Какими общими физическими свойствами обладают простые вещества металлы

Какими общими физическими свойствами обладают простые вещества металлы thumbnail

Какими общими физическими свойствами обладают простые вещества металлы

Металлы (от лат. metallum — шахта, рудник) — группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Из 118 химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:

  • 6 элементов в группе щелочных металлов,
  • 6 в группе щёлочноземельных металлов,
  • 38 в группе переходных металлов,
  • 11 в группе лёгких металлов,
  • 7 в группе полуметаллов,
  • 14 в группе лантаноиды + лантан,
  • 14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний,
  • вне определённых групп бериллий и магний.

Таким образом, к металлам, возможно, относится 96 элементов из всех открытых.

В астрофизике термин «металл» может иметь другое значение и обозначать все химические элементы тяжелее гелия

Характерные свойства металлов

  1. Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
  2. Хорошая электропроводность
  3. Возможность лёгкой механической обработки 
  4. Высокая плотность (обычно металлы тяжелее неметаллов)
  5. Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
  6. Большая теплопроводность
  7. В реакциях чаще всего являются восстановителями.

Физические свойства металлов

Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже приводится твёрдость некоторых металлов по шкале Мооса.

Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.

В зависимости от плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22.6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0.003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы такие как золото, серебро, свинец, алюминий, осмий могут срастаться между собой, но на это может уйти десятки лет.

Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Химические свойства металлов

На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)

Реакции с простыми веществами

  • С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:

 оксид лития

 пероксид натрия

 надпероксид калия

Чтобы получить из пероксида оксид, пероксид восстанавливают металлом:

Читайте также:  Какие свойства вычитания вы знаете

Со средними и малоактивными металлами реакция происходит при нагревании:

  • С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды:

При нагревании:

  • С серой реагируют все металлы, кроме золота и платины:

Железо взаимодействует с серой при нагревании, образуя сульфид:

  • С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
  • С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан.

Взаимодействие кислот с металлами

Взаимодействие неокисляющих кислот с металлами, стоящими в электрическом ряду активности металлов до водорода

Происходит реакция замещения, которая также является окислительно-восстановительной:

Взаимодействие серной кислоты H2SO4 с металлами

Окисляющие кислоты могут взаимодействовать и с металлами, стоящими в ЭРАМ после водорода:

Очень разбавленная кислота реагирует с металлом по классической схеме:

При увеличении концентрации кислоты образуются различные продукты:

Реакции для азотной кислоты (HNO3)

При взаимодействии с активными металлами вариантов реакций ещё больше:

Источник

Анонимный вопрос  ·  3 апреля 2018

14,3 K

Свойства металлов делятся на несколько групп: физические, химические, механические и технологические.

1) Физические свойства: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность.

2) Химические свойства: окисляемость, растворимость и коррозионная стойкость.

3) Механические свойства: прочность, твердость, упругость, пластичность.

4) Технологические свойства: прокаливаемость, жидкотекучесть, ковкость, обрабатываемость резанием.

Слишком примитивно, кое-что неверно, что-то устарело (терминология). Не советую использовать.

Есть ли разница между прочностью и твердостью?

Аналитик бизнеса и остальной жизни.

Прочность и твердость это разные понятия! Алмаз – один из самых твердых материалов, но гвоздь из него сломается, если по нему ударить обычным молотком, а стальной гвоздь – нет, хотя сталь не самый твердый металл. Или напильник из твердых сплавов очень твердый, что позволяет им стачивать что угодно, но он очень хрупкий и может сломаться при падении с высоты верстака. Давайте разберемся с этими понятими.

Прочность – способность всей конструкции или материала противостоять своему разрушению от внешнего воздействия.

Прочность материала выявляют нагрузкой образца из этого материала замером величин его упругих и пластических свойств и зависимости между напряжением и относительным удлинением. Но разные материалы по-разному реагируют на внешнее воздействие.

Материал может быть упругим, т.е. восстанавливать свою первоначальную форму после снятия внешних нагрузок. Численно эта упругость выражается величиной модуля упругости Е = tga, где а – угол наклона линии деформирования металла к оси абсцисс, и пределом упругости, т.е. таким максимальным напряжением, при котором деформации после снятия нагрузки исчезают.

