Какими химическими свойствами обладает атом галлия
Общие сведения и методы получения
Галлий (Ga) — металл серебристо-белого цвета с синеватым оттенком. Существование галлия было предсказано в 1871 г. Д И. Менделеевым, который назвал его экаалюминием. Открыл галлий в 1875 г. французский химик Лекок де Буабодран спектральным анализом цинковой об-маикн. Элемент назван галлием в честь Франции.
Содержание галлия в земной коре — 1,5*10-3 % (по массе). Галлий — рассеянный элемент, присутствует в виде изоморфной примеси во миогнх минералах алюминия и железа, а также в цинковой обманке. Известен один минерал галлия — галлит (CuGaS2), обнаруженный в 1958 г.; он встречается вместе с германитом в малых количествах.
Основной источник получения галлия в настоящее время — растворы глиноземного производства при переработке боксита и нефелина; кроме того, возможно извлечение галлия из отходов электролиза алюминия, из угольной пены, из сульфидных полиметаллических руд и углей при их переработке.
Концентрация галлия в алюминиевых растворах после разложения в процессе Байера 100—150 мг/л, по способу спекания 50—65 мг/л.
Этими двумя способами галлий отделяют от большей части алюминия карбонизацией, концентрируя галлий в виде Ga(OH)3 в последней фракции осадка. Обогащенный раствор обрабатывают известью, получая галлиевый концентрат, содержание Ga203 в Котором достигает ~1%. Возможно также выделение галлия электролизом на ртутном катоде из оборотных растворов процесса Байера
Технический галлий получают электролизом или цементацией. Электролит— раствор галлиевого концентрата в едком натре Температура электролиза 50—70°С при расходе энергии 100 Вт-ч/г Ga. Цементирующим металлом служит алюминий.
Получаемый электрохимическими методами галлий содержит значительное количество примесей, зависящее от состава исходного электролита. Черновой галлий подвергают очистке несколькими способами:
1) промывка горячей водой и фильтрация через пористые фильтры (галлий чистотой 99,9 %);
2) промывка кислотами (содержание примесей снижается до 0,01 %);
3) вакуумная обработка (основана на различии в давлении паров при высокой температуре между галлием и ряДом примесей);
4) электролитическое рафинирование, т. е. растворение чернового галлия в щелочном электролите в катодное осаждение чистого металла’
5) физические методы очистки (направленная кристаллизация, зонная плавка).
Сочетание рассмотренных методов очистки чернового галлия, позволяет получать металл чистотой 99,9996 °/о, который используют для синтеза полупроводниковых соединений.
Физические свойства
Атомные характеристики. Атомный номер 31, атомная масса 69,72 а. е. м. Природный галлий состоит из двух стабильных изотопов с массовыми числами 69 (61,2%) и 71 (38,8%).
Атомный объем 11,8*10-6 м3/моль, атомный радиус 0,138 нм, ионный радиус (Ga3+) 0,062 нм, конфигурация внешней электронной оболочки галлия 4s24p’. Потенциалы ионизации атома / (эВ): 6,00, 20,51, 30,70. Число спектральных линий нейтрального атома 55. Электроотрицательность 1,6
Химические свойства
Нормальный электродный потенциал реакции Ga—3e*±Ga3+ q>0= =—0,52 В. В соединениях галлий проявляет степени окисления +1, +2 и +3. Электрохимический эквивалент оавен 0,24083 мг/Кл.
На воздухе на поверхности металлического галлия обычно образуется тонкая пленка оксида, так что дальнейшее окисление незначительно; заметнее процесс окисления идет при 500 °С; при более высоких температурах металл сгорает до оксида. Галлий легко растворяется в азотной и серной кислотах, а реагируя с щелочами, образует амфотерный гидроксид. По отношению к воде галлий весьма устойчив, не разлагая ее даже при 100 СС. Галлий взаимодействует с галогенами (кроме иода), даже на холоду образуя галогениды; с иодом галлий взаимодействует только при нагревании.
Оксид галлия (III) Ga203 получается при обезвоживании гидроксида. Это вещество белого цвета с температурой плавления 1740 «С и плотностью 6,480 Мг/м3. Оксид галлия (I) Ga20 получается при нагревании металла в атмосфере оксида углерода или в результате восстановления оксида галлия (III). Это вещество с плотностью 4,770 Мг/м3 сублимирует выше 650 °С. При растворении гидроксида галлия в щелочах образуются галлаты Me[Ga(OH)4], Галла ты щелочных металлов хорошо растворимы, щелочноземельных — ограниченно растворимы. Известны многочисленные галлийоргаиические соединения, которые получаются действием соответствующих ртутьорганических соединений на галлий. Соли галлия, полученные от сильных кислот, растворимы в воде и склонны (в водных растворах) к гидролизу.
