Какими свойствами обладает нервная ткань
Нервная ткань — ткань эктодермального происхождения, представляет собой систему специализированных структур, образующих основу нервной системы и создающих условия для реализации её функций. Нервная ткань воспринимает раздражители путём генерации нервных импульсов и передаёт эти импульсы к эффектору, осуществляя связь организма с окружающей средой. Нервная ткань обеспечивает взаимодействие тканей, органов и систем организма и их регуляцию.
Нервные ткани образуют нервную систему, входят в состав нервных узлов, спинного и головного мозга. Они состоят из нервных клеток — нейронов, тела которых имеют звездчатую форму, длинные и короткие отростки. Нейроны воспринимают раздражение и передают возбуждение к мышцам, коже, другим тканям, органам. Нервные ткани обеспечивают согласованную работу организма.
Структура[править | править код]
Нервная ткань состоит из нейронов (нейроцитов), выполняющих основную функцию, и нейроглии, обеспечивающей специфическое микроокружение для нейронов. Также ей принадлежат эпендима (некоторые ученые выделяют её из глии) и, по некоторым источникам, стволовые клетки (дислоцируются в области третьего мозгового желудочка, откуда мигрируют в обонятельную луковицу, и в зубчатой извилине гиппокампа).
Нейроны[править | править код]
Нейроны — нервные клетки, структурно-функциональные единицы нервной системы, имеют отростки, которые образуют звездчатую форму нейронов. Различают дендриты — отростки, воспринимающие сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей, и аксоны — отростки, передающие нервные сигналы от тела клетки к иннервируемым органам и другим нервным клеткам. Дендритов у нейрона может быть много, аксон только один.
Нейроглия[править | править код]
Нейроглия — сложный комплекс вспомогательных клеток, объединённый функциями и, частично, происхождением.
- Микроглиальные клетки, хоть и входят в понятие «глия», не являются собственно нервной тканью, так как имеют мезодермальное происхождение.
- Эпендимальные клетки (некоторые выделяют их из глии) выстилают желудочки ЦНС. Имеют на поверхности ворсинки, с помощью которых обеспечивают ток жидкости.
- Макроглия — производная глиобластов, выполняет опорную, разграничительную, трофическую и секреторную функции.
Эмбриогенез[править | править код]
Эмбриональные предшественники нервной ткани возникают в процессе нейруляции (формирования нервной трубки). Влияние среды и параллельно развивающихся структур (прежде всего хорды) приводит у птиц и млекопитающих к образованию в эктодерме нервного желобка, края которого имеют названия нервных валиков, сближение которых приводит к образованию нервной трубки, отделяющейся от надлежащей эктодермы.
Слившиеся валики образуют нервный гребень, клетки которого в туловищной части мигрируют в латеральном и вентральном направлениях, образуя ганглиозную пластинку, дающую начало нейробластам и глиобластам — предшественникам нейронов и нейроглии спинальных и вегетативных ганглиев.
Часть клеток нервного гребня распространяются под эктодермой и даёт начало меланобластам — предшественникам пигментных клеток кожи.
Клетки нервов головного отдела участвуют в формировании ядер черепных нервов, часть из которых образуется из утолщений эктодермы по бокам головы — нервных плакод.
Клетки нервной трубки — медуллобласты, — дифференцируются на нейробласты и глиобласты — предшественники нейронов и нейроглии спинного и головного мозга.
По мере дифференцировки и миграции из эмбриональных зачатков медуллобласты и нейробласты теряют способность к делению, приобретают грушевидную форму, претерпевают специфическую перестройку ядра и эргастоплазмы, а на их заострённом конце происходит формирование сначала одного, а затем и остальных отростков. Существенным признаком начавшейся специализации является появление в цитоплазме тонких фибрилл, количество которых постепенно увеличивается. Между дефинитивными нейронами устанавливается упорядоченные взаимоотношения со специфическими межклеточными контактами — синапсами.
Глиобласты сохраняют высокую пролиферативную активность даже после завершения миграции и дифференцировки в глиоциты, составляющие макроглию.
Микроглия развивается из моноцитобластов костного мозга, которые мигрируют к местам гистогенеза нервной ткани.
У низших хордовых нейруляция идет несколько иным путём.
Нервная ткань – совокупность связанных между собой нервных клеток (нейронов, нейроцитов) и вспомогательных элементов (нейроглии), которая регулирует деятельность всех органов и систем живых организмов. Это основной элемент нервной системы, которая делится на центральную (включает головной и спинной мозг) и периферическую (состоящую из нервных узлов, стволов, окончаний).