Также материал может быть пластичным — сохранять деформированное состояние после снятия нагрузки, т.е. получать остаточные деформации без разрушения. Мерой пластичности материала служит относительное остаточное удлинение при разрыве. Перед разрушением в образце в месте разрыва образуется «шейка», поперечное сечение образца уменьшается, и в зоне шейки развиваются большие местные пластические деформации. Относительное удлинение при разрыве складывается из равномерного удлинения на всей длине образца и локального удлинения в зоне шейки. Мерой пластичности может также служить относительное сужение при разрыве.

Ну и наконец, материал может быть хрупким — разрушаться при малых деформациях. Выявляется это свойство испытаниями на ударную вязкость на специальных маятниковых копрах. Под действием удара молота копра образец разрушается. Ударная вязкость КС определяется затраченной на разрушение образца работой, отнесенной к площади поперечного сечения. Один и тот же металл может разрушаться как вязко, т.е. с развитием значительных пластических деформаций, так и хрупко, в зависимости от целого ряда факторов. Таким образом, ударная вязкость является комплексным показателем, характеризующим состояние металла (хрупкое или вязкое), сопротивление динамическим (ударным) воздействиям, чувствительность к концентрации напряжений и служит для сравнительной оценки качестве материала.

Если материал подвергать постоянному переменному (циклическому), то при достаточно большом числе циклов разрушение может произойти гораздо раньше. Это явление называется усталостью металла. Поэтому рассчитывают еще и на циклическую прочность.

Твердость – свойство не всего образца, а поверхностного слоя металла сопротивляться упругой и пластической деформациям или разрушению при внедрении в него индентора из более твердого материала.

Обычно чем тверже материал, тем выше его статическая прочность. Так как испытание на твердость проводится без разрушения детали, широко применяют приближенную оценку прочности материала и правильности термообработки по величине твердости.

Твердость по Бринеллю (HB) определяют вдавливанием в испытуемый материал шарика из закаленной стали диаметром 10 мм под нагрузкой 3000 кгс. Число HB равно отношению силы, вдавливающей шарик, к площади поверхности полученного отпечатка.

Читайте также:  Ананас какие полезные свойства

Твердость по Роквеллу (HRC) определяют вдавливанием алмазного конуса в закаленную сталь. Число твердости HRC соответствует разности глубин проникновения конуса под действием основной нагрузки (150 кгс) и предварительной (10 кгс).

Ползучесть – свойство материала непрерывно деформироваться во времени без увеличения нагрузки. Ползучесть в металлах проявляется в основном при высоких температурах. Оценка степени ползучести производится по результатам длительных испытаний образцов на растяжение.

Прочитать ещё 2 ответа

Что применяется для получения металлов?

Невское Оборудование поставщик металлообрабатывающего оборудования и станков  ·  spbstanki.ru

Так как металлы в земной коре встречаются преимущественно в виде соединений в различных минералах (как правило: оксидов, гидроксидов, солей и т.д..), а в самородном состоянии могут находиться лишь неактивные металлы (такие как: медь, золото, серебро, платиновые металлы, ртуть). Поэтому металлы в основном получают из руд с помощью металлургических процессов. Любой металлургический процесс – это процесс восстановления металла с помощью различных восстановителей. Он состоит из трех основных этапов: обогащение руды, восстановление металлов из их соединений, очистка технических металлов.

Восстановительные процессы способов получения металлов делятся на следующие:

  • Пирометаллургия – восстановление металлов из руд при высоких температурах с помощью углерода, оксида углерода (II), водорода, алюминия, магния и др.

  • Гидрометаллургия – восстановление металлов из солей в растворе.

  • Электрометаллургия – восстановление металлов в процессе электролиза растворов и расплавов солей.

Какие свойства характеризуют графит?

Мои интересы: разнообразны, но можно выделить следующие: литература, история…

Физические: цвет от черного до стального серого, металлический блеск, жирный, пачкает пальцы, хрупкий, при воздействии расслаивается на части-чешуйки. Огнеупорен, проводит электричество, невысокая плотность.

Химические: не растворяется в кислотах, с некоторыми солями и щелочными металлами образует соединения наподобие включений. С кислородом реагирует при очень высокой температуре, образуя в итоге углекислый газ.

