Какими из перечисленных свойств обладает математическое ожидание

Математическим ожиданием (или средним значением) дискретной случайной величины называется сумма произведений всех её возможных значение на соответствующие им вероятности.

Т.е., если сл. величина имеет закон распределения, то

называется её математическим ожиданием. Если сл. величина имеет бесконечное число значений, то математическое ожидание определяется суммой бесконечного ряда , при условии, что этот ряд абсолютно сходится (в противном случае говорят, что математическое ожидание не существует).

Для непрерывной сл. величины, заданной функцией плотности вероят­ности f(x), математическое ожидание определяется в виде интеграла

при условии, что этот интеграл существует (если интеграл расходится, то говорят, что математическое ожидание не существует).

Пример 1. Определим математическое ожидание случайной величины распределённой по закону Пуассона. По определению

или обозначим

,

Значит, параметр,определяющий закон распределения пуассоновской случайной величины равен среднему значению этой величины.

Пример 2. Для случайной величины, имеющей показательный закон распределения , математическое ожидание равно

():

(в интеграле пределы взять, с учётов того. что f (x) отлична от нуля только при положительных x).

Пример 3. Случайнаявеличина, распределенная по закону распределения Коши, не имеет среднего значения. Действительно

Свойства математического ожидания.

Свойство 1. Математическое ожидание постоянной равно самой этой постоянной.

Постоянная С принимает это значение с вероятностью единица и по определению М(С)=С×1=С

Свойство 2. Математическое ожидание алгебраической суммы случайных величин равно алгебраической суме их математических ожиданий.

Ограничимся доказательством этого свойства только для суммы двух дискретных случайных величин, т.е. докажем, что

Под суммой двух дискретных сл. Величин понимается сл. Величина, которая принимает значения с вероятностями

По определению

Но

где вероятность события , вычисленная при условии, что . В правой части последнего равенства перечислены все случаи появления события , поэтому равна полной вероятности появления события , т.е. . Аналогично . Окончательно имеем

Свойство 3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Приведем доказательства этого свойства только для дискретных величин. Для непрерывных случайных величин оно доказывается аналогично.

Пусть Х и У независимы и имеют законы распределения

Произведением этих случайных величин будет случайная величина, которая принимает значения с вероятностями равными, в силу независимости случайных величин, . Тогда

Следствие. Постоянныймножитель можно выносить за знак матема­тического ожидания. Так век постоянная С не зависит от того какое значение примет сл. величина X, то по свойству 3. имеем

М(СХ)=М(С)×М(Х)=С×М(Х)

Пример. Если a и b постоянные, то М(ах+b)=аМ(х)+b.

Математическое ожидание числа появления события в схеме независимых испытаний.

Пусть производится n независимых опытов, ве­роятность появления события в каждом из которых равна Р. Чис­ло появлений события в этих n опытах является случайной величиною Х распределённой по биномиальному закону. Однако, непосредственное вычисление её среднего значения громоздко. Для упрощения воспользуемся разложением, которым будем пользоваться в дальнейшем неоднократно: Число появления события в n опытах состоит изчисла появлений события в отдельных опытах, т.е.

где имеет закон распределения (принимает значение 1, если событие в данном опыте произошло, и значение 0, если событие в данном опыте не появилось).

  
Р1-рр

Поэтому

или

т.е. среднее число появлений события в n независимых опытах равно произведению числа опытов на вероятность появления события в одном опыте.

Например, если вероятность попадания в цель при одном выстреле равна 0,1, то среднее число попадания в 20 выстрелах равно 20×0,1=2.

Источник

Свойства математического ожидания

1) Математическое ожидание постоянной величины равно самой постоянной.

2) Постоянный множитель можно выносить за знак математического ожидания.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4) Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Пусть производится п независимых испытаний, вероятность появления события А в которых равна р.

Теорема. Математическое ожидание М(Х) числа появления события А в п независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

Однако, математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.

Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.