Жидкий галлий — очень агрессивный металл, при повышенной температуре легко взаимодействует со всеми металлами. До температуры 600 «С галлий не взаимодействует только с вольфрамом, танталом, рением и бериллием.
Металлы III и IV групп, а также висмут образуют с галлием диаграммы состояния эвтектического типа или с ограниченной растворимостью в жидком состоянии (кадмий, ртуть, таллий, висмут и свинец)-Щелочные металлы дают с галлием высокотемпературные соединения. Для галлия характерна ограниченная растворимость в твердом состоянии со многими металлами.
Области применения
Широкое применение галлия началось лишь с 50-х годов нашего века, после того как было установлено, что его интерметаллические соединения обладают полупроводниковыми свойствами. Соединения типа AIUBV(GaAs, GaP, GaSb) сохраняют полупроводниковые свойства даже при повышенных температурах. Так, приборы, в которых используется GaAs, работают при температуре до 450 °С, а приборы с GaP — до 1000 °С. Галлий — перспективный материал для использования в солнечных батареях: солнечные элементы из GaAs стойки к космической радиации. Арсенид галлия применяют также в качестве активной лазерной среды.
Галлий используют как акцепторную добавку для легирования германия.
Легкоплавкие сплавы, которые галлий образует с рядом металлов (Sn, Pb, In, Т1 и др.), применяют в терморегуляторах, спринклериых устройствах, в качестве жидкости для высокотемпературных термометров и манометров. Сплавы на основе галлия используют для «холодной пайки» различных материалов
В атомной технике галлий применяют в жидкометаллических радиационных контурах как компонент рабочего низкотемпературного сплава.
Благодаря хорошей отражательной способности галлий широко используется дли изготовления зеркал; в люминесцентных составах для ламп соединения галлия играют роль активаторов. Добавка галлия в
стеклянную массу позволяет получать стекла с высоким коэффициентом преломления. Имеются данные об использовании изотопа галлия (72Ga) для диагностики заболеваний.
Галлий — 31 элемент таблицы Менделеева. Д. И. Менделеев в соответствии с открытым им в марте 1869 года периодическим законом предсказал сущетсвование этого элемента, назвав его эка-алюминием. Поль Эмиль Лекок де Буабодран назвал его в честь своей родины Франции, по её латинскому названию — Галлия (Gallia). Примечательно так же, что символ Франции — петух (по-французски — le coq), так что в названии элемента его первооткрыватель неявно увековечил и свою фамилию. Кроме того на латыни «петух» — gallus. Открытие галлия — первое подтверждение справедливости выявленных Д. И. Менделеевым закономерностей.
Не играет биологической роли.
Контакт кожи с галлием приводит к тому, что сверхмалые дисперсные частицы металла остаются на ней. Внешне это выглядит как серое пятно. Имелись сообщения о развитии дерматитов при контакте с галлием.
О токсичности галлия мало данных. Из-за низкой температуры плавления слитки галлия рекомендуется транспортировать в пакетах из полиэтилена, который плохо смачивается жидким галлием.
