Какими свойствами обладает медиана треугольника

У этого термина существуют и другие значения, см. Медиана.

Треугольник и его медианы.

Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.

Связанные определения[править | править код]

Три медианы, проходящие через общую точку

На рис. справа в треугольнике ABC через точку O проведены 3 медианы: AD, BE и CF. Тогда точка O пересечения 3 медиан разбивает каждую медиану на 2 отрезка прямых, один из них (который начинается в вершине, а заканчивается в точке пересечения O) мы назовем домедианой или предмедианой, а второй из них (который начинается в точке пересечения O, а заканчивается в точке его пересечения со стороной, противоположной вершине) мы назовем постмедианой.[1]
С помощью этих 2 понятий совсем просто формулируются некоторые теоремы геометрии. Например, в любом треугольнике отношение пред- и постмедианы равно двум.

Свойства[править | править код]

Основное свойство[править | править код]

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника[править | править код]

В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой. Верно и обратное: если в треугольнике две медианы равны, то треугольник — равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.

У равностороннего треугольника все три медианы равны.

Свойства оснований медиан[править | править код]

  • Теорема Эйлера для окружности девяти точек: основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (так называемой окружности девяти точек).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.
  • Теркем доказал теорему Теркема.[2] Она утверждает, что если окружность девяти точек пересекает стороны треугольника или их продолжения в 3 парах точек (в 3 основаниях соответственно высот и медиан), являющихся основаниями 3 пар чевиан, то, если 3 чевианы для 3 из этих оснований пересекаются в 1 точке (например 3 медианы пересекаются в 1 точке), то 3 чевианы для 3 других оснований также пересекаются в 1 точке (т. е. 3 высоты также обязаны пересечься в 1 точке).

Другие свойства[править | править код]

  • Если треугольник разносторонний (неравносторонний), то его биссектриса, проведённая из любой вершины, лежит между медианой и высотой, проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников. Центры описанных окружностей этих шести треугольников лежат на одной окружности, которая называется окружностью Ламуна.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку — точку Лемуана.
  • Медиана угла треугольника изотомически сопряжена самой себе.

Бесконечно удаленная прямая — трилинейная поляра центроида

  • Трилинейная поляра центроида (точки пересечения трех медиан) — бесконечно удаленная прямая (см. рис.).

Основные соотношения[править | править код]

Чтобы вычислить длину медианы, когда известны длины сторон треугольника, применяется теорема Аполлония (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):

где  — медианы к сторонам треугольника соответственно.

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон:

.

Обратно, можно выразить длину произвольной стороны треугольника через медианы:

где  — медианы к соответствующим сторонам треугольника,  — стороны треугольника.

Площадь любого треугольника, выраженная через длины его медиан:

где  — полусумма длин медиан.

См. также[править | править код]

  • Биссектриса
  • Высота треугольника
  • Инцентр
  • Симедиана
  • Центроид
  • Чевиана

Примечания[править | править код]

Литература[править | править код]

  • Ефремов Дм. Новая геометрия треугольника, 1902 год.

Источник

Медиана треугольника, так же, как и высота служит графическим параметром, определяющим весь треугольник, значение его сторон и углов. Три значения: медианы, высоты и биссектрисы – это, как штрих-код на товаре, наша задача просто уметь его считать.

Какими свойствами обладает медиана треугольника

Определение

Медиана – это отрезок, соединяющий высоту и середину противоположной стороны. В треугольнике три вершины, а значит и медианы три. Медианы не всегда совпадают с высотами или биссектрисами. Чаще всего это отдельные отрезки.

Свойства медиан

  • Медиана равнобедренного треугольника, проведенная к основанию, совпадает с высотой и биссектрисой. В равностороннем треугольнике все медианы совпадают с биссектрисами и высотами.
  • Все медианы треугольника пересекаются в одной точке.
  • Медиана делит треугольник на два равновеликих, а три медианы, на 6 равновеликих треугольника.

Равновеликими называют треугольники, площади которых равны.

Три медианы образуют 6 равновеликих треугольника

Рис. 1. Три медианы образуют 6 равновеликих треугольника.

  • Точка пересечения медиан делит их в отношении 2:1, считая от вершины.
  • Медиана, проведенная к гипотенузе прямоугольного треугольника, равна половине гипотенузы.

Задачи

Все эти свойства несложно запомнить, они легко закрепляются на практике. Для большего понимания темы, решим несколько задач:

  • В прямоугольном треугольнике известны катеты, которые равны a=3 и b=4. Найти значение медианы m, проведенной к гипотенузе c.