Читайте также:  Какие целебные свойства у мать и мачехи

Перечислите основные свойства дисперсии.

Свойства дисперсии

1) Дисперсия постоянной величины равна нулю.

2) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат.

3) Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин.

4) Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин.

Справедливость этого равенства вытекает из свойства 2.

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и не появления события в каждом испытании.

Дайте определение ковариации.

Ковариа́ция (корреляционный момент) в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин.

Определение

Пусть X,Y — две случайные величины, определённые на одном и том же вероятностном пространстве. Тогда их ковариация определяется следующим образом:

,

в предположении, что все математические ожидания E в правой части определены.

Замечания

§ Если , то есть имеют конечный второй момент, то ковариация определена и конечна.

§ В гильбертовом пространстве несмещённых случайных величин с конечным вторым моментом ковариация имеет вид и играет роль скалярного произведения.

11. Коррелированность и некоррелированность — это свойство пары (случайных величин, наборов данных). Определяется по величине коэффициента корреляции (есть разные варианты).

12. Генеральная совокупность– все множество имеющихся объектов.

Выборка – набор объектов, случайно отобранных из генеральной совокупности.

Объем генеральной совокупности N и объем выборки n – число объектов в рассматривае-мой совокупности.

Виды выборки:

Повторная – каждый отобранный объект перед выбором следующего возвращается в генеральную совокупность;

Бесповторная – отобранный объект в генеральную совокупность не возвращается.

13. выборочным средним называется случайная величина

.

Пусть — случайная величина, определённая на некотором вероятностном пространстве. Тогда

где символ M обозначает математическое ожидание

Среднеквадратическое отклонение:

стандартное отклонение (несмещённая оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания):

где — дисперсия; — i-й элемент выборки; — объём выборки; — среднее арифметическое выборки:

14. Оценка О называется несмещенной оценкой параметра О, если ее мат. ожидание равно оцениваемому параметру: М(О)= О. В противном случае оценка называется смещенной.

Оценка О* называется эффективной оценкой параметра О, если ее дисперсия Д(О*) меньше дисперсии любой другой альтернативной несмещенной оценки при фиксированном объёме выборки n, т.е. Д(О*)= Дмин.

Оценка О*n называется состоятельной оценкой параметра О, если О*n сходится по вероятности к оцениваемому параметру О при n-∞. Другими словами, состоятельной называется такая оценка, которая дает истинное значение при достаточно большом объёме выборки вне зависимости от значений входящих в нее конкретных наблюдений.

15.

16. Точечной оценкой О* параметра О называется числовое значение этого параметра, полученное по выборке объёма n.

Точечная оценка может быть дополнена интервальной оценкой- интервалом (О1;О2), внутри которого с наперед заданной вероятностью у находится точное значение оцениваемого параметра О.

17. Гипотеза Н0, подлежащая проверке, -нулевая гипотеза. Гипотеза Н1, которая будет приниматься, если отклоняется Н0- альтернативная.

18. Вероятность совершить ошибку 1-го рода принято обозначать буквой а и ее называют уровнем значимости.

Статистический критерий- СВ К, котторая служит для проверки нулевой гипотезы.

19. Важнейшей целью статистики является изучение объективно существующих связей между явлениями. В ходе статистического исследования этих связей необходимо выявить причинно-следственные зависимости между показателями, т.е. насколько изменение одних показателей зависит от изменения других показателей.

Существует две категории зависимостей (функциональная и корреляционная) и две группы признаков (признаки-факторы и результативные признаки). В отличие от функциональной связи, где существует полное соответствие между факторными и результативными признаками, в корреляционной связи отсутствует это полное соответствие.

Корреляционная связь — это связь, где воздействие отдельных факторов проявляется только как тенденция (в среднем) при массовом наблюдении фактических данных. Примерами корреляционной зависимости могут быть зависимости между размерами активов банка и суммой прибыли банка, ростом производительности труда и стажем работы сотрудников.