| |||||
Внешний вид простого вещества | |||||
---|---|---|---|---|---|
Мягкий хрупкий металл серебристо-белого цвета с синеватым оттенком. | |||||
Свойства атома | |||||
Название, символ, номер | Галлий / Gallium (Ga), 31 | ||||
Атомная масса (молярная масса) | 69,723(1) а. е. м. (г/моль) | ||||
Электронная конфигурация | [Ar] 3d10 4s2 4p1 | ||||
Радиус атома | 141 пм | ||||
Химические свойства | |||||
Ковалентный радиус | 126 пм | ||||
Радиус иона | (+3e) 62 (+1e) 81 пм | ||||
Электроотрицательность | 1,81 (шкала Полинга) | ||||
Электродный потенциал | |||||
Степени окисления | 3 | ||||
Энергия ионизации (первый электрон) | 578,7 (6,00) кДж/моль (эВ) | ||||
Термодинамические свойства простого вещества | |||||
Плотность (при н. у.) | 5,91 г/см³ | ||||
Температура плавления | 302,93 К (29,8 °C) | ||||
Температура кипения | 2 477 K | ||||
Уд. теплота плавления | 5,59 кДж/моль | ||||
Уд. теплота испарения | 270,3 кДж/моль | ||||
Молярная теплоёмкость | 26,07 Дж/(K·моль) | ||||
Молярный объём | 11,8 см³/моль | ||||
Кристаллическая решётка простого вещества | |||||
Структура решётки | орторомбическая | ||||
Параметры решётки | a=4,519 b=7,658 c=4,526 Å | ||||
Температура Дебая | 240 K | ||||
Прочие характеристики | |||||
Теплопроводность | (300 K) 28,1 Вт/(м·К) |
Нахождение в природе
Среднее содержание галлия в земной коре 19 г/т. Галлий типичный рассеянный элемент, обладающий двойной геохимической природой. Ввиду близости его кристаллохимических свойств с главными породообразующими элементами (Al, Fe и др.) и широкой возможности изоморфизма с ними, галлий не образует больших скоплений, несмотря на значительную величину кларка. Выделяются следующие минералы с повышенным содержанием галлия: сфалерит (0 — 0,1 %), магнетит (0 — 0,003 %), касситерит (0 — 0,005 %), гранат (0 — 0,003 %), берилл (0 — 0,003 %), турмалин (0 — 0,01 %), сподумен (0,001 — 0,07 %), флогопит (0,001 — 0,005 %), биотит (0 — 0,1 %), мусковит (0 — 0,01 %), серицит (0 — 0,005 %), лепидолит (0,001 — 0,03 %), хлорит (0 — 0,001 %), полевые шпаты (0 — 0,01 %), нефелин (0 — 0,1 %), гекманит (0,01 — 0,07 %), натролит (0 — 0,1 %). Концентрация галлия в морской воде 3·10−5 мг/л.
Месторождения
Месторождения галлия известны в Юго-Западной Африке, России, странах СНГ
Получение галлия
Для галлия известен редкий минерал галлит CuGaS2 (смешанный сульфид меди и галлия). Его следы постоянно встречаются со сфалеритом, халькопиритом и германитом. Значительно бо́льшие его количества (до 1,5 %) были обнаружены в золе некоторых каменных углей. Однако основным источником получения галлия служат растворы глинозёмного производства при переработке боксита (обычно содержащие незначительные его примеси (до 0,1 %)) и нефелина. Галлий также можно получить с помощью переработки полиметаллических руд, угля. Извлекается он электролизом щёлочных жидкостей, являющихся промежуточным продуктом переработки природных бокситов на технический глинозём. Концентрация галлия в щелочном алюминатном растворе после разложения в процессе Байера: 100—150 мг/л, по способу спекания: 50—65 мг/л. По этим способам галлий отделяют от большей части алюминия карбонизацией, концентрируя в последней фракции осадка. Затем обогащённый осадок обрабатывают известью, галлий переходит в раствор, откуда черновой металл выделяется электролизом. Загрязнённый галлий промывают водой, после этого фильтруют через пористые пластины и нагревают в вакууме для того, чтобы удалить летучие примеси. Для получения галлия высокой чистоты используют химический (реакции между солями), электрохимический (электролиз растворов) и физический (разложение) методы. В очень чистом виде (99,999 %) он был получен путём электролитического рафинирования, а также восстановлением водородом тщательно очищенного GaCl3.
Физические свойства
Кристаллический галлий имеет несколько полиморфных модификаций, однако термодинамически устойчивой является только одна (I), имеющая орторомбическую (псевдотетрагональную) решётку с параметрами а = 4,5186 Å, b = 7,6570 Å, c = 4,5256 Å. Другие модификации галлия (β, γ, δ, ε) кристаллизуются из переохлаждённого диспергированного металла и являются нестабильными. При повышенном давлении наблюдались ещё две полиморфные структуры галлия II и III, имеющие, соответственно, кубическую и тетрагональную решётки.
Плотность галлия в твёрдом состоянии при температуре 20 °C равна 5,904 г/см³, жидкий галлий (tпл.=29,8 °C) имеет плотность 6,095 г/см³, то есть при затвердевании объём галлия увеличивается. Кипит галлий при 2230 °C. Одной из особенностей галлия является широкий температурный интервал существования жидкого состояния (от 30 и до 2230 °C), при этом он имеет низкое давление пара при температурах до 1100—1200 °C. Удельная теплоёмкость твёрдого галлия в температурном интервале T=0—24 °C равна 376,7 Дж/кг·К (0,09 кал/г·град.), в жидком состоянии при T=29—100 °C — 410 Дж/кг·К (0,098 кал/г·град).