Какими свойствами обладает медиана треугольника

Рис. 2. Рисунок к задаче.

Для того, чтобы найти значение медианы, нам необходимо найти гипотенузу, так как медиана, проведенная к гипотенузе равна ее половине. Гипотенуза через теорему Пифагора: $$a^2+b^2=c^2$$

$$c=sqrt{a^2+b^2}=sqrt{9+16}=sqrt{25}=5$$

Найдем значение медианы: $$m={cover2}={5over2}=2,5$$ – получившееся число и есть значение медианы.

Значения медиан в треугольнике не равны. Поэтому нужно обязательно представлять, какую именно величину необходимо найти.

  • В треугольнике известны значения сторон : a=7; b=8; c=9. Найти значение медианы, опущенной к стороне b.

Рисунок к задаче

Рис. 3. Рисунок к задаче.

Чтобы решить эту задачу нужно воспользоваться одной из трех формул для нахождения медианы по сторонам треугольника:

$$m^2 ={1over2}*(a^2+c^2-b^2)$$

Как видно, главное здесь запомнить коэффициент при скобках и знаки у значения сторон. Знаки запомнить проще всего – вычитается всегда сторона, к которой опущена медиана. В нашем случае это b, но может быть любая другая.

Подставим значения в формулу и найдем величину медианы: $$m=sqrt{{1over2}*(a^2+c^2-b^2)}$$

$$m=sqrt{{1over2}*(49+81-64)}=sqrt{33}$$ – оставим результат в виде корня.

  • В равнобедренном треугольнике медиана, проведенная к основанию равна 8, а само основание 6. Вместе с оставшимися двумя, эта медиана делит треугольник на 6 треугольников. Найти площадь каждого из них.

Медианы, разбивают треугольник на шесть равновеликих. Значит, площади малых треугольников будут равны между собой. Достаточно найти площадь большего и поделить ее на 6.

Дана медиана, проведенная к основанию, в равнобедренном треугольнике она является биссектрисой и высотой. Значит в треугольнике известны основание и высота. Можно найти площадь.

$$S={1over2}*6*8=24$$

Площадь каждого из малых треугольников: $${24over6}=4$$

Что мы узнали?

Мы узнали, что такое медиана. Определили свойства медианы, и нашли решение типовых задач. Поговорили о базовых ошибках и разобрались как просто и быстро запомнить формулу нахождения медианы через стороны треугольника.

Тест по теме

Оценка статьи

Средняя оценка: 4.7. Всего получено оценок: 128.

Источник

Треугольникомназывается фигура,
которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков,
попарно соединяющих эти точки. Точки называются вершинамитреугольника,
а отрезки — его сторонами.

Виды треугольников

Треугольник называется равнобедренным,
если у него две сторны равны. Эти равные стороны называются боковыми
сторонами,
а третья сторона называется основанием треугольника.

Треугольник, у которого все сторны равны, называется равносторонним
или правильным.

Треугольник
называется прямоугольным, если у него есть прямой угол, то есть
угол в 90°. Сторона прямоугольного треугольника, противолежащая прямому
углу, называется гипотенузой, две другие стороны называются катетами.

Треугольник называется остроугольным,
если все три его угла — острые, то есть меньше 90°.

Треугольник называется тупоугольным, если один из его углов —
тупой, то есть больше 90°.

Основные линии треугольника

Медиана

Медиана треугольника — это отрезок, соединяющий верщину треугольника
с серединой противолежащей стороны этого треугольника.

Свойства медиан треугольника

  1. Медиана разбивает треугольник на два треугольника одинаковой площади.
  2. Медианы треугольника пересекаются в одной точке, которая делит каждую
    из них в отношении 2:1, считая от вершины. Эта точка называется центром
    тяжести
    треугольника.
  3. Весь треугольник разделяется своими медианами на шесть равновеликих
    треугольников.

Биссектриса

Биссектриса
угла
— это луч, который исходит из его вершины, проходит между его
сторонами и делит данный угол пополам. Биссектрисой треугольника называется
отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на
противолежащей стороне этого треугольника.

Свойства биссектрис треугольника

  1. Биссектриса угла — это геометрическое место точек, равноудаленных от
    сторон этого угла.
  2. Биссектриса внутреннего угла треугольника делит противолежащую сторону
    на отрезки, пропорциональные прилегажащим сторонам: .
  3. Точка пересечения биссектрис треугольника является центром
    окружности, вписанной в этот треугольник.