20. Суть регрессионного анализа сводится к установлению уравнения регрессии, т.е. вида кривой между случайными величинами (аргументами x и функцией y ), оценке тесноты связей между ними, достоверности и адекватности результатов измерений.

Дата добавления: 2016-07-29; просмотров: 687 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник

В заметке рассмотрены основные свойства математического ожидания и дисперсии с доказательствами.

В статье приняты следующие обозначения:

Читайте также:  Каким свойством обладает брусника

(a ) — неслучайная величина (константа)

(X, Y ) — случайные величины

(M[X]) — Математическое ожидание X

(D[X]) — Дисперсия X

Математическое ожидание

Математическое ожидание неслучайной величины

[ M[a] = a]

Доказательство:

Доказать, это достаточно очевидное, свойство можно, рассматривая неслучайную величину как частный вид случайной, при одном возможном значении с вероятностью единица; тогда по общей формуле для математического ожидания:

[ M[a] = a * 1 = a ]

Математическое ожидание линейно

[ M[aX + bY] = aM[X] + bM[Y]]

Доказательство вынесения неслучайной величины за знак математического ожидания

[ M[aX] = a M[X] ]

Доказательство прямо следует из линейности суммы и интеграла.

Следует специально отметить, что теорема сложения математических ожиданий справедлива для любых случайных величин — как зависимых, так и независимых.

Теорема сложения математических ожиданий обобщается на произвольное число слагаемых.

Для дискретных величин

[ M[aX] = sum_{i} a x_i p _i  = a  sum_{i} x_i p_i = a M[X]]

Для непрерывных величин

[ M[aX] = intop_{ infty }^{infty} a  x f(x) dx  = a  intop_{ infty }^{infty} x f(x) dx = a M[X]]

Доказательство математического ожидания суммы случайных величин

а) Пусть ((X, Y) ) — система дискретных случайных величин. Применим к сумме случайных величин общую формулу для математического ожидания функции двух аргументов:

[ M[X + Y] = sum_{i} sum_{j} (x_i + y_i) p_{ij}  \
= sum_{i}sum_{j} x_i p_{ij} + sum_{i}sum_{j} y_i p_{ij} \
= sum_{i} x_isum_{j} p_{ij} + sum_{j} y_jsum_{i} p_{ij} ]

Но (sum_{j} p_{ij} ) представляет собой не что иное, как полную вероятность того, что величина (X ) примет значение (x_i ):

[ sum_{j} p_{ij} = P(X = x_i) = p_i ]

следовательно,

[  sum_{i} x_isum_{j} p_{ij} = sum_{i} x_i p_i = M[X] ]

Аналогично докажем, что

[ sum_{j} y_jsum_{i} p_{ij} = M[Y] ]

б) Пусть ((X, Y) ) — система непрерывных случайных величин.

[ M[X + Y] = int intop_{ infty }^{infty } (x+y) f(x,y) dx dy = int intop_{ infty }^{infty } x f(x,y) dx dy + int intop_{ infty }^{infty } y f(x,y) dx dy ]

Преобразуем первый из интегралов:

[ int intop_{ infty }^{infty } x f(x,y) dx dy = intop_{ infty }^{infty } x (intop_{ infty }^{infty } f(x,y)dy) dx = intop_{ infty }^{infty } x f_1(x) dx = M[X] ]

аналогично второй:

[ int intop_{ infty }^{infty } y f(x,y) dx dy = M[X] ]

Математическое ожидание произведения

Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

[ M[XY] = M[X] M[Y] + cov(XY)]

для независимых величин:

[ M[XY] = M[X] M[Y] ]

Доказательство

Будем исходить из определения корреляционного момента:

[ cov(X,Y) = M[ stackrel{ circ }{X} stackrel{ circ }{Y} ] = M[(X- M[X])(Y-M[Y])] ]

Преобразуем это выражение, пользуясь свойствами математического ожидания:

[ cov(X,Y) = M[(X- M[X])(Y-M[Y])] = \
M[XY] — M[X] M[Y] — M[Y]M[X] + M[X]M[Y] = \
M[X Y] — M[X] M[Y] ]

что, очевидно, равносильно доказываемому соотношению

Дисперсия

Дисперсия случайной величины есть характеристика рассеивания, разбросанности значений случайной величины около её математического ожидания.

