 5). Но если посмотреть на молекулы жидкости издалека, то ни о каком порядке в жидкости речь идти не может, будем наблюдать хаос. Поэтому говорят, что в твёрдых телах есть ближний порядок и дальний порядок, а в жидкости только ближний порядок. В газообразных телах отсутствуют и ближний, и дальний порядок.

Рис. 5. Дальний и ближний порядок в расположении частиц вещества

Жидкость

Жидкости, в отличие от твёрдых тел, обладают ближним порядком в расположении частиц вещества.

Частицы в жидких телах «упакованы» плотно и, как в твёрдых телах, совершают колебания около положения равновесия. Попытка сжать жидкость быстро приводит к деформации молекул и встречает мощное сопротивление со стороны жидкости. То есть жидкости практически не сжимаемы.

Хотя молекулы жидкости расположены почти так же, как в твёрдом теле, жидкость обладает текучестью. Это объясняется тем, что, в отличие от твёрдого тела, колебания молекул около положения равновесия в жидкости не вечны, в какой-то момент времени молекула совершает «скачок», переходя в другое положение. Следовательно, жидкость хорошо сохраняет объём, но не сохраняет форму.

С энергетической точки зрения жидкость занимает промежуточное положение между твёрдым телом и газом – частицы жидкости обладают существенной на микроскопическом уровне, как кинетической энергией движения, так и потенциальной энергией взаимодействия.

Аморфные вещества

Аморфное состояние тела называют промежуточным между твёрдым и жидким. Примером такого вещества является пластилин, смола, стекло.

Молекулы в аморфных веществах расположены подобно молекулам в жидкости, то есть обладают ближним порядком, но не обладают дальним порядком.

Можно с определённой долей условности назвать аморфные тела очень вязкими жидкостями. Убедиться в этом можно, если посмотреть на профиль оконных стёкол в старинных замках. Вверху эти стёкла гораздо уже, чем внизу – стекло за многие годы «стекает» вниз (см. Рис. 6), при этом не изменяя своего внутреннего строения. Ведь, например, ледники также могут стекать вниз. Но это связано с таянием ледника и дальнейшей кристаллизацией воды.

Рис. 6. Профиль оконного стекла в старинном замке

Итоги урока

В твёрдых телах частицы обладают существенной потенциальной энергией и относительно небольшой кинетической энергией, так как они совершают колебательные движения вблизи положения равновесия.

Промежуточное положение занимают жидкости, так как частицы жидкости обладают существенной как кинетической энергией движения, так и потенциальной энергией взаимодействия, а в газах молекулы обладают большой кинетической энергией движения и сравнительно малой (пренебрежимо малой) потенциальной энергией взаимодействия.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. – М.: Дрофа, 2010.
Читайте также:  Какие хим свойства характерны для белков

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Class-fizika.spb.ru (Источник). 
  2. Kaf-fiz-1586.narod.ru (Источник). 
  3. Презентация (Источник). 

Домашнее задание

  1. Вопросы (1–4) в конце параграфа 47 (стр. 229); Касьянов В.А. Физика 10 класс (см. список рекомендованной литературы) (Источник). 
  2. Чем отличаются траектории движения молекул газа, жидкости и твёрдого тела?
  3. При сильном охлаждении воздуха его можно сделать жидким. При этом объем, который занимает воздух, уменьшается почти в 700 раз. Сделайте вывод из этого факта: какую долю объема газа составляет объем самих молекул?
  4. Газ способен к неограниченному расширению. Почему существует атмосфера Земли?

Источник

ГДЗ по классам

2 класс

  • Математика

3 класс

  • Математика

4 класс

  • Математика

5 класс

  • Математика
  • Русский язык
  • Английский язык

6 класс

  • Математика
  • Русский язык
  • Английский язык

7 класс

  • Русский язык
  • Английский язык
  • Алгебра
  • Геометрия
  • Физика

8 класс

  • Русский язык
  • Английский язык
  • Алгебра
  • Геометрия
  • Физика
  • Химия

9 класс

  • Русский язык
  • Английский язык
  • Алгебра
  • Геометрия
  • Физика
  • Химия