Высота

Высотой
треугольника называется перпендикуляр, проведенный из вершины треугольника
к прямой, содержащей противоположную сторону этого треугольника.

Свойства высот треугольника

  1. В прямоугольном треугольнике высота, проведенная
    из вершины прямого угла, разбивает его на два треугольника, подобные
    исходному.
  2. В остроугольном треугольнике две его
    высоты отсекают от него подобные треугольники.

Срединный перпендикуляр

Прямую, проходящую через середину отрезка перпендикулярно к нему, называют
серединным перпендикуляром к отрезку.

Свойства серединных перпендикуляров треугольника

  1. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов
    этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная
    от концов отрезка, лежит на серединном перпендикуляре к нему.
  2. Точка пересечения серединных перпендикуляров, проведенных к сторонам
    треугольника, является центром окружности,
    описанной около этого треугольника.

Средняя линия

Средней
линией треугольника
называется отрезок, соединяющий середины двух его
сторон.

Свойство средней линии треугольника

    Средняя линия треугольника параллельна одной из его сторон и равна половине
    этой стороны.

Формулы и соотношения

Признаки равенства треугольников

Два треугольника равны, если у них соответственно равны:

  • две стороны и угол между ними;
  • два угла и прилежащая к ним сторона;
  • три стороны.

Признаки равенства прямоугольных треугольников

Два прямоугольных треугольника равны, если
у них соответственно равны:

  • гипотенуза и острый угол;
  • катет и противолежащий угол;
  • катет и прилежащий угол;
  • два катета;
  • гипотенуза и катет.

Подобие треугольников

Два треугольника подобны, если выполняется
одно из следующих условий, называемых признаками подобия:

  • два угла одного треугольника равны двум углам другого треугольника;
  • две стороны одного треугольника пропорциональны двум сторонам другого
    треугольника, а углы, образованные этими сторонами, равны;
  • три стороны одного треугольника соответственно пропорциональны трем
    сторонам другого треугольника.

В подобных треугольниках соответствующие линии (высоты,
медианы, биссектрисы и
т. п.) пропорциональны.

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов, причем
коэффициент пропорциональности равен диаметру
описанной около треугольника окружности:

Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон
минус удвоенное произведение этих сторон на косинус угла между ними:

a2= b2+ c2
2bc cos

Формулы площади треугольника

  1. Произвольный треугольник
  2. a, b, c — стороны;  —
    угол между сторонами a и b;—
    полупериметр; R — радиус описанной окружности; r — радиус
    вписанной окружности; S — площадь; ha
    высота, проведенная к стороне a.

    S
    = aha

    S = ab
    sin

    S = pr

  3. Прямоугольный треугольник
  4. a, b — катеты; c — гипотенуза; hc — высота,
    проведенная к стороне c.

    S = ab

    S = chc

  5. Равносторонний треугольник

Источник

Определения

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Теорема

В любом треугольнике высоты (или их продолжения) пересекаются в одной точке (рис. 1 и 2), биссектрисы пересекаются в одной точке (рис. 3), медианы пересекаются в одной точке (рис. 4).

Какими свойствами обладает медиана треугольника

Теорема

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.

Какими свойствами обладает медиана треугольника

Верны и другие утверждения:
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

[{Large{text{Медиана}}}]

Теорема

В любом треугольнике медианы точкой пересечения делятся в отношении (2:1), считая от вершины.

Доказательство

Пусть (AD) и (BE) – медианы в треугольнике (ABC), (O) – точка пересечения (AD) и (BE).

Какими свойствами обладает медиана треугольника

(DE) – средняя линия в треугольнике (ABC), тогда (DEparallel AB), значит (angle ADE = angle BAD), (angle BED = angle ABE), следовательно, треугольники (ABO) и (DOE) подобны (по двум углам).

Из подобия треугольников (ABO) и (DOE): (dfrac{BO}{OE} =
dfrac{AB}{DE} = dfrac{2}{1}).

Для других медиан треугольника (ABC) требуемое свойство доказывается аналогично.

Теорема

Медиана треугольника делит его на два равновеликих треугольника (равновеликие треугольники – это треугольники, у которых площади равны).

Доказательство

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию: (S_{ABC} = 0,5cdot ACcdot
h).

Какими свойствами обладает медиана треугольника

Пусть (BD) – медиана в треугольнике (ABC), тогда (AD = DC).

(S_{ABD} = 0,5cdot ADcdot h),

(S_{BCD} = 0,5cdot DCcdot h).

Так как (AD = DC), то (S_{ABD} = S_{BCD}), что и требовалось доказать.

Теорема

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

Верно и обратное: если медиана равна половине стороны, к которой она проведена, то она проведена из вершины прямого угла.

Доказательство

1) Докажем, что если (triangle ABC) – прямоугольный, то (BM=frac12AC), где (M) – середина гипотенузы (AC).

Какими свойствами обладает медиана треугольника

Достроим треугольник (ABC) до прямоугольника (ABCD) и проведем диагональ (BD). Т.к. в прямоугольнике диагонали делятся точкой пересечения пополам и равны, то (ACcap BD=M), причем (AM=MC=BM=MD), чтд.

2) Докажем, что если в треугольнике (ABC) медиана (BM=AM=MC), то (angle B=90^circ).

Какими свойствами обладает медиана треугольника

Треугольники (AMB) и (CMB) – равнобедренные, следовательно, (angle
BAM=angle ABM=alpha, quad angle MBC=angle MCB=beta).

Т.к. сумма углов в треугольнике равна (180^circ), то для (triangle
ABC):

(alpha+(alpha+beta)+beta=180^circ Rightarrow
alpha+beta=90^circ Rightarrow angle B=90^circ), чтд.

[{Large{text{Биссектриса}}}]

Теорема

Биссектриса треугольника делит его сторону на части, пропорциональные прилежащим сторонам:

Какими свойствами обладает медиана треугольника

Верно и обратное: если отрезок, проведенный из вершины треугольника к стороне, делит эту сторону на отрезки, пропорциональные прилежащим сторонам, то это биссектриса.

Доказательство

Площади треугольников, у которых есть равные углы, относятся как произведения сторон, образующих эти углы, то есть [dfrac{S_{ACD}}{S_{BCD}} = dfrac{ACcdot CD}{CBcdot CD} =
dfrac{AC}{CB}]

С другой стороны, (dfrac{S_{ACD}}{S_{BCD}} = dfrac{0,5cdot
ADcdot h}{0,5cdot DBcdot h}), где (h) – высота, проведённая из точки (C), тогда (dfrac{S_{ACD}}{S_{BCD}} = dfrac{AD}{DB}).

В итоге (dfrac{AD}{DB} = dfrac{S_{ACD}}{S_{BCD}} =
dfrac{AC}{CB}), откуда (dfrac{AD}{AC} = dfrac{DB}{BC}), что и требовалось доказать.

Теорема

Если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

Верно и обратное: если точка лежит на биссектрисе угла, то она равноудалена от его сторон.

Какими свойствами обладает медиана треугольника

Доказательство

1) Докажем, что если (KA=KB), то (OK) – биссектриса.
Рассмотрим треугольники (AOK) и (BOK): они равны по катету и гипотенузе, следовательно, (angle AOK=angle BOK), чтд.

2) Докажем, что если (OK) – биссектриса, то (KA=KB).
Аналогично треугольники (AOK) и (BOK) равны по гипотенузе и острому углу, следовательно, (KA=KB), чтд.

Источник

У этого термина существуют и другие значения, см. Медиана.

Треугольник и его медианы.

Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.

Свойства

Основное свойство

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника

  • В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой.
  • Верно и обратное: если в треугольнике две медианы равны, то треугольник — равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.
  • У равностороннего треугольника все три медианы равны.

Свойства оснований медиан

  • Теорема Эйлера для окружности девяти точек: основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (так называемой окружности девяти точек).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.

Другие свойства

  • Если треугольник разносторонний (неравносторонний), то его биссектриса, проведённая из любой вершины, лежит между медианой и высотой, проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку — точку Лемуана.
  • Медиана угла треугольника изотомически сопряжена самой себе.

Бесконечно удаленная прямая — трилинейная поляра центроида

  • Трилинейная поляра центроида (точки пересечения трех медиан) — бесконечно удаленная прямая (см. рис.).

Основные соотношения

  • Чтобы вычислить длину медианы, когда известны длины сторон треугольника, применяется теорема Аполлония (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):

где  — медиана к стороне ; — стороны треугольника.В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон:.

  • Обратно, можно выразить длину произвольной стороны треугольника через медианы:

,где медианы к соответствующим сторонам треугольника,  — стороны треугольника.

  • Площадь любого треугольника, выраженная через длины его медиан:

где  — полусумма длин медиан.

См. также

  • Инцентр
  • Симедиана
  • Центроид
  • Чевиана
  • Биссектриса

Литература

  • Ефремов Дм. Новая геометрия треугольника, 1902 год.

Источник