[ D[X] = M[X^2] — (M[X])^2 ]

Дисперсия не зависит от знака

[ D[-X] = D[X] ]

Дисперсия суммы случайной и постоянной величин

[ D[X+b] = D[X] ]

Дисперсия неслучайной величины

[ D[a] = 0 ]

Доказательство:

По определению дисперсии:

[ D[a] = M[stackrel{ circ }{a^2}]  = M[a — M[a]^2 ] = M[(a-a)^2] = M[0] = 0]

Дисперсия суммы случайных величин

[ D[X+Y] = D[X] + D[Y] + 2*cov(X,Y) ]

Доказательство:

Обозначим (XY = Z ).

По теореме сложения математических ожиданий:

[ M[Z] = M[X] + M[Y] ]

Перейдем от случайных величин (X, Y, Z ).  к соответствующим центрированным величинам (stackrel{ circ }{X}, stackrel{ circ }{Y}, stackrel{ circ }{Z} ), имеем:

[  stackrel{ circ }{Z} =  stackrel{ circ }{X} + stackrel{ circ }{Y} ]

По определению дисперсии

[ D[X+Y] = D[Z] = M[stackrel{ circ }{Z}^2] = M[stackrel{ circ }{X}^2] + 2M[stackrel{ circ }{X} stackrel{ circ }{Y}] + M[stackrel{ circ }{Y}^2] \
= D[X] + 2 cov(X,Y) + D[Y] ]

Дисперсия произведения неслучайной величины на случайную

[ D[aX] = a^2 D[X]]

Доказательство:

По определению дисперсии

[ D[aX] = M[(a X — M[a X])^2] = M[(a X — a M[X])^2] = a^2 M[(X — M[X])^2] = c^2 D[X] ]

Дисперсия произведения независимых величин

[ D[XY] = D[X] D[Y] + (M[X])^2 D[Y] +  (M[Y])^2 D[X]]

Доказательство:

Обозначим (XY = Z ). По определению дисперсии

[ D[XY] = D[Z] = M[Z^2] = M[Z-M[Z]]^2]

Так как величины (XY) независимы, то (M[Z] = M[X]M[Y]) и

[ D[XY] = M[(XY — M[X]M[Y])^2] \

= M[X^2 Y^2] — 2M[X]M[Y]M[XY]+ M[X]^2M[Y]^2 ]

При независимых  (XY) величины  (X^2Y^2) также независимы, следовательно:

[ M[X^2 Y^2]  = M[X^2] M[Y^2], M[XY] = M[X]M[Y]]

и

[ D[XY] = M[X^2]M[Y^2] — M[X]^2M[Y]^2 ]

но (M[X]^2) есть не что иное, как второй начальный момент величины (X) , и, следовательно, выражается через дисперсию:

[ M[X^2] = D[X]+M[X]^2 ]

аналогично

[ M[Y^2] = D[Y]+M[Y]^2 ]

Подставляя эти выражения и приводя подобные члены, приходим к формуле

[ D[XY] = D[X] D[Y] + (M[X])^2 D[Y] +  (M[Y])^2 D[X]]

Источник

Математическое ожидание случайной величины обладает следующими свойствами:

1. Математическое ожидание постоянной величины равно самой постоянной, т.е. М(С)=С.

Доказательство. Постоянную величину можно рассматривать как дискретную с одним значением х1=С и вероятностью этого значения р1=1. По формуле (6.1) получим М(С)=С∙1=С.

Читайте также:  Какие полезные свойства зеленого лука

Свойство доказано.

2. Математическое ожидание алгебраической суммы двух случайных величин равно алгебраической сумме их математических ожиданий, т.е. М(Х±Y) = М(Х) ± М (Y).