10 класс

  • Геометрия
  • Химия

11 класс

  • Геометрия
Введите условие

Какими свойствами обладают газы физика

ГДЗ и решебники
вип уровня

  • 2 класс
    • Математика
  • 3 класс
    • Математика
  • 4 класс
    • Математика
  • 5 класс
    • Математика
    • Русский язык
    • Английский язык
  • 6 класс
    • Математика
    • Русский язык
    • Английский язык
  • 7 класс
    • Русский язык
    • Английский язык
    • Алгебра
    • Геометрия
    • Физика
  • 8 класс
    • Русский язык
    • Английский язык
    • Алгебра
    • Геометрия
    • Физика
    • Химия
  • 9 класс
    • Русский язык
    • Английский язык
    • Алгебра
    • Геометрия
    • Физика
    • Химия
  • 10 класс
    • Геометрия
    • Химия
  • 11 класс
    • Геометрия
  1. ГДЗ
  2. 7 класс
  3. Физика
  4. Пёрышкин
  5. Вопрос 4, Параграф 12

Какими свойствами обладают газы физика

Назад к содержанию

Условие

Какими свойствами обладают газы?

Решение 1

Фото ответа 4 на Задание 4 из ГДЗ по Физике за 7 класс: А. В. Перышкин - 2013г.

Решение 2

Фото ответа 2 на Задание 4 из ГДЗ по Физике за 7 класс: А. В. Перышкин - 2013г.

Решение 3

Фото ответа 3 на Задание 4 из ГДЗ по Физике за 7 класс: А. В. Перышкин - 2013г.

Другие задачи из этого учебника

  • 1
  • 2
  • 3
  • 4

Поиск в решебнике

Популярные решебники

ГДЗ по Физике за 7 класс: Пёрышкин А.В.ГДЗ по Физике за 7 класс: Пёрышкин А.В.

Издатель: А. В. Перышкин — 2013г.

ГДЗ по Физике за 7-9 класс: Пёрышкин А.В. (сборник задач)ГДЗ по Физике за 7-9 класс: Пёрышкин А.В. (сборник задач)

Издатель: А.В. Пёрышкин, 2013г.

Источник

Физические законы и параметры газов являются основополагающими для создания вакуумных систем. Даже при крайне низких значениях давлений, используемых в вакуумной технике, физические процессы, протекающие в газах, подчиняются общим газовым законам. Необходимость создания вакуума обычно связана с потребностью уменьшения концентрации молекул газа или частоты их столкновений с поверхностью сосуда. Газовые процессы в вакуумных системах можно, как правило, рассматривать с точки зрения законов идеального газа, а некоторые общие физические процессы вакуумных систем могут быть описаны с помощью статических и динамических свойств газов. Физические процессы, протекающие в газах при низком давлении, а также различные параметры и свойства газового потока рассмотрены ниже.

Параметры состояния газа

Если взять образец газа, то для описания его состояния достаточно знать три из четырех параметров. Этими параметрами являются давление, объем, температура и количество газа.

Давление — это сила, с которой газ воздействует на единицу площади поверхности сосуда. В СИ единицей измерения давления является паскаль, или ньютон на квадратный метр (Н/м2). В вакуумной технике также используется единица измерения миллиметр ртутного столба, или Торр: 1 мм рт. ст. = 133 Па (1 Па = 7,5 мм рт. ст.).

Объем — мера пространства, которое занимает газ; обычно он задается размерами сосуда. Единицей объема в СИ является кубический метр (м3), однако для обозначения быстроты откачки и потока газа, а также других величин широко используются литры.

Температура газа при давлении ниже 1 Торр главным образом определяется температурой поверхностей, с которыми он соприкасается. Как правило, газ находится при комнатной температуре. При выводе уравнений, описывающих состояние газов, для измерения температуры используют Кельвины (К).

Количество газа в данном объеме измеряется в молях.

Моль — число граммов газа (или любого вещества), равное его молекулярной массе. Моль содержит 6,02 х 1023 молекул. Один моль любого газа при 0 °С и давлении 760 Торр занимает объем, равный 22,4 л. Масса 1 моля газа равна его молекулярной массе в граммах.

Молярный объем является универсальной постоянной. Экспериментально установлено, что он составляет 22,414 л при 760 Торр и 0 °С. Поскольку 1 моль любого газа при температуре 0 °С и давлении 760 Торр занимает объем 22,4 л, из этого соотношения можно рассчитать молекулярную концентрацию любого объема газа, если известны его температура и давление. Например, 1 см3 воздуха при 760 Торр и 0 °С содержит 2,7 x 1019 молекул; в то время как при давлении 1 Торр и температуре 0 °С 1 см3 воздуха содержит 3,54 x 1016 молекул.

Читайте также:  Какие свойства у восприятия

Газовые законы

Газовые законы устанавливают соотношения между физическими параметрами состояния газа (давление, объем, температура и количество газа) при постоянном значении одного из параметров. Эти законы справедливы для идеального газа в котором объем всех молекул является незначительным по сравнению с объемом газа, и энергия притяжения между молекулами является незначительной по сравнению с их средней тепловой энергией. Это означает, что данное вещество (в данном случае газ) находится в газообразном состоянии при температуре, которая достаточно высока для его конденсации. К газам, по своим свойствам близким к идеальным при комнатной температуре, относятся 02, Ne, Аг, СО, Н2 и NO.
Ниже приведены общие формулировки газовых законов.
Закон Бойля — произведение давления на объем рУ, где р — давление газа, V — его объем, является постоянной величиной для данной массы газа при постоянной температуре.
Закон Гей-Люссака — величина V/T, где Т- абсолютная температура газа, является постоянной для данной массы газа при постоянном давлении.
Закон Авогадро — равные объемы различных газов при одинаковых температуре и давлении содержат одно и то же количество молекул. Из этого закона можно получить важное соотношение между числом молей газа и давлением, которое создает газ.
Основное уравнение состояния идеального газа (уравнение Клапейрона) устанавливает зависимость между давлением, объемом и температурой для данной массы газа, т. е. теми параметрами, которые необходимы для описания состояния газа:

$$pV=MRT, (1.1)$$

где R — универсальная газовая постоянная данного газа, R = 8,31 ДжДмоль К) (62,4 Торр-л/(моль x К)); М — это число молей в объеме V
Данный закон будет справедлив и для большинства газов, которые при низких давлениях ведут себя как идеальные газы.

Закон парциальных давлений Дальтона — общее давление, создаваемое смесью газов, равняется сумме парциальных давлений, создаваемых отдельными компонентами смеси.

Парциальное давление, создаваемое одним компонентом смеси газов, — это давление, создаваемое этим компонентом, если бы он занимал весь объем.

Закон Авогадро — равные объемы идеального газа при постоянных температуре и давлении содержат одно и то же количество молекул.

Число Авогадро — число молекул в 1 моле газа или любого вещества, является универсальной постоянной и составляет 6,023 • 1023.

Число Лошмидта — число молекул в кубическом сантиметре газа при атмосферном давлении и температуре 0 °С. Это универсальная постоянная, равная 2,637 x 1019.
Для 1 моля газа при атмосферном давлении и температуре 0 °С (273,2 К), занимающего объем V = 22,414 л, R= 8.31 Дж/(моль x К) или в тепловых единицах R/J= 1,99 кал/К (У — механический эквивалент теплоты, J = 4,182 Дж кал). Следовательно, количество теплоты 1,99 кал будет повышать температуру 1 моля любого идеального газа на 1 К, или после повышения температуры 1 моля любого идеального газа на 1 К увеличение энергии газа составит 8,31 Дж.

Неидеальные газы

Примерами некоторых распространенных неидеальных газов являются аммиак, этан, бензол, диоксид углерода (углекислый газ), пары ртути, SO и S02. Газовые законы должны описывать физические процессы, протекающие в любом газе при температуре выше критической. При критической температуре, Тс, газ начинает конденсироваться. Ниже этой критической температуры имеет место давление паров над жидким конденсатом, которое называется давлением пара. Если газ конденсируется (его объем уменьшается), давление изменяться не будет, но большее количество газа будет переходить в жидкую фазу. По мере снижения температуры над жидкостью будет присутствовать меньшее количество молекул, при этом давление паров также будет снижаться.

Источник