Удельное электрическое сопротивление в твёрдом и жидком состоянии равны, соответственно, 53,4·10−6 ом·см (при T=0 °C) и 27,2·10−6 ом·см (при T=30 °C). Вязкость жидкого галлия при разных температурах равна 1,612 пуаз при T=98 °C и 0,578 пуаз при T=1100 °C. Поверхностное натяжение, измеренное при 30 °C в атмосфере водорода равно 0,735 н/м. Коэффициенты отражения для длин волн 4360 Å и 5890 Å составляют 75,6 % и 71,3 %, соответственно.
Природный галлий состоит из двух изотопов 69Ga (61,2 %) и 71Ga (38,8 %). Поперечное сечение захвата тепловых нейтронов равно для них 2,1·10−28 м² и 5,1·10−28 м², соответственно.
Применение галлия
Арсенид галлия GaAs — перспективный материал для полупроводниковой электроники.
Нитрид галлия используется в создании полупроводниковых лазеров и светодиодов синего и ультрафиолетового диапазона. Нитрид галлия обладает превосходными химическими и механическими свойствами, типичными для всех нитридных соединений.
Изотоп галлий-71 является важнейшим материалом для регистрации нейтрино и в связи с этим перед техникой стоит весьма актуальная задача выделения этого изотопа из природной смеси в целях повышения чувствительности детекторов нейтрино. Так как содержание 71Ga составляет в природной смеси изотопов около 39,9 %, то выделение чистого изотопа и использование его в качестве детектора нейтрино способно повысить чувствительность регистрации в 2,5 раза.
Галлий дорог, в 2005 году на мировом рынке тонна галлия стоила 1,2 млн долларов США, и в связи с высокой ценой и в то же время с большой потребностью в этом металле очень важно наладить его полное извлечение при алюминиевом производстве и переработке каменных углей на жидкое топливо.
Галлий имеет ряд сплавов, жидких при комнатной температуре, и один из его сплавов имеет температуру плавления 3 °C (эвтектика In-Ga-Sn), но с другой стороны галлий (сплавы в меньшей степени) весьма агрессивен к большинству конструкционных материалов (растрескивание и размывание сплавов при высокой температуре). Например, по отношению к алюминию и его сплавам галлий является мощным понизителем прочности, (см. адсорбционное понижение прочности, эффект Ребиндера). Это свойство галлия было ярчайше продемонстрировано и детально изучено П. А. Ребиндером и Е. Д. Щукиным при контакте алюминия с галлием или его эвтектическими сплавами (жидкометаллическое охрупчивание). Кроме того, смачивание алюминия пленкой жидкого галлия вызывает его стремительное окисление, подобно тому, как это происходит с алюминием, амальгамированным ртутью. Галлий растворяет при температуре плавления около 1 % алюминия, который достигает внешней поверхности плёнки, где мгновенно окисляется воздухом. Оксидная плёнка на жидкой поверхности неустойчива и не защищает от дальнейшего окисления. Вследствие этого жидкий галлиевый сплав в качестве термоинтерфейса между тепловыделяющим компонентом (например, центральным процессором компьютера) и алюминиевым радиатором не используют.
Как теплоноситель галлий малоэффективен, а зачастую просто неприемлем.
Галлий — превосходный смазочный материал. На основе галлия и никеля, галлия и скандия созданы очень важные в практическом плане металлические клеи.
Металлическим галлием также заполняют кварцевые термометры (вместо ртути) для измерения высоких температур. Это связано с тем, что галлий имеет значительно более высокую температуру кипения по сравнению со ртутью.
Оксид галлия входит в состав ряда стратегически важных лазерных материалов группы гранатов — ГСГГ, ИАГ, ИСГГ и др.
Биологическая роль и особенности обращения галлия
Не играет биологической роли.
Контакт кожи с галлием приводит к тому, что сверхмалые дисперсные частицы металла остаются на ней. Внешне это выглядит как серое пятно.