Основные функции нервной ткани
- Восприятие раздражения;
- формирование нервного импульса;
- быстрая доставка возбуждения к центральной нервной системе;
- хранение информации;
- выработка медиаторов (биологически активных веществ);
- адаптация организма к переменам внешней среды.
Свойства нервной ткани
- Регенерация — происходит очень медленно и возможна только при наличии неповрежденного перикариона. Восстановление утраченных отростков идет путем прорастания.
- Торможение — предотвращает возникновение возбуждения или ослабляет его
- Раздражимость — ответ на влияние внешней среды благодаря наличию рецепторов.
- Возбудимость — генерирование импульса при достижении порогового значения раздражения. Существует нижний порог возбудимости, при котором самое маленькое влияние на клетку вызывает возбуждение. Верхний порог – это величина внешнего воздействия, которая вызывает боль.
Строение и морфологическая характеристика нервных тканей
Строение нейрона
Основная структурная единица – это нейрон. Он имеет тело – перикарион (в котором находятся ядро, органеллы и цитоплазма) и несколько отростков. Именно отростки являются отличительной чертой клеток этой ткани и служат для переноса возбуждения. Длина их колеблется от микрометров до 1,5м. Тела нейронов также различных размеров: от 5 мкм в мозжечке, до 120 мкм в коре головного мозга.
До недавнего времени считалось, что нейроциты не способны к делению. Сейчас известно, что образование новых нейронов возможно, правда только в двух местах – это субвентрикулякная зона мозга и гиппокамп. Продолжительность жизни нейронов ровна длительности жизни отдельного индивидуума. Каждый человек при рождении имеет около триллиона нейроцитов и в процессе жизнедеятельности теряет каждый год 10млн клеток.
Отростки делятся на два типа – это дендриты и аксоны.
Строение аксона. Начинается он от тела нейрона аксонным холмиком, на всем протяжении не разветвляется и только в конце разделяется на ветки. Аксон – это длинный отросток нейроцита, который выполняет передачу возбуждения от перикариона.
Строение дендрита. У основания тела клетки он имеет конусообразное расширение, а дальше разделяется на множество веточек (этим обусловлено его название, «дендрон» с древнегреческого – дерево). Дендрит – это короткий отросток и необходим для трансляции импульса к соме.
По количеству отростков нейроциты делятся на:
- униполярные (есть только один отросток, аксон);
- биполярные (присутствует и аксон, и дендрит);
- псевдоуниполярные (от некоторых клеток в начале отходит один отросток, но затем он делится на два и по сути является биполярным);
- мультиполярные (имеют множество дендритов, и среди них будет лишь один аксон).
Мультиполярные нейроны превалируют в организме человека, биполярные встречаются только в сетчатке глаза, в спинномозговых узлах – псевдоуниполярные. Монополярные нейроны вовсе не встречаются в организме человека, они характерны только для малодифференцированной нервной ткани.
Нейроглия
Нейроглия – это совокупность клеток, которая окружает нейроны (макроглиоциты и микроглиоциты). Около 40% ЦНС приходится на клетки глии, они создают условия для выработки возбуждения и его дальнейшей передачи, выполняют опорную, трофическую, защитную функции.
Клетки нейроглии
Макроглия:
Эпендимоциты – образуются из глиобластов нервной трубки, выстилают канал спинного мозга.
Астроциты – звездчатые, небольших размеров с многочисленными отростками, которые образуют гематоэнцефалический барьер и входят в состав серого вещества ГМ.
Олигодендроциты – основные представители нейроглии, окружают перикарион вместе с его отростками, выполняя такие функции: трофическую, изолирования, регенерации.
Нейролемоциты – клетки Шванна, их задача образование миелина, электрическая изоляция.
Микроглия – состоит из клеток с 2-3 ответвлениями, которые способны к фагоцитозу. Обеспечивает защиту от чужеродных тел, повреждений, а также удаление продуктов апоптоза нервных клеток.
Нервные волокна — это отростки (аксоны или дендриты) покрытые оболочкой. Они делятся на миелиновые и безмиелиновые. Миелиновые в диаметре от 1 до 20 мкм. Важно, что миелин отсутствует в месте перехода оболочки от перикариона к отростку и в области аксональных разветвлений. Немиелинизированные волокна встречаются в вегетативной нервной системе, их диаметр 1-4 мкм, перемещение импульса осуществляется со скоростью 1-2 м/с, что намного медленнее, чем по миелинизированых, у них скорость передачи 5-120 м/с.
Нейроны подразделяются за функциональными возможностями:
- Афферентные – то есть чувствительные, принимают раздражение и способны генерировать импульс;
- ассоциативные — выполняют функцию трансляции импульса между нейроцитами;
- эфферентные — завершают перенос импульса, осуществляя моторную, двигательную, секреторную функцию.