В чём отличие (особенность) свойств золота от обычных металлов и откуда оно пявилось на планете Земля?

НЛО прилетело и опубликовало эту запись здесь.

Золото — тяжёлый металл, который не вступает почти ни в какие химические реакции (поэтому в земле находится чаще всего в самородной форме) и отличается исключительной ковкостью. Золото можно расковать в лист толщиной до 0,1 мкм (что примерно в тысячу раз тоньше человеческого волоса).
Современная наука предполагает, что золото (как и прочие элементы тяжелее железа) образуется при разрушении нейтронных звёзд. При этом происходит выброс космической пыли, в том числе пыли тяжёлых металлов, и через какое-то время она конденсируется в космосе. Предположительно, когда-то такая сконденсированная пыль попала и на Землю. Только Земля в то время была ещё жидкой, поэтому большая часть золота Земли теперь находится в её ядре, а то, что в коре, — это по большей части результат позднейших столкновений с астероидами.

Прочитать ещё 1 ответ

Какие характеристики сталь 40х ?

40Х ГОСТ 4543-16 (Страны СНГ)

Стандарты

ГОСТ 4543-16 Металлопродукция из конструкционной легированной стали. Технические условия

Химический состав

C (Углерод) 0.36 — 0.44

Si (Кремний) 0.17 — 0.37

Mn (Марганец) 0.5 — 0.8

P (Фосфор) < 0.04

S (Сера) < 0.04

Cr (Хром) 0.8 — 1.1

Mo (Молибден) < 0.11

Ni (Никель) < 0.3

V (Ванадий) < 0.05

Ti (Титан) < 0.03

Cu (Медь) < 0.3

N (Азот) < 0.012

W (Вольфрам) < 0.2

Fe (Железо) Остальное

CE = C + Mn/6 + (Cr + Mo +V)/5 + (Ni + Cu)/15

Химический состав может быть изменён по договорённости

Эм = 0.3Cr + 0.5Ni + 0.7Cu

Для цементируемых сталей допускается Al > 0.02

Содержание P может быть изменено по согласованию

По согласованию: Ca < 0.003

Свойства

По ГОСТ 4543-2016

Твёрдость

Примечание

Твердость в отожженном (ОТ) или высокоотпущенном (ВО)

состоянии, а также горячекатанного проката и кованой продукции

нормализованного с последующим высоким отпуском (Н+ВО)

Твердость может быть на 15 единиц HB больше.

Диаметр или толщина: > 5 мм ;

Твёрдость HB: < 217

Нагартованное состояние (НГ)

Калиброванный и со специальной отделкой поверхности

Диаметр или толщина: > 5 мм ;

Твёрдость HB: < 269

Продольные образцы

Примечание

При испытании продукции диаметром или толщиной от 80 до 150

мм допускается понижение относительного удлинения на 2 абс. %,

относительного сужения на 5 абс. % и ударной вязкости на 10 %.

Для продукции диаметром или толщиной от 151 мм допускается

понижение относительного удлинения на 3 абс. %, относительного

сужения на 10 абс. % и ударной вязкости на 15 %.

Читайте также:  Какими свойствами обладают гладкие мышцы

Для стали с нормируемым временным сопротивлением не менее

1180 Н/мм2 допускается снижение норм ударной вязкости на 9,8

Дж/см3 при одновременном повышении временного сопротивления

не менее чем на 98 Н/мм2.

Термически обработанные образцы

Примечание

Закалка 860 °С (или нормализация), охлаждение в масле

Отпуск 500 °С , охлаждение в масле или воде

Предел текучести: > 785 МПа

Временное сопротивление: > 980 МПа

Относительное удлинение: > 10 %

Ударная вязкость KCU при 20°C: > 59 Дж/см2

Относительное сужение: > 45 %

WinSteel вер.9.0.18.3

Источник

Анонимный вопрос  ·  22 октября 2018

< 100

Почему именно у серебра самая высокая электропроводность среди металлов? Как это объясняется на уровне взаимодействия между атомами?

