Какими свойствами обладает умножение числа на вектор

Какими свойствами обладает умножение числа на вектор thumbnail

На данном уроке мы рассмотрим новую операцию над векторами – умножение вектора на число. Кроме того, мы сформулируем законы умножения и научимся применять знания о векторах к решению различных задач.

Правило умножения вектора на число

На предыдущих уроках мы рассмотрели понятие вектора, ввели определения коллинеарных, сонаправленных, противонаправленных и равных векторов. Научились складывать и вычитать векторы, ввели законы сложения. Теперь нам нужно научиться умножать вектор на число. Особенность данной операции состоит в том, что число – это просто численная величина, не имеющая направления, а вектор – это направленный отрезок, имеющий численное измерение и направление.

Рассмотрим такую ситуацию: по дороге едут два автомобиля, скорость одного – 30 км/ч, а второго – 60 км/ч. Очевидно, что скорость второго автомобиля в два раза больше скорости первого, и скорость второго можно выразить через скорость первого, умножив скорость первого на два.

Определение

Произведение ненулевого вектора  на число k – такой вектор , длина которого равна , причем векторы  и  сонаправлены при  и противонаправлены при . Произведение нулевого вектора на любое число – это нулевой вектор.

Пусть задан вектор  (см. Рис. 1). Вектор  – это вектор, направленный в ту же сторону, но длина его в два раза больше.

Вектор  имеет длину, в два раза большую, чем вектор  и ему противонаправлен.

Рис. 1

Законы умножения

Законы, которым подчиняется операция умножения вектора на число:

 – сочетательный закон;

 – первый распределительный закон;

 – второй распределительный закон.

Решение задач

Анализ данных законов показывает, что действия с векторами аналогичны действиям с алгебраическими выражениями.

Пример 1 – упростить выражение:

Раскроем скобки:

Приведем подобные:

Пример 2: Дан отрезок АВ (см. Рис. 2). Точка С – середина отрезка, точка О – произвольная точка плоскости. , . Доказать, что вектор .

Решение:

1 способ: применим правило треугольника и выразим вектор  как сумму двух векторов:

С другой стороны:  

Получили систему двух уравнений:

Рис. 2

Сложим уравнения системы:

, так как С – середина АВ, значит, модули данных векторов равны, но они противонаправлены, значит, их сумма – это нулевой вектор.

Получаем:

Поделим обе части на два:

Что и требовалось доказать.

2 способ:

Раскроем скобки и приведем подобные:

Пример 3: Доказать, что средняя линия трапеции параллельна основаниям и равна их полусумме.

Мы знаем, что средняя линия трапеции соединяет середины ее боковых сторон, кроме того, мы знаем, что основания трапеции параллельны.

Воспользуемся правилом многоугольника и выразим вектор  как сумму векторов:

Рис. 3

С другой стороны,

Получаем систему уравнений:

Выполним сложение уравнений системы, получаем:

Векторы  противоположны и дают в сумме нулевой вектор, так как М – середина АВ, то есть модули данных векторов равны, кроме того, очевидно, что они противонаправлены. Аналогично векторы  дают в сумме нулевой вектор. Таким образом, получаем:

Поделим обе части на два:

Таким образом, мы доказали, что средняя линия равна полусумме оснований. Кроме того, равенство вектора  сумме  говорит о том, что прямая MN параллельна основаниям трапеции.

Итак, в данном уроке мы изучили операцию умножения вектора на число и сформулировали законы умножения. Кроме того, мы научились применять факты о векторах к решению различных задач.

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Terver.ru (Источник).
  2. Cleverstudents.ru (Источник).
  3. Khd2.narod.ru (Источник).

Домашнее задание

  1. Задание 1: для произвольного четырехугольника MNPQ докажите, что: ; .
  2. Задание 2: сторона равностороннего треугольника  равна а. Найдите: ; ;;;.
  3. Задание 3: точки M и N – середины сторон АВ и ВС треугольника . Выразите векторы , , ,  через векторы , .

Источник

Прежде чем приступить к тематике статьи, напомним основные понятия.

Определение 1

Вектор – отрезок прямой, характеризующийся численным значением и направлением. Вектор обозначается строчной латинской буквой со стрелкой сверху. При наличии конкретных точек границ обозначение вектора выглядит как две прописные латинские буквы (маркирующие границы вектора) также со стрелкой сверху.