Доказательство. Доказательство проведем только для дискретных случайных величин. Пусть случайные величины Х и Y заданы своими рядами распределения:

Х x1 x2 xn и Y y1 y2 ym
P p1 p2 pn Q q1 q2 qm

Возможными значениями суммы Х±Y являются числа хi ± уj. Обозначим через pij вероятность того, что величина X примет значение хi, а величина Y примет значение уj. По определению математического ожидания имеем

.

Нетрудно понять, что по теореме о полной вероятности имеют место равенства . Следовательно,

.

Свойство доказано.

Следствие. Математическое ожидание алгебраической суммы конечного числа случайных величин равно алгебраической сумме математических ожиданий этих величин.

Доказательство данного следствия можно провести методом математической индукции.

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий, т.е. если Х и Y – независимые случайные величины, то М(Х·Y) = М(Х) · М (Y).

Доказательство. Доказательство проведем также только для дискретных случайных величин. Пусть случайные величины Х и Y заданы, как и при доказательстве второго свойства, своими рядами распределения. Очевидно, что с учетом независимости случайных величин, ряд распределения случайной величины Z=X·Y имеет вид

XY x1y1 x1y2 x1ym x2y1 x2y2 x2ym xny1 xny1 xnym
P p1q1 p1q2 p1qm p2q1 p2q2 p2qm pnq1 pnq2 pnqm

Согласно определению математического ожидания, получим

.

Свойство доказано.

Следствие. Математическое ожидание произведения конечного числа независимых случайных величин равно произведению математических ожиданий этих величин.

Доказательство данного следствия можно провести методом математической индукции.

4. Постоянный множитель можно выносить за знак математического ожидания, т.е. М(С·Х) =С · М(Х).

Доказательство. Применим третье и первое свойства, получим М(С·Х)=М(СМ(Х) =С · М(Х).

Свойство доказано.

Несмотря на то, что доказательство свойств приведено для дискретных случайных величин, однако они все справедливы и для непрерывных случайных величин.

Пример 6.5. Найти математическое ожидание числа появлений события А в n независимых испытаниях, если вероятность появления А в каждом испытании постоянна и равна р.

Решение. Пусть случайная величина Х – число появлений события А в n испытаниях. Введем в рассмотрение еще n случайных величин:

Х1 – число появлений события А в первом испытании;

Х2 – число появлений события А во втором испытании;

…………………………………………………………….

Хn – число появлений события А в n – ом испытании.

Очевидно, что Х=Х1+Х2+…+Хn. Найдем, используя второе свойство, математическое ожидание, получим

М(Х)= М(Х1+Х2+…+Хn)=М(Х1)+М(Х2)+…+М(Хn)=р+р+…+р=n·р.

В последнем равенстве использовались результаты примера 5.2. ■

Математическое ожидание – это не единственная характеристика положения случайной величины. К таким характеристикам относятся также мода и медиана.

Модой случайной величины называется ее наиболее вероятное значение.

Очевидно, что для дискретной случайной величины модой является то значение хi, для которого вероятность рi является самой большой. Для непрерывной случайной величины модой является то значение х, при котором функция плотности f(x)достигает максимального значения.

Если вероятность или плотность вероятности достигают максимума не в одной, а в нескольких точках, распределение называется полимодальным(многомодальным); если в одной точке, то унимодальным(одномодальным).

Медианой случайной величины Х называется такое значение хт, для которого одинаково вероятными оказываются следующие события: «Х< хт» и «Х> хт«.

Как правило, медиана применяется, в основном, для непрерывных случайных величин. Если хт – медиана некоторой непрерывной случайной величины, то для нее выполнены равенства:

Р(Х< хт) = Р(Х> хт) = .

Геометрически медиана – это точка на оси абсцисс, для которой площади под графиком функции плотности, лежащие справа и слева от нее равны и равны .

Кроме характеристик положения распределение случайной величины могут определять характеристики разброса.

Дата добавления: 2017-03-12; просмотров: 2161 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник