Какими свойствами обладает гидроксид натрия

Какими свойствами обладает гидроксид натрия thumbnail

С химическим соединением, называемым каустической содой, человек встречается ежедневно. Гидроксид натрия, химическая формула которого обозначается NaOH, относится к разряду едких и сильных щелочей, опасных для кожи и слизистых человека. Одновременно с этим она активно используется пищевой промышленностью, косметологией, фармацевтикой. Ни одно средство личной гигиены не обходится без добавления этого соединения. Химические свойства вещества сделали его самым популярным среди регуляторов кислотности и средств для поддержания консистенции.

Что такое гидроксид натрия

Это соединение – едкая щелочь, которая применяется не только пищевой, фармацевтической и косметической сферами, но и химической промышленностью. Гидроокись натрия, или каустическая сода, выпускается в виде немного скользких твердых гранул желтоватого или белого цвета. При сильной концентрации NaOH разъедает органические соединения, поэтому способен вызвать ожог. Используется как пищевая добавка Е524, необходимая для поддержания консистенции продуктов.

Формула

Вещество имеет химическую формулу NaOH. Соединение взаимодействует с различными веществами любых агрегатных состояний, нейтрализуя их, с кислотами, образуя соль и воду. Реакция с атмосферными оксидами и гидроксидами позволяет получить тетрагидроксоцинкат или алкоголят. Едкий натр применяется для осаждения металлов. Например, при реакции с сульфатом алюминия образуется его гидроксид. Осадок не растворяется и не наблюдается избыточное получение щелочи. Это актуально при очистке воды от мелких взвесей.

Молекула гидроксид натрия

Свойства

Соединение растворяется в воде. Технический Sodium Hydroxide представляет собой водный раствор гидроксида натрия в щелочеустойчивой герметичной таре. При взаимодействии с водой каустик выделяет большое количество тепла. Вещество имеет следующие свойства:

  • при предварительном расплавлении разрушает стекло, фарфор;
  • взаимодействие с аммиаком вызывает пожароопасную ситуацию;
  • кипит при 1390°С, плавится, если температура достигает 318°С;
  • не растворяется в эфирах, ацетоне;
  • очень гигроскопичен (поглощает пары воды из воздуха), поэтому натриевая щелочь должна храниться в сухом месте и герметичной упаковке;
  • растворяется в метаноле, глицерине, этаноле;
  • бурно взаимодействует с металлами – оловом, гидроксидом алюминия, свинцом, цинком, образует водород – взрывоопасный горючий яд;
  • поглощает углекислый газ из воздуха.

Получение

Каустическая сода встречается в составе минерала брусита. Второе по величине месторождение сконцентрировано на территории России. Гидроокись благодаря исследованиям Николы Леблана, проведенным в 1787 г., получают методом синтеза из хлористого натрия. Позже востребованным способом добычи стал электролиз. С 1882 г. ученые разработали ферритный метод получения в лаборатории гидроксида с помощью кальцинированной соды. Электрохимический способ сейчас самый популярный: ионы натрия образуют его раствор едкой ртути – амальгаму, которая растворяется водой.

Применение гидроксида натрия

Нет более распространенной щелочи, чем каустическая сода. Ежегодно потребляется порядка 57 млн т. Едкий натрий используется при получении лекарственных препаратов, фенола, органических красителей, глицерина. Еще одна сфера применения – дезинфекция помещения из-за способности химического соединения нейтрализовать вредные для человека вещества, находящиеся в воздухе. Еще гидроокиси широко используются для поддержания формы продуктов (пищевая промышленность).

Гранулы гидроксида натрия

В промышленности

Гидроокись натрия относится к сильной основе для химических реакций и активно применяется разными отраслями благодаря своим свойствам:

  • Целлюлозной отраслью – для устранения сульфата в составе древесных волокон для размягчения (делигнификация). Это нужно при производстве картона, бумаги, искусственных волокон.
  • Химической промышленностью – применяется для производства масел, нейтрализации веществ кислотной среды, при травлении алюминия, изготовлении чистых металлов.
  • Гидроокись натрия используется для получения биодизельного топлива на основе растительных масел, в результате реакции образуется глицерин.
  • Соединением омывают пресс-формы автомобильных покрышек.
  • В гражданской обороне он распространен при нейтрализации опасных для здоровья веществ в воздухе, дегазации.
  • Применяется средство для нелегального производства наркотиков типа метамфетаминов.

Пищевая добавка

Каустическая сода очищает овощи, фрукты от кожицы. Применяется вещество для придания цвета карамели. Как пищевая добавка E524 (класс регуляторов кислотности, веществ против комкования наряду с карбонатом натрия) используется при изготовлении какао, мороженого, сливочного масла, маргарина, шоколада, безалкогольных напитков. Оливки и маслины размягчаются, приобретают черный цвет.

Пищевые продукты – рогалики и немецкие крендели (брецели) – обрабатывают едким раствором для хрустящей корочки. В скандинавской кухне существует рыбное блюдо – лютефиск. Технология приготовления включает вымачивание на протяжении 5-6 суток сушеной трески в растворе гидроокиси, пока не будет получена желеобразная консистенция. В пищевой промышленности сода помогает рафинировать растительное масло.

В производстве моющих средств

Способность взаимодействия жиров у каустика была замечена уже давно. С VII века арабы освоили получение твердого мыла с помощью едкого натра и ароматических масел. Эта технология осталась прежней. Каустическая сода добавляется в шампуни, моющие вещества, средства личной гигиены. Косметическая промышленность применяет гидроксид Na для получения мыла против жиров, жидкости для снятия лака, кремов.

В быту

Основной способ применения – гелеобразный гидроксид или его гранулы. Входит в состав средств для устранения засоров канализации, систем отопления. Грязь растворяется, дезагрегируется и проходит дальше по трубе. Изделия из нержавеющей стали очищаются от масляных веществ с помощью каустической соды, разогретой до 50-60°С с добавлением гидроксида калия. Косметология применяет гель на его основе для размягчения ороговевшей кожи, папиллом, бородавок.

Читайте также:  Какие лечебные свойства подорожника

Каустическая сода

Гидроксид натрия в медицине

Соединение добавляется в лекарственные препараты против повышенной кислотности желудка, для слабительного эффекта сильного действия. Такое средство приводит к повышению перистальтики кишечника. Использование вещества восстанавливает кислотно-щелочной баланс. Применяется оно в медицине для достижения успокоительного эффекта, пригодно для очистки воды от примесей. Благодаря хлориду натрия остаются постоянными индикаторы осмотического давления плазмы крови. Не стоит путать его с пищевой содой, поваренной солью.

Вред гидроксида натрия

Вещество относится ко второму классу опасности. Из-за способности гидроокиси разъедать органические соединения применение каустика должно осуществляться с соблюдением всех мер предосторожности. При попадании щелочи на слизистые и кожу она вызывает сильные ожоги, а взаимодействие с глазами приводит к атрофии зрительного нерва. Для нейтрализации гидроксида на коже применяется слабый раствор уксуса и большое количество проточной воды.

Видео

Была ли эта статья полезной?

Да

Нет

1 человек ответили

Спасибо, за Ваш отзыв!

человек ответили

Что-то пошло не так и Ваш голос не был учтен.

Нашли в тексте ошибку?

Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Источник

Ãèäðîêñèä íàòðèÿ
· Ôèçè÷åñêèå ñâîéñòâà
· Õèìè÷åñêèå ñâîéñòâà
· Êà÷åñòâåííîå îïðåäåëåíèå èîíîâ íàòðèÿ
· Ìåòîäû ïîëó÷åíèÿ
· Ðûíîê êàóñòè÷åñêîé ñîäû
· Ïðèìåíåíèå
· Ìåðû ïðåäîñòîðîæíîñòè ïðè îáðàùåíèè ñ ãèäðîêñèäîì íàòðèÿ
· Ëèòåðàòóðà
&middot

Ãèäðîêñèä íàòðèÿ (åäêàÿ ù¸ëî÷ü) — ñèëüíîå õèìè÷åñêîå îñíîâàíèå (ê ñèëüíûì îñíîâàíèÿì îòíîñÿò ãèäðîêñèäû, ìîëåêóëû êîòîðûõ ïîëíîñòüþ äèññîöèèðóþò â âîäå), ê íèì îòíîñÿò ãèäðîêñèäû ùåëî÷íûõ è ù¸ëî÷íîçåìåëüíûõ ìåòàëëîâ ïîäãðóïï Ià è IIà ïåðèîäè÷åñêîé ñèñòåìû Ä. È. Ìåíäåëååâà, KOH (åäêîå êàëè), Ba(OH)2 (åäêèé áàðèò), LiOH, RbOH, CsOH. Ù¸ëî÷íîñòü (îñíîâíîñòü) îïðåäåëÿåòñÿ âàëåíòíîñòüþ ìåòàëëà, ðàäèóñîì âíåøíåé ýëåêòðîííîé îáîëî÷êè è ýëåêòðîõèìè÷åñêîé àêòèâíîñòüþ: ÷åì áîëüøå ðàäèóñ ýëåêòðîííîé îáîëî÷êè (óâåëè÷èâàåòñÿ ñ ïîðÿäêîâûì íîìåðîì), òåì ëåã÷å ìåòàëë îòäà¸ò ýëåêòðîíû, è òåì âûøå åãî ýëåêòðîõèìè÷åñêàÿ àêòèâíîñòü è òåì ëåâåå ðàñïîëàãàåòñÿ ýëåìåíò â ýëåêòðîõèìè÷åñêîì ðÿäó àêòèâíîñòè ìåòàëëîâ, â êîòîðîì çà íîëü ïðèíÿòà àêòèâíîñòü âîäîðîäà.

MeTable

Âîäíûå ðàñòâîðû NaOH èìåþò ñèëüíóþ ùåëî÷íóþ ðåàêöèþ (pH 1%-ðàñòâîðà = 13). Îñíîâíûìè ìåòîäàìè îïðåäåëåíèÿ ùåëî÷åé â ðàñòâîðàõ ÿâëÿþòñÿ ðåàêöèè íà ãèäðîêñèä-èîí (OH), (c ôåíîëôòàëåèíî젗 ìàëèíîâîå îêðàøèâàíèå è ìåòèëîâûì îðàíæåâûì (ìåòèëîðàíæåì) — æ¸ëòîå îêðàøèâàíèå). ×åì áîëüøå ãèäðîêñèä-èîíîâ íàõîäèòñÿ â ðàñòâîðå, òåì ñèëüíåå ù¸ëî÷ü è òåì èíòåíñèâíåå îêðàñêà èíäèêàòîðà.

Ãèäðîêñèä íàòðèÿ âñòóïàåò â ðåàêöèè:

1.Íåéòðàëèçàöèè ñ ðàçëè÷íûìè âåùåñòâàìè â ëþáûõ àãðåãàòíûõ ñîñòîÿíèÿõ, îò ðàñòâîðîâ è ãàçîâ äî òâ¸ðäûõ âåùåñòâ:

  • c êèñëîòàì蠗 ñ îáðàçîâàíèåì ñîëåé è âîäû:

NaOH + HCl → NaCl + H2O

(1) H2S + 2NaOH = Na2S + 2H2O (ïðè èçáûòêå NaOH)

(2) H2S + NaOH = NaHS + H2O (êèñëàÿ ñîëü, ïðè îòíîøåíèè 1:1)

(â öåëîì òàêóþ ðåàêöèþ ìîæíî ïðåäñòàâèòü ïðîñòûì èîííûì óðàâíåíèåì, ðåàêöèÿ ïðîòåêàåò ñ âûäåëåíèåì òåïëà (ýêçîòåðìè÷åñêàÿ ðåàêöèÿ): OH + H3O+ → 2H2O.)

  • ñ àìôîòåðíûìè îêñèäàìè êîòîðûå îáëàäàþò êàê îñíîâíûìè, òàê è êèñëîòíûìè ñâîéñòâàìè, è ñïîñîáíîñòüþ ðåàãèðîâàòü ñ ùåëî÷àìè, êàê ñ òâ¸ðäûìè ïðè ñïëàâëåíèè:

ZnO + 2NaOH → Na2ZnO2 + H2O

òàê è ñ ðàñòâîðàìè:

ZnO + 2NaOH(ðàñòâîð) + H2O → Na2[Zn(OH)4](ðàñòâîð)

(Îáðàçóþùèéñÿ àíèîí íàçûâàåòñÿ òåòðàãèäðîêñîöèíêàò-èîíîì, à ñîëü, êîòîðóþ ìîæíî âûäåëèòü èç ðàñòâîðࠗ òåòðàãèäðîêñîöèíêàòîì íàòðèÿ.  àíàëîãè÷íûå ðåàêöèè ãèäðîêñèä íàòðèÿ âñòóïàåò è c äðóãèìè àìôîòåðíûìè îêñèäàìè.)

  • Ñ àìôîòåðíûìè ãèäðîêñèäàìè:

Al(OH)3 + 3NaOH = Na3[Al(OH)6]

2. Îáìåíà ñ ñîëÿìè â ðàñòâîðå:

2NaOH +CuSO4 → Cu (OH)2 + Na2SO4,

2Na+ + 2OH + Cu2+ + SO42 → Cu(OH)2+ Na2SO4

Ãèäðîêñèä íàòðèÿ èñïîëüçóåòñÿ äëÿ îñàæäåíèÿ ãèäðîêñèäîâ ìåòàëëîâ. Ê ïðèìåðó, òàê ïîëó÷àþò ãåëåîáðàçíûé ãèäðîêñèä àëþìèíèÿ, äåéñòâóÿ ãèäðîêñèäîì íàòðèÿ íà ñóëüôàò àëþìèíèÿ â âîäíîì ðàñòâîðå, ïîìèìî ýòîãî èçáåãàÿ èçáûòêà ù¸ëî÷è è ðàñòâîðåíèÿ îñàäêà. Åãî è èñïîëüçóþò, â ÷àñòíîñòè, äëÿ î÷èñòêè âîäû îò ìåëêèõ âçâåñåé.

6NaOH + Al2(SO4)3 → 2Al(OH)3 + 3Na2SO4.

6Na+ + 6OH + 2Al3+ + SO42 → 2Al(OH)3 + 3Na2SO4.

3. Ñ íåìåòàëëàìè:

ê ïðèìåðó, ñ ôîñôîðî젗 ñ îáðàçîâàíèåì ãèïîôîñôèòà íàòðèÿ:

4Ð + 3NaOH + 3Í2Î → ÐÍ3 + 3NaH2ÐÎ2.

3S + 6NaOH → 2Na2S + Na2SO3 + 3H2O

  • ñ ãàëîãåíàìè:

2NaOH + Cl2 → NaClO + NaCl + H2O(äèñìóòàöèÿ õëîðà)

2Na+ + 2OH + 2Cl → 2Na+ + 2O2 + 2H+ + 2Cl → NaClO + NaCl + H2O

6NaOH + 3I2 → NaIO3 + 5NaI + 3H2O

4. Ñ ìåòàëëàìè: Ãèäðîêñèä íàòðèÿ âñòóïàåò â ðåàêöèþ ñ àëþìèíèåì, öèíêîì, òèòàíîì. Îí íå ðåàãèðóåò ñ æåëåçîì è ìåäüþ (ìåòàëëàìè, êîòîðûå èìåþò íèçêèé ýëåêòðîõèìè÷åñêèé ïîòåíöèàë). Àëþìèíèé ëåãêî ðàñòâîðÿåòñÿ â åäêîé ù¸ëî÷è ñ îáðàçîâàíèåì õîðîøî ðàñòâîðèìîãî êîìïëåêñࠗ òåòðàãèäðîêñèàëþìèíàòà íàòðèÿ è âîäîðîäà:

2Al0 + 2NaOH + 6H2O → 3H2 + 2Na[Al(OH)4]

2Al0 + 2Na+ + 8OH + 6H+ → 3H2 + 2Na+[Al3+(OH)4]

5. Ñ ýôèðàìè, àìèäàìè è àëêèëãàëîãåíèäàìè (ãèäðîëèç):

Ãèäðîëèç ýôèðîâ

Ãèäðîëèç ýôèðîâ

ñ æèðàìè (îìûëåíèå), òàêàÿ ðåàêöèÿ íåîáðàòèìà, ïîñêîëüêó ïîëó÷àþùàÿñÿ êèñëîòà ñî ù¸ëî÷üþ îáðàçóåò ìûëî è ãëèöåðèí. Ãëèöåðèí âïîñëåäñòâèè èçâëåêàåòñÿ èç ïîäìûëüíûõ ù¸ëîêîâ ïóò¸ì âàêóóì-âûïàðêè è äîïîëíèòåëüíîé äèñòèëëÿöèîííîé î÷èñòêè ïîëó÷åííûõ ïðîäóêòîâ. Ýòîò ñïîñîá ïîëó÷åíèÿ ìûëà áûë èçâåñòåí íà Áëèæíåì Âîñòîêå ñ VII âåêà:

(C17H35COO)3C3H5 + 3NaOH → C3H5(OH)3 + 3C17H35COONa

 ðåçóëüòàòå âçàèìîäåéñòâèÿ æèðîâ ñ ãèäðîêñèäîì íàòðèÿ ïîëó÷àþò òâ¸ðäûå ìûëà (îíè èñïîëüçóþòñÿ äëÿ ïðîèçâîäñòâà êóñêîâîãî ìûëà), à ñ ãèäðîêñèäîì êàëèÿ ëèáî òâ¸ðäûå, ëèáî æèäêèå ìûëà, èñõîäÿ èç ñîñòàâà æèðà.

Читайте также:  Какие из указанных свойств принадлежат твердым телам

6. Ñ ìíîãîàòîìíûìè ñïèðòàì蠗 ñ îáðàçîâàíèåì àëêîãîëÿòîâ:

HO-CH2-CH2ÎÍ + 2NaOH → NaO-CH2-CH2-ONa + 2Í2O

7. Ñî ñòåêëîì: â ðåçóëüòàòå äëèòåëüíîãî âîçäåéñòâèÿ ãîðÿ÷åé ãèäðîîêèñè íàòðèÿ ïîâåðõíîñòü ñòåêëà ñòàíîâèòñÿ ìàòîâîé (âûùåëà÷èâàíèå ñèëèêàòîâ):

SiO2 + 4NaOH → (2Na2O)·SiO2 + 2H2O.

Источник

Гидроксид натрия, натрий гидроксид — неорганическое соединение, гидроксид состав NaOH. Представляет собой белые, непрозрачные и очень гигроскопичные кристаллы. Вещество хорошо растворимый в воде при соединении с водой выделяется большое количество тепла.

Проявляет сильные щелочные свойства. Значение pH 1% -го водного раствора составляет 13.

Гидроксид натрия является токсичным соединением, может также вызывать коррозию металлов. Вещество применяется в производстве многочисленных продуктов, в частности, поверхностно-активных веществ, бумаги, косметики, лекарственных средств.

Физические свойства

Гидроксид натрия NaOH — белое твердое вещество. Оставленный на воздухе едкий натрий вскоре рассеивается так как притягивает влагу из воздуха. Вещество хорошо растворяется в воде, при этом выделяется большое количество теплоты.

Растворимость NaOH в воде

Температура, ° C 0 10 20 25 30 40 50 60 70 80 90 100
Растворимость,% 30 39 46 50 53 58 63 71 74 76 76 79

Растворимость в метаноле составляет 23,6 г / л (при 28 ° C), в этаноле — 14,7 г / л (28 ° C).

Раствор едкого натра ошибкой на ощупь.

Термодинамика растворов

Энтальпия растворения для бесконечно разбавленного водного раствора составляет -44,45 кДж / моль.

Из водных растворов кристаллизуются гидраты:

  • при 12,3-61,8 ° C — моногидрат NaOH · H 2 O (сингониях ромбическая, температура плавления 65,1 ° C; плотность 1,829 г / см; ΔH 0утв -425,6 кДж / моль)
  • в интервале -28 … -24 ° C — гептагидрат NaOH · 7H 2 O;
  • от -24 до -17,7 ° C — пентагидрат NaOH · 5H 2 O;
  • от -17,7 до -5,4 ° C — тетрагидрат NaOH · 4H 2 O (α-модификация);
  • от -8,8 до 15,6 ° C — NaOH · 3,5Н 2 О (температура плавления 15,5 ° C).
  • от 0 ° C до 12,3 ° C — дигидрат NaOH · 2H 2 O;

Получение

Исторически первым методом получения гидроксида натрия было взаимодействие соды Na 2 CO 3 и гашеной водой извести CaO:

Гидроксид натрия

Проведению реакции способствует перемешивание и высокая температура, поэтому ее осуществляли в стальных реакторах с мешалками. После получения продуктов, от продуктов отделяли растворим карбонат кальция и выпаривали остаточный раствор гидроксида натрия при 180 ° C в чугунных емкостях без доступа воздуха. Таким образом можно было получить раствор концентрацией до 95%.

В 1892 году независимо друг от друга американский ученый Гамильтон Кастнер и австриец Карл Кельнер открыли способ получения гидроксида электролизом хлорида натрия, который широко распространен в природе. Течение реакций можно описать суммарным уравнением:

Гидроксид натрия

Этот метод и по сей день является основным промышленным способом добывания NaOH, однако некоторые условия проведения синтеза испытывали модификаций. В частности, для предотвращения протекания реакций между продуктами и исходными веществами различные этапы взаимодействия проводят в отдельных реакторах или разграничиваются. По этому критерию различают три основных метода: ртутный, диафрагменные и мембранный.

Ртутный процесс

В оригинальном методе синтеза NaOH в качестве катода используется ртутный электрод. Попадая на катод, ионы натрия образуют там жидкие амальгамы переменного состава NaHg n:

Гидроксид натрия

Амальгамы выделяются из реакционной системы и переводятся в другую, где происходит разложение амальгамы водой с образованием гидроксида натрия:

Гидроксид натрия

По этому методу образуется раствор NaOH концентрацией 50-73% и практически свободен от загрязняющих примесей (хлора, хлорида натрия). Образована в результате разложения ртуть возвращается в электрод.

На аноде (графитовом или другом) происходит окисление хлорид-ионов с образованием свободного хлора

Гидроксид натрия

Кроме этого, имеют место также побочные реакции: окисление гидроксид-иона и электрохимическое образования хлорат-иона. Гидролизом полученного хлора могут образовываться и незначительные количества гипохлорит-ионов.

Диафрагменные процесс

В диафрагменного методе пространство между катодом и анодом разъединен перегородкой, которая не пропускает растворы и газы, однако не препятствует прохождению электрического тока и миграции ионов. Обычно, в качестве таких перегородок используется асбестовая ткань, пористые цементы, фарфор и т.

В анодный пространство подается раствор NaCl: на аноде (графитовом или магнетитовых) восстанавливаются хлорид-ионы, а катионы Na + (и, частично, анионы Cl -) мигрируют сквозь диафрагму к катодной пространства. Там катионы где сочетаются с гидроксид-ионами, образованными восстановлением воды на железном или медном катоде:

Гидроксид натрия
Гидроксид натрия

С катодной пространства в результате выделяется смесь гидроксида и хлорида натрия с содержанием NaOH 10-15% (и около 18% NaCl). Путем испарения удается увеличить концентрацию гидроксида до 50%, но содержание хлорида все равно остается существенным. Для выделения хлорида из смеси, ее обрабатывают жидким аммиаком с образованием легковиддилюваного хлорида аммония (однако, этот способ является малораспространенным за высокой стоимости его проведения). Также применяется метод, который заключается в охлаждении смеси и выделении кристаллов гидрата NaOH · 3,5H 2 O, которые в дальнейшем дополнительно дегидратують.

Читайте также:  Какие свойство дает тыква

Мембранный процесс

Этот способ был разработан в 1970-х годах компанией «DuPont» и считается наиболее совершенным из существующих. В мембранном процессе в реакторе устанавливается катионообменная мембрана, которая является проницаемой для ионов Na +, движущихся в катодный пространство, и подавляет миграцию гидроксид-ионов, которые мигрируют в обратном направлении — таким образом в катодном пространстве увеличивается концентрация составляющих NaOH. Экономически выгодной для синтеза считается концентрация 30-35%, а новейшие мембраны позволяют увеличить это значение до 50%.

По этому методу хлорид натрия теоретически не образуется, но проникновение хлорид-ионов через мембрану все же может иметь место.

Получение твердого NaOH

Твердый NaOH (каустическая сода) получают выпариванием его раствора к содержимому воды меньше 0,5-1,5%. Сначала 50% -ный раствор выпаривают в вакууме до концентрации 60%, а концентрацию 99% достигают с применением теплоносителей (смесь NaNO 2, NaNO 3, KNO 3) при температуре выше 400 ° C: раствор подается насосом в разогретую камеру для испарения, где отделяется остальные воды.

Марки

Гидроксид натрия выпускается в двух видах: твердом и жидком. Твердая гранулированная каустическая сода представляет собой белую твердую массу с размером чешуек 0,5-2 см. Редкий раствор каустической соды — бесцветный. Коммерчески важны растворы гидроксида натрия с концентрацией 50%.

Технический едкий натр выпускают следующих марок:

  • ТР — твердый ртутный;
  • ТД — твердый диафрагменный (плавленый)
  • РР — раствор ртутный;
  • РХ — раствор химический;
  • РД — раствор диафрагменный.

Химические свойства

Гидроксид натрия активно поглощает влагу из воздуха, образуя гидраты различного состава, которые разлагаются при нагревании:

Гидроксид натрия
Гидроксид натрия

В растворах соединение хорошо распадается:

Гидроксид натрия

Проявляя сильные щелочные свойства, гидроксид натрия легко взаимодействует с кислотами, кислотными и амфотерными оксидами и гидроксидами:

Гидроксид натрия
Гидроксид натрия
Гидроксид натрия
Гидроксид натрия
Гидроксид натрия
Гидроксид натрия
Гидроксид натрия

NaOH легко взаимодействует с галогенами, а при высоких температурах — также и с металлами:

Гидроксид натрия
Гидроксид натрия
Гидроксид натрия
Гидроксид натрия
Гидроксид натрия
Гидроксид натрия
Гидроксид натрия
Гидроксид натрия

При взаимодействии с солями, которые являются производными слабых оснований, образуются соответствующие гидроксиды:

Гидроксид натрия
Гидроксид натрия
Гидроксид натрия

Реагируя с монооксидом углерода, синтезируется формиат натрия:

Гидроксид натрия

Требования безопасности

Сода каустическая пожаро- и взрывобезопасная. Едкая, коррозионно активное вещество. По степени воздействия на организм относится к веществам 2-го класса опасности. Как твердое вещество, так и концентрированные его растворы вызывают очень сильные ожоги. Попадание щелочи в глаза может привести к тяжелым заболеваниям и даже к потере зрения. При попадании на кожу, слизистые оболочки, глаза образуются сильные химические ожоги. При попадании на кожу — промыть слабым раствором уксусной кислоты.

При работе используют защитные средства: защитные очки, резиновые перчатки, прорезиненный химостойких одежду.

Применение

Гидроксид натрия применяется во многих отраслях промышленности и в быту:

  • Каустик применяется в целлюлозно-бумажной промышленности для делигнификации (сульфатный процесс) целлюлозы, в производстве бумаги, картона, искусственных волокон, древесно-волокнистых плит.
  • Для омыления жиров при производстве мыла, шампуня и других моющих средств. В последнее время продукты на основе гидроксида натрия (с добавлением гидроксида калия, нагретые до 50-60 градусов Цельсия, применяются в сфере промышленной мойки для очистки изделий из нержавеющей стали от жира и других масляных веществ, а также остатков механической обработки.
  • В химических отраслях промышленности — для нейтрализации кислот и кислотных оксидов, как реагент или катализатор в химических реакциях, в химическом анализе для титрования, для травления алюминия и в производстве чистых металлов, в нефтепереработке — для производства масел.
  • Для изготовления биодизельного топлива — которое получают из растительных масел и используют для замены обычного дизельного топлива. Для получения биодизеля в девяти массовых единиц растительного масла добавляют одну массовую единицу спирта (то есть соблюдается пропорция 9: 1), а также щелочной катализатор (NaOH). Полученный эфир (главным образом линолевой кислоты) отличается превосходной воспламеняемости, что обеспечивается высоким цетановым числом. Если для минерального дизтоплива характерен показатель в 50-52%, то метиловый эфир соответственно 56-58% цетана. Сырьем для производства биодизеля могут быть различные растительные масла: рапсовое, соевое и другие, кроме тех, в составе которых высокое содержание пальмитиновой кислоты (пальмовое масло). При ее производстве в процессе этерификации также образуется глицерин который используется в пищевой, косметической и бумажной промышленности, или перерабатывается в Эпихлоргидрин по методу Сольве.
  • Как агент для растворения засоров канализационных труб, в виде сухих гранул или в составе гелей. Гидроксид натрия дезагрегуе засорения и способствует легкому продвижению его далее по трубе.
  • В гражданской обороне для дегазации и нейтрализации ядовитых веществ, в том числе зарина, в ребризера (изолирующих дыхательных аппаратах (ИДА), для очистки воздуха, выдыхаемого от углекислого газа.
  • Гидроксид натрия также используется для мойки пресс-форм автопокрышек.
  • В приготовлении пищи: для мытья и очистки фруктов и овощей от кожуры, в производстве шоколада и какао, напитков, мороженого, покраске карамели, для размягчения маслин и предоставления им черного окраса, при производстве хлебобулочных изделий. Зарегистрировано в качестве пищевой добавки E524.
  • В косметологии для удаления ороговевших участков кожи: бородавок, папиллом.

Источник