Читайте также:  Какое свойство не относится к информации

Определение 2

Нулевой вектор – любая точка плоскости, обозначается как нуль со стрелкой сверху.

Определение 3

Длина вектора – величина, равная или большая нуля, определяющая длину отрезка, составляющего вектор.

Определение 4

Коллинеарные векторы – лежащие на одной прямой или на параллельных прямых. Не выполняющие это условие векторы называют неколлинеарными.

Сложение двух векторов

Определение 5

Исходные данные: векторы a→ и b→ . Для выполнения над ними операции сложения необходимо из произвольной точки отложить вектор AB→, равный вектору а→; из полученной точки undefined – вектор ВС→, равный вектору b→. Соединив точки undefined и C, получаем отрезок (вектор) АС→, который и будет являться суммой исходных данных. Иначе описанную схему сложения векторов называют правилом треугольника.

Геометрически сложение векторов выглядит так:

— для неколлинеарных векторов:

Сложение двух векторов

— для коллинеарных (сонаправленных или противоположнонаправленных) векторов:

Сложение двух векторов

Сложение нескольких векторов

Взяв за основу описанную выше схему, мы получаем возможность произвести операцию сложения векторов в количестве более 2: поочередно прибавляя каждый последующий вектор.

Определение 6

Исходные данные: векторы a→ , b→, c→,d→. Из произвольной точки А на плоскости необходимо отложить отрезок (вектор), равный вектору a→; затем от конца полученного вектора откладывается вектор, равный вектору b→; далее – по тому же принципу откладываются последующие векторы. Конечной точкой последнего отложенного вектора будет точка B, а полученный отрезок (вектор) AB→ – суммой всех исходных данных. Описанную схему сложения нескольких векторов называют также правилом многоугольника .

Геометрически оно выглядит следующим образом:

Сложение нескольких векторов

Определение 7

Отдельной схемы действия по вычитанию векторов нет, т.к. по сути разность векторов a→и b→есть сумма векторов a→ и — b→.

Умножение вектора на число

Определение 8

Чтобы произвести действие умножения вектора на некое число k, необходимо учитывать следующие правила:
— еслиk>1, то это число приведет к растяжению вектора в k раз;
— если 0<k<1, то это число приведет к сжатию вектора в 1k раз;
— если k<0, то это число приведет к смене направления вектора при одновременном выполнении одного из первых двух правил;
— если k=1, то вектор остается прежним;
— если одно из множителей – нулевой вектор или число, равное нулю, результатом умножения будет нулевой вектор.

Исходные данные:
1) вектор a→и число k=2;
2) вектор b→и число k=-13.

Геометрически результат умножения в соответствии с указанными выше правилами будет выглядеть следующим образом:

Умножение вектора на число

Свойства операций над векторами

Описанным выше операциям над векторами присущи свойства, некоторые из которых очевидны, а прочие можно обосновать геометрически.

Исходные данные: векторы a→, b→, c→и произвольные действительные числа λ и μ.

  1. Свойство коммутативности: a⇀+b→=b→+a→ .
    Свойства операций над векторами
  2. Свойство ассоциативности: (a→+b→)+c→=a→+(b→+c→) .
    Свойства операций над векторами
  3. Свойство использования нейтрального элемента по сложению (нулевой вектор 0→ ⃗). Это очевидное свойство: a→+0→=a→
  4. Свойство использования нейтрального элемента по умножению (число, равное единице): 1·a→=a→. Это очевидное свойство, не предполагающее никаких геометрических преобразований.
  5. Любой ненулевой вектор a→ имеет противоположный вектор -a→ и верным является равенство: a→+(-a→)=0→. Указанное свойство — очевидное.
  6. Сочетательное свойство операции умножения: ( λ · µ ) · a→ = λ · ( µ·a→ ). Например, растяжение вектора при умножении на число 10 можно произвести, сначала растянув вектор в 2 раза, а затем полученный результат еще в 5 раз. Также возможен вариант умножения на число 10 при сжатии вектора в 5 раз и последующего растяжения полученного результата в 50 раз.
  7. Первое распределительное свойство (очевидно): ( λ + µ ) · a→ = λ ·a→ + µ · a→.
  8. Второе распределительное свойство: λ · (a→ +b→) = λ ·a→ + λ · b→ .
    Геометрически это свойство определяется подобием треугольников:
    Свойства операций над векторами

Свойства коммутативности и ассоциативности дают возможность складывать векторы в произвольном порядке.

Перечисленные свойства операций позволяют осуществлять необходимые преобразования векторно-числовых выражений аналогично привычным числовым. Рассмотрим это на примере.

Пример 1

Задача: упростить выражение a→-2·(b→+3·a→)
Решение
— используя второе распределительное свойство, получим: a→-2·(b→+3·a→)=a→-2·b→-2·(3·a→)
— задействуем сочетательное свойство умножения, выражение приобретет следующий вид: a→-2·b→-2·(3·a→)=a→-2·b→-(2·3)·a→=a→-2·b→-6·a→
— используя свойство коммутативности, меняем местами слагаемые:a→-2·b→-6·a→=a→-6·a→-2·b→
— затем по первому распределительному свойству получаем:a→-6·a→-2·b→=(1-6)·a→-2·b→=-5·a→-2·b→Краткая запись решения будет выглядеть так:a→-2·(b→+3·a→)=a→-2·b→-2·3·a→=5·a→-2·b→
Ответ: a→-2·(b→+3·a→)=-5·a→-2·b→

Источник

При обучении математике и физике в старших классах средней школы, а также в высших учебных заведениях постоянно приходится сталкиваться с понятием вектора. Учащиеся и студенты обязаны уметь проводить с векторами простейшие арифметические действия.

Читайте также:  Какие свойства песка и глины

В статье будет показано, как умножать их на постоянные числа.

Основные понятия и определения

Чтобы в дальнейшем упростить работу со статьёй, введём некоторые формулировки и договорённости:

  1. Постоянная — любое обычное число, которое может принимать определённые фиксированные значения, быть положительным, отрицательным или нулевым. Обозначать будем латинской буквой С (от греческого слова constanta, то есть постоянная).
  2. Вектор — участок прямой, ограниченный двумя точками и имеющий заданное направление. Обозначать будем как (АВ). Причём точка, А является его началом, В — концом. Направление будем считать от точки, А к точке В. Допустима замена на (CD).
  3. Вектора называются параллельными (коллинеарными), если они лежат на коллинеарных прямых или на одной прямой.
  4. Нулевым вектором называется такой, у которого конец и начало совпадают. Называется нуль-вектор и обозначается (0).
  5. Координатами (АВ) называются числа, равные его протяжённости относительно каждой из оси координат в Декартовой системе. Они находятся вычитанием из координат конца вектора координат его начала. Знак минус перед этим числом означает, что вектор направлен против направления данной оси.
  6. Модулем (АВ) называется длина отрезка АВ.
  7. Квадратный корень из числа или выражения условимся обозначать латинским буквосочетанием SQRT.
  8. (АВ) с координатами (x; y; z) будем обозначать как (АВ) (x; y; z).

Это интересно: Как найти разность чисел в математике?

Правила умножения вектора на число

Рассмотрим, как умножить вектор на число:

  1. Прежде всего отметим, что при умножении на отрицательную постоянную меняется направление на противоположное.
  2. Если constanta больше -1, но меньше 1, то модуль (АВ) уменьшится. Проще говоря — отрезок станет короче.
  3. Если постоянная равна нулю, С=0, то результатом вычислений окажется (0).
  4. Для умножения (АВ) (x; y; z) на некую постоянную, нужно найти произведение каждой из координат с этой постоянной. Получится (А1В1) (С*x; С*y; С*z).

Интересно знать: Модуль числа в математике.

Алгебраический и геометрический смысл действия

Любое математическое действие имеет некий смысл, причём в разных науках он различается. Рассмотрим, что нам даёт этот вид умножения:

  1. Геометрический смысл: (АВ)*С — это вектор, коллинеарный данному, модуль которого отличается в С раз от исходного, направление может совпадать или меняться на противоположное в зависимости от знака постоянной.
  2. Алгебраический смысл: (АВ) (x; y; z)*С — это новый (А1В1) с координатами равными (С*x; С*y; С*z).
  3. Физический смысл: уменьшение или увеличение в С раз силы действующей на тело или материальную точку.

Это интересно: как разложить на множители квадратный трехчлен?

Формулы умножения

При умножении проще всего использовать заранее заученные на память формулы, которые вполне можно применять по шаблону, выполняя действия буквально на полном автомате:

  • С*(АВ) (x; y; z) = (А1В1) (С*x; С*y; С*z).
  • 0*(АВ) = (0).

Для начала возьмём физическую задачу воздействия силы на материальную точку. Пусть на неё действует сила, описываемая (АВ) (57;63;28). Как изменится эта сила по координатам при её десятикратном увеличении?

Прежде всего следует отметить, что направление воздействия силы не изменится, а сама сила возрастёт десятикратно. При раскладке по координатам получим следующее:

10*(АВ) (57;63;28) = (А1В1) (10*57;10*63;10*28) = (А1В1) (570;630;280).

Вторую задачу возьмём аналогичную: как изменится сила, действующая на материальное тело, описываемая (АВ) (46;59;-43) при её увеличении в -0,5 раза.

Прежде всего заметим, что знак у постоянной отрицательный, следовательно, направление самой силы изменится на противоположное. Воспользуемся пунктом 2 вышеизложенных правил умножения, тогда сразу станет понятно, что численное выражение силы уменьшится вдвое. Проведём вычисления по шаблону:

-0,5*(АВ) (46;59;-43) = (А1В1) (-0,5*46;-0,5*59;-0,5*(-43)) = (А1В1) (-23;-29,5;21,5).

Следует заметить, что приведённые выше задачи решались для векторов, размещённых в пространстве и имеющих три координаты. В случае плоскостного размещения количество координат уменьшается до двух, а в случае линейного — до одной. Рассмотрим математические примеры для этих случаев:

  • 33*(CD) (11;10) = (C1D1) (33*11;33*10) = (C1D1) (363;330).
  • -0,2*(АВ) (-0,3;25) = (А1В1) (-0,2*(-0,3); -0,2*25) = (А1В1) (0,06; -5).
  • 67*(CD) (2) = (C1D1) (67*2) = (C1D1) (134).
  • 0*(АВ) (65;-87) = (0).

Возможные действия с векторами

Не следует думать, что все возможные действия ограничиваются умножениям на число. Прежде всего можно определить длину (АВ) — модуль. Он будет равняться SQRT из суммы квадратов координат. Поясним это на примере:

  • модуль (АВ) (3;4) = SQRT (3 2+ 4 2) = SQRT (9 + 16) = SQRT25 = 5.
Читайте также:  Какими свойствами обладает хрен

Кроме этого, из курса школьной математики и физики известно, что вектора можно слагать один с другим и вычитать друг из друга. При этом проводится сложение и вычитание соответствующих координат.

Наконец, высшая математика вводит понятия числового (скалярного) и векторного умножения двух векторов. В первом случае получится некое число, во втором — третий вектор, направленный перпендикулярно плоскости, содержащей два первых.

В данной статье приведены основы умножения вектора на число. Исходя из её материала, можно утверждать, что действие это простое и доступное любому школьнику с удовлетворительной успеваемостью. Рекомендуется изучить формулы и в своих вычислениях действовать по изложенному в тексте шаблону. Что такое сравнение в литературе читайте в нашей статье.

Источник

Откладывание вектора от данной точки

Для того чтобы ввести понятие умножения вектора на число, сначала необходимо разобраться в таком понятии, как откладывание вектора от данной точки.

Определение 1

Если точка $A$ начала какого-либо вектора $overrightarrow{a}$, то говорят, что вектор $overrightarrow{a}$ отложен от точки $A$ (рис. 1).

$overrightarrow{a}$ отложенный от точки $A$

Рисунок 1. $overrightarrow{a}$ отложенный от точки $A$

Введем следующую теорему:

Теорема 1

От любой точки $K$ можно отложить вектор $overrightarrow{a}$ и притом только один.

Доказательство.

Существование: Здесь нужно рассмотреть два случая:

  1. Вектор $overrightarrow{a}$ — нулевой.

    В этом случае, очевидно, что искомый вектор — вектор $overrightarrow{KK}$.

  2. Вектор $overrightarrow{a}$ — ненулевой.

    Обозначим точкой $A$ начало вектора $overrightarrow{a}$, а точкой $B$ — конец вектора $overrightarrow{a}$. Проведем через точку $K$ прямую $b$ параллельную вектору $overrightarrow{a}$. Отложим на этой прямой отрезки $left|KLright|=|AB|$ и $left|KMright|=|AB|$. Рассмотрим векторы $overrightarrow{KL}$ и $overrightarrow{KM}$. Из этих двух векторов искомым будет тот, который будет сонаправлен с вектором $overrightarrow{a}$ (рис. 2)

    Иллюстрация теоремы 1

    Рисунок 2. Иллюстрация теоремы 1

    Единственность: единственность сразу следует из построения, проведенного в пункте «существование».

    Теорема доказана.

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Умножение вектора на число

Пусть нам дан вектор $overrightarrow{a }$ и действительное число $k$.

Определение 2

Произведением вектора $overrightarrow{a }$ на действительное число $k$ называется вектор $overrightarrow{b }$ удовлетворяющий следующим условиям:

  1. Длина вектора $overrightarrow{b }$ равна $left|overrightarrow{b }right|=left|kright||overrightarrow{a }|$;

  2. Векторы $overrightarrow{a }$ и $overrightarrow{b }$ сонаправлены, при $kge 0$ и противоположно направлены, если $k

Обозначение: $ overrightarrow{b }=koverrightarrow{a }$.

Замечание 1

Отметим, что в результате произведения вектора на число всегда получается векторная величина.

Свойства произведения вектора на число

  1. Произведение любого вектора с числом ноль равняется нулевому вектору.

    Доказательство.

    По определению 2, имеем $left|overrightarrow{b }right|=left|kright|left|overrightarrow{a }right|=0cdot left|overrightarrow{a }right|=0$, следовательно,$overrightarrow{b }=koverrightarrow{a }=overrightarrow{0}$

  2. Для любого вектора $overrightarrow{a }$ и любого действительного числа $k$ векторы $overrightarrow{a }$ и $koverrightarrow{a }$ коллинеарны.

    Доказательство.

    Так как по определению 2, векторы $overrightarrow{a }$ и $koverrightarrow{a }$ сонаправлены или противоположно направлены (в зависимости от значения $k$), то они будут коллинеарны.

  3. Для любых действительных чисел $m$ и $n$ и вектора $overrightarrow{a }$ справедлив сочетательный закон:

    [left(mnright)overrightarrow{a }=m(noverrightarrow{a })]

    Доказательство этого закона иллюстрирует рисунок 3.

    Сочетательный закон

    Рисунок 3. Сочетательный закон

  4. Для любых действительных чисел $m$ и $n$ и вектора $overrightarrow{a }$ справедлив первый распределительный закон:

    [left(m+nright)overrightarrow{a }=moverrightarrow{a }+noverrightarrow{a }]

    Доказательство этого закона иллюстрирует рисунок 4.

    Первый распределительный закон

    Рисунок 4. Первый распределительный закон

  5. Для любого действительного числа $m$ и векторов $overrightarrow{a }$ и $overrightarrow{b }$ справедлив второй распределительный закон:

    [mleft(overrightarrow{a }+overrightarrow{b}right)=moverrightarrow{a }+moverrightarrow{b }]

    Доказательство этого закона иллюстрирует рисунок 5.

    Второй распределительный закон

    Рисунок 5. Второй распределительный закон

Пример задачи на использование понятия произведения вектора на число

Пример 1

Пусть $overrightarrow{x}=overrightarrow{a }+overrightarrow{b}$, $overrightarrow{y}=overrightarrow{a }-overrightarrow{b}$. Найти векторы:

  1. $2overrightarrow{x}+2overrightarrow{y}$

  2. $overrightarrow{x}+frac{1}{2}overrightarrow{y}$

  3. $-overrightarrow{y}-overrightarrow{x}$

Решение.

  1. $2overrightarrow{x}+2overrightarrow{y}=2left(overrightarrow{a }+overrightarrow{b}right)+2left(overrightarrow{a }-overrightarrow{b}right)=2overrightarrow{a }+2overrightarrow{b}+2overrightarrow{a }-2overrightarrow{b}=4overrightarrow{a }$

  2. $overrightarrow{x}+frac{1}{2}overrightarrow{y}=overrightarrow{a }+overrightarrow{b}+frac{1}{2}left(overrightarrow{a }-overrightarrow{b}right)=overrightarrow{a }+overrightarrow{b}+frac{1}{2}overrightarrow{a }-frac{1}{2}overrightarrow{b}=frac{3}{2}overrightarrow{a }+frac{1}{2}overrightarrow{b}=frac{3overrightarrow{a }+overrightarrow{b}}{2}$

  3. $-overrightarrow{y}-overrightarrow{x}=-left(overrightarrow{a }-overrightarrow{b}right)-left(overrightarrow{a }+overrightarrow{b}right)=-overrightarrow{a }+overrightarrow{b}-overrightarrow{a }-overrightarrow{b}=-2overrightarrow{a }$

Источник