Вместе они формируют рефлекторную дугу, которая обеспечивает движение импульса только в одном направлении: от чувствительных волокон к двигательным. Один отдельный нейрон способен к разнонаправленной передачи возбуждения и только в составе рефлекторной дуги происходит однонаправленное течение импульса. Это происходит из-за наличия в рефлекторной дуге синапса – межнейронного контакта.
Синапс состоит из двух частей: пресинаптической и постсинаптической, между ними находится щель. Пресинаптическая часть – это окончание аксона, который принес импульс от клетки, в нем находятся медиаторы, именно они способствуют дальнейшей передачи возбуждения на постсинаптическую мембрану. Самые распространённые нейротрансмитеры: дофамин, норадреналин, гамма аминомасляная кислота, глицин, к ним на поверхности постсинаптической мембраны находятся специфические рецепторы.
Химический состав нервной ткани
Вода содержится в значительном количестве в коре головного мозга, меньше ее в белом веществе и нервных волокнах.
Белковые вещества представлены глобулинами, альбуминами, нейроглобулинами. В белом веществе мозга и аксонных отростках встречается нейрокератин. Множество белков в нервной системе принадлежит медиаторам: амилаза, мальтаза, фосфатаза и др.
В химический состав нервной ткани входят также углеводы – это глюкоза, пентоза, гликоген.
Среди жиров обнаружены фосфолипиды, холестерол, цереброзиды (известно, что цереброзидов нет у новорожденных, их количество постепенно вырастает во время развития).
Микроэлементы во всех структурах нервной ткани распределены равномерно: Mg, K, Cu, Fe, Na. Их значение очень велико для нормального функционирования живого организма. Так магний участвует в регуляции работы нервной ткани, фосфор важен для продуктивной умственной деятельности, калий обеспечивает передачу нервных импульсов.
Нервная система контролирует, координирует и регулирует согласованную работу всех систем органов, поддержание постоянства состава его внутренней среды (благодаря этому организм человека функционирует как единое целое). При участии нервной системы осуществляется связь организма с внешней средой.
Нервная система образована нервной тканью, которая состоит из нервных клеток — нейронов — и мелких клеток-спутников (глиальных клеток), которых примерно в (10) раз больше, чем нейронов.
Нейроны обеспечивают основные функции нервной системы: передачу, переработку и хранение информации. Нервные импульсы имеют электрическую природу и распространяются по отросткам нейронов.
Клетки-спутники выполняют питательную, опорную и защитную функции, способствуя росту и развитию нервных клеток.
Нейрон — основная структурная и функциональная единица нервной системы.
Структурно-функциональной единицей нервной системы является нервная клетка — нейрон. Его основными свойствами являются возбудимость и проводимость.
Нейрон состоит из тела и отростков.
Короткие, сильно ветвящиеся отростки — дендриты, по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько.
Каждая нервная клетка имеет один длинный отросток — аксон, по которому импульсы направляются от тела клетки. Длина аксона может достигать нескольких десятков сантиметров. Объединяясь в пучки, аксоны образуют нервы.
Длинные отростки нервной клетки (аксоны) покрыты миелиновой оболочкой. Скопления таких отростков, покрытых миелином (жироподобным веществом белого цвета), в центральной нервной системе образуют белое вещество головного и спинного мозга.
Короткие отростки (дендриты) и тела нейронов не имеют миелиновой оболочки, поэтому они серого цвета. Их скопления образуют серое вещество мозга.
Нейроны соединяются друг с другом таким образом: аксон одного нейрона присоединяется к телу, дендритам или аксону другого нейрона. Место контакта одного нейрона с другим называется синапсом. На теле одного нейрона насчитывается (1200)–(1800) синапсов.
Синапс — пространство между соседними клетками, в котором осуществляется химическая передача нервного импульса от одного нейрона к другому.
Каждый синапс состоит из трёх отделов:
- мембраны, образованной нервным окончанием (пресинаптическая мембрана);
- мембраны тела клетки (постсинаптическая мембрана);
- синаптической щели между этими мембранами
В пресинаптической части синапса содержится биологически активное вещество (медиатор), которое обеспечивает передачу нервного импульса с одного нейрона на другой. Под влиянием нервного импульса медиатор выходит в синаптическую щель, действует на постсинаптическую мембрану и вызывает возбуждение в теле клетки следующего нейрона. Так через синапс передаётся возбуждение от одного нейрона к другому.
Распространение возбуждения связано с таким свойством нервной ткани, как проводимость.
Нейроны различаются по форме
В зависимости от выполняемой функции выделяют следующие типы нейронов:
- нейроны, передающие сигналы от органов чувств в ЦНС (спинной и головной мозг), называют чувствительными. Тела таких нейронов располагаются вне ЦНС, в нервных узлах (ганглиях). Нервный узел представляет собой скопление тел нервных клеток за пределами центральной нервной системы.
- Нейроны, передающие импульсы от спинного и головного мозга к мышцам и внутренним органам называют двигательными. Они обеспечивают передачу импульсов от ЦНС к рабочим органам.
- Связь между чувствительными и двигательными нейронами осуществляется с помощью вставочных нейронов через синаптические контакты в спинном и головном мозге. Вставочные нейроны лежат в пределах ЦНС (т. е. тела и отростки этих нейронов не выходят за пределы мозга).
Скопление нейронов в центральной нервной системе называется ядром (ядра головного, спинного мозга).
Спинной и головной мозг связаны со всеми органами нервами.
Нервы — покрытые оболочкой структуры, состоящие из пучков нервных волокон, образованных в основном аксонами нейронов и клетками нейроглии.
Нервы обеспечивают связь центральной нервной системы с органами, сосудами и кожным покровом.
Различают нервы:
- чувствительные, обеспечивающие проведение импульсов от рецепторов в ЦНС;
- двигательные, состоящие из аксонов двигательных нейронов и обеспечивающие проведение импульсов из ЦНС в исполнительные органы;
- смешанные, способные проводить импульсы в обоих направлениях.
Нервные сплетения — это совокупность нервных волокон различных нервов, иннервирующих кожный покров, скелетные мышцы и внутренние органы.
Одно из наиболее известных нервных сплетений — солнечное сплетение, расположенное в брюшной полости.
Источники:
Любимова З. В., Маринова К. В. Биология. Человек и его здоровье. 8 класс. — М.: Владос.
Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.
https://schmhlpr.appspot.com/adrenergicheskiy-sinaps-shema.html
https://uchebana5.ru/cont/2713429-p4.html
Всеми процессами в организме людей управляет нервная ткань. Именно строением ее клеток, их функциональными возможностями человек и отличается от животных. Однако, далеко не все знают, что головной мозг состоит из разных элементов, которые объединены в структурные единицы, несущие ответственность за регуляцию двигательной и чувствительной сферы организма. Подобная информация помогает специалистам лучше понимать неврологические и психиатрические болезни людей.
Строение и морфологические характеристики ткани
Основная составляющая головного мозга – нервная ткань, имеет клеточное строение. В ее основе нейроны, а также нейроглия – межклеточное вещество. Подобным строением нервной ткани обеспечены ее физиологические параметры – тканевое раздражение, последующее возбуждение, а также вырабатывание и передача сигналов.
Нейроны являются крупными функциональными единицами. Они состоят из следующих элементов:
- ядро;
- дендриты;
- тело;
- аксон.
В нейроглии присутствуют вспомогательные клетки – к примеру, астроциты плазматические, олигодендриты, шванновские клетки. Нейрон, как основная морфо-функциональная единица, как правило, состоит из нескольких дендритов, но всегда одного аксона – по нему перемещается потенциал действия от одной клетки к соседним. Именно с помощью этих окончаний в организме людей осуществляется связь между внутренними органами и головным мозгом.
В своей массе отростки нейронов образуют волокна, в которых осевой цилиндр распадается на чувствительные окончания и двигательные. Сверху они окружены множеством миелиновых и безмиелиновых клеток защитной оболочки.
Классификация
Среди существующих нервных клеток, специалисты традиционно выделяют следующие единицы, по количеству отростков и функциональной предназначенности:
Исходя из количества окончаний:
- униполярные – с единичным отростком;
- псевдоуниполярные – из двух ветвей одного и того же дендрита;
- биполярные – имеется 1 дендрит и 1аксон;
- мультиполярные – несколько дендритов, но 1 аксон.
По функциональным обязанностям:
- воспринимающие – для принятия и передачи сигналов извне, а также от внутренних тканей;
- контактные – промежуточные, которые обеспечивают обработку и проведение информации к двигательным нейронам;
- двигательные – формируют управляющие сигналы, а затем передают их к остальным органам.
Дополнительные единицы периферической нерворегулирующей системы – леммоциты. Они обволакивают отростки нейронов и формируют безмиелиновую/ миелиновую оболочку. Их еще именую шванновскими клетками в честь первооткрывателя. Именно мембрана шванновской клетки, по мере обхвата аксона и формирования оболочки, способствует улучшению проводимости нервного импульса.
Специалисты обязательно выделяют в ткани мозга особые контакты нейронов, их синапсы, классификация которых зависит от формы передачи сигнала:
- электрические – имеют значение в эмбриональном периоде развитии человека для процесса межнейронных взаимодействий;
- химические – широко представлены у взрослых людей, они для передачи нервного импульса прибегают к помощи медиаторов, к примеру, в двигательных клетках для однонаправленности возбуждения по волокну.
Подобная классификация дает полное представление о сложном строении ткани головного мозга людей, как представителей подкласса млекопитающих.
Функции ткани
Особенности нейронов таковы, что физиологическими свойствами нервной ткани обеспечиваются сразу несколько функций. Так, она принимает участие в формировании основных структур мозга – центральной и периферической его части. В частности – от мелких узлов до коры полушарий. При этом образуется сложнейшая система с гармоничным взаимодействием.
Помимо строительных функций нервной ткани присуща обработка всей информации, поступающей изнутри, а также извне. Нейроны воспринимают, перерабатывают и анализируют данные, которые затем трансформируют в особые импульсы. Они по окончаниям аксонов поступают в кору мозга. При этом, от скорости проведения возбуждения напрямую зависит реакция человека на изменение в окружающей среде.
Мозг, в свою очередь, использует природные свойства нейронов для регулирования, а также согласования деятельности всех внутренних систем организма – с помощью синаптического контакта и рецепторов. Это позволяет человеку адаптироваться к изменившимся условиям, сохраняя целостность системы жизнедеятельности – благодаря коррекции передачи импульса.
Химический состав ткани
Специфика гистологии паренхимы мозга заключается в присутствии гематоэнцефалического барьера. Именно он обеспечивает избирательную проницаемость химических метаболитов, а также способствует накоплению отдельных компонентов в межклеточном веществе.
Поскольку структура нервной ткани состоит из серого вещества – тел нейронов, и белого – аксонов, то их внутренняя среда имеет отличия по химическому составу. Так, больше воды присутствует в сером веществе – на долю сухого остатка не более 16%. При этом половину занимают белки, а еще треть – липиды. Тогда как особенности строения нервных клеток белого вещества – нейроны структур центральной части мозга, предусматривают меньшее количество воды, и больший процент сухого остатка. Его насчитывают до 30%. К тому же и липидов вдвое больше, чем белков.
Белковые вещества в главных и вспомогательных клетках ткани мозга представлены альбуминами и нейроглобулинами. Реже присутствует нейрокератин – в оболочках нервных волокон и аксонных отростках. Множество белковых соединений свойственно медиаторам – мальтаза либо фосфатаза, а также амилаза. Медиатор поступает в синапс и этим ускоряет импульсы.
Присутствует в химическом составе углеводы – глюкоза, пентаза, а также гликоген. Имеются и жиры в минимальном объеме – холестерол, фосфолипиды, либо цереброзиды. Не менее важны микроэлементы, передающие нервный импульс по нервному волокну – магний, калий, натрий и железо. Они принимают участие в продуктивной интеллектуальной деятельности людей, регулируют функционирование мозга в целом.
Свойства ткани
В организме людей основными свойствами нервной ткани специалисты указывают:
- Возбудимость – способность клетки иметь ответную реакцию на раздражители. Свойство проявляется непосредственно в двух видах – возбуждение нервной реакции либо ее торможение. Если первое может свободно перемещаться от клетки к клетке и даже внутрь ее, то торможение ослабляет либо даже препятствует деятельности нейронов. В этом взаимодействии и заключается гармоничность функционирования структур головного мозга человека.
- Проводимость – обусловлено природной способностью нейроцитов перемещать импульсы. Процесс можно представить следующим образом – в единичной клетке возник импульс, он перемещается на соседние участки, а при переходе в отдаленные зоны меняет в них концентрацию ионов.
- Раздражимость – переход клеток из состояния покоя в прямо ему противоположное, их активность. Для этого требуются провоцирующие факторы, которые поступают из окружающей ткань среды. Так, рецепты глаз реагируют на яркий свет, тогда как клетки височной доли мозга – на громкий звук.
Если одно из свойств нервной ткани нарушено, то люди утрачивают сознание, а психические процессы вовсе прекращают свою деятельность. Подобное происходит при использовании наркоза дл оперативного вмешательств – нервные импульсы полностью отсутствуют.
Специалисты на протяжении столетий изучают строение, функции, состав и свойства нервной ткани. Однако, они и в настоящее время знают о ней далеко не все. Природа преподносит людям все новые загадки, разгадать которые пытаются великие умы человечества.