Сусанна Казарян, США, Физик

Вопрос касается электропроводности металлов, описываемой Зонной теорией металлов и квантовой механикой. И действительно, проводимость Серебра (⁴⁷Ag) на 6% больше проводимости Меди (²⁹Cu). Почему? Боюсь этот вопрос на сегодня открытый. Вот электронные конфигурации Меди и Серебра:

  • Cu: 2  8  18  1
  • Ag: 2  8  18  18  1

Разница только в наличии незаполненной четвертой электронной оболочки Серебра, что не должно давать особых преимуществ в электропроводности. Главную же роль в высокой их электропроводности играет одинокий электрон на последней оболочке, склонный к свободной беспризорной жизни бродяги (дрейфу) в необъятных просторах кристаллической решётки металлов. Электропроводность (σ) по определению пропорциональна числу свободных электронов (n) и их среднему свободному пробегу (d), и обратно пропорциональна скорости дрейфа (v) свободных электронов, т.е. σ ∝ (n/v)⋅d. Так вот, отношение (n/v) для Меди больше чем для Серебра более чем на 10%. Но из эксперимента известно, что σ(Ag) > σ(Cu), a это значит, что средний свободный пробег электронов (d) в Серебре, соответственно больше чем в Меди. Почему? Ответ скрыт в электрон-фононных взаимодействиях при движении свободных электронов в кристаллической решётке, а фонон это квант колебательного движения (вибрации) атомов металла в решётке. А вот туда (за решётку) влезать я всегда избегаю и вам советую. Целее будем.

Какие бывают свойства металлов?

Свойства металлов делятся на несколько групп: физические, химические, механические и технологические.

1) Физические свойства: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность.

2) Химические свойства: окисляемость, растворимость и коррозионная стойкость.

3) Механические свойства: прочность, твердость, упругость, пластичность.

4) Технологические свойства: прокаливаемость, жидкотекучесть, ковкость, обрабатываемость резанием.

В чём отличие (особенность) свойств золота от обычных металлов и откуда оно пявилось на планете Земля?

НЛО прилетело и опубликовало эту запись здесь.

Золото — тяжёлый металл, который не вступает почти ни в какие химические реакции (поэтому в земле находится чаще всего в самородной форме) и отличается исключительной ковкостью. Золото можно расковать в лист толщиной до 0,1 мкм (что примерно в тысячу раз тоньше человеческого волоса).
Современная наука предполагает, что золото (как и прочие элементы тяжелее железа) образуется при разрушении нейтронных звёзд. При этом происходит выброс космической пыли, в том числе пыли тяжёлых металлов, и через какое-то время она конденсируется в космосе. Предположительно, когда-то такая сконденсированная пыль попала и на Землю. Только Земля в то время была ещё жидкой, поэтому большая часть золота Земли теперь находится в её ядре, а то, что в коре, — это по большей части результат позднейших столкновений с астероидами.

Прочитать ещё 1 ответ

Как изменяются свойства химических элементов в периодах и группах?

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  ·  vk.com/mendo_him

При движении по группе главной подгруппы сверху вниз⬇️

????Радиус атома увеличтвается

????Электроотрицательность уменьшается

????Окислительные свойства ослабевают

????Восстановительные свойства усиливаются

????Неметаллические ослабевают

????Металлические усиливаются

По периоду слева направо всё наоброт????

????Радиус уменьшается

????ЭО возрастает

????Окислительные свойства усиливаются

????Восстановительные ослабевают

????Неметаллические увеличиваются

????Металлические свойства ослабевают

Прочитать ещё 1 ответ

Что такое физическое вещество?

То, из чего состоят физические тела, то есть окружающие нас предметы, называется веществом.

Например, твёрдыми физическими телами являются камень, крупинка соли, автомобиль, плитка шоколада. Любое твёрдое тело имеет какую-то определённую форму.

Жидкое физическое тело — это вода в стакане или в пруду. Жидкие тела не имеют своей собственной формы, а принимают форму той ёмкости, в которой жидкость находится.

Газообразным физическим телом является воздух, находящийся в помещении или в воздушном шарике. Газообразные физические тела, так же как и жидкости, не имеют своей формы. Однако, в отличие от жидкостей, всегда заполняют весь объём той ёмкости, в которой находятся.

Источник