Клиническая картина острого отравления: кратковременное возбуждение, затем заторможенность, нарушение координации движений, адинамия, арефлексия, замедление дыхания, нарушение его ритма. На этом фоне наблюдается паралич нижних конечностей, далее — кома, смерть. Ингаляционное воздействие галлий-содержащего аэрозоля в концентрации 50 мг/м³ вызывает у человека поражение почек, равно как и внутривенное введение 10-25 мг/кг солей галлия. Отмечается протеинурия, азотемия, нарушение клиренса мочевины.
Из-за низкой температуры плавления слитки галлия рекомендуется транспортировать в пакетах из полиэтилена, который плохо смачивается жидким галлием.
Таблица
^
=>>
v
Галлий «тающий»
и «замерзающий»
История открытия:
Существование галлия («экаалюминия») и основные его свойства были предсказаны в 1870 году Д. И. Менделеевым. Элемент был открыт спектральным анализом в пиренейской цинковой обманке и выделен в 1875 году французским химиком П. Э. Лекоком де Буабодраном; назван в честь Франции (лат. Gallia). Точное совпадение свойств галлия с предсказанными было первым триумфом периодической системы.
Нахождение в природе, получение:
Состоит из двух стабильных изотопов с массовыми числами 69 (60,5%) и 71 (39,5%). Среднее содержание галлия в земной коре относительно высокое, 1,5·10-3% по массе, что равно содержанию свинца и молибдена. Галлий — типичный рассеянный элемент. Единственный минерал галлия — галлит CuGaS2 очень редок. Геохимия галлия тесно связана с геохимией алюминия, что обусловлено сходством их физико-химических свойств. Основная часть галлия в литосфере заключена в минералах алюминия. Содержание галлия в бокситах и нефелинах колеблется от 0,002 до 0,01%. Повышенные концентрации галлия наблюдаются также в сфалеритах (0,01-0,02%), в каменных углях (вместе с германием), а также в некоторых железных рудах. Значительными запасами галлия обладают Китай, США, Россия, Украина, Казахстан.
Основной источник получения галлия — алюминиевое производство. При переработке бокситов галлий концентрируется в маточных растворах после выделения Аl(ОН)3. Из таких растворов галлий выделяют электролизом на ртутном катоде. Из щелочного раствора, полученного после обработки амальгамы водой, осаждают Ga(OH)3, которую растворяют в щелочи и выделяют галлий электролизом.
Полученный электролизом щелочного раствора жидкий галлий, промытый водой и кислотами (НСl, HNO3), содержит 99,9-99,95% Ga. Более чистый металл получают плавкой в вакууме, зонной плавкой или вытягиванием монокристалла из расплава.
Физические свойства:
Металл серебристо-белого цвета, мягкий, тяжёлый. Отличительная особенность галлия — большой интервал жидкого состояния (tпл 29,8°C, tкип 2230°С) и низкое давление пара при температурах до 1100-1200°С. Плотность твердого металла 5,904 г/см3 (20°С), ниже чем жидкого, поэтому кристаллизующийся галлий, подобно льду, может разорвать стеклянную ампулу. Удельная теплоемкость твердого галлия 376,7 дж/(кг·К).
Химические свойства:
На воздухе при обычной температуре галлий стоек. Выше 260°С в сухом кислороде наблюдается медленное окисление (пленка оксида защищает металл). Хлор и бром реагируют с галлием на холоду, йод — при нагревании. Расплавленный галлий при температурах выше 300° С взаимодействует со всеми конструкционными металлами и сплавами (кроме W), образуя интерметаллические соединения.
При нагревании под давлением галлий реагирует с водой:
2Ga + 4H2O = 2GaOOH + 3H2
С минеральными кислотами Ga медленно реагирует с выделением водорода:
2Ga + 6HCl = 2GaCl3 + 3H2
При этом в серной и соляной кислотах галлий растворяется медленно, в плавиковой — быстро, в азотной кислоте на холоду галлий устойчив.
В горячих растворах щелочей галлий медленно растворяется.
2Ga + 6H2O + 2NaOH = 2Na[Ga(OH)4] + 3H2
Важнейшие соединения:
Оксид галлия, Ga2O3 — белый или жёлтый порошок, tпл 1795°C. Получают нагреванием металлического галлия на воздухе при 260 °C или в атмосфере кислорода, или прокаливанием нитрата или сульфата галлия. Существует в виде двух модификаций. Медленно реагирует с кислотами и щелочами в растворе, проявляя амфотерные свойства:
Гидроксид галлия, Ga(OH)3 — выпадает в виде желеобразного осадка при обработке растворов солей трёхвалентного галлия гидроксидами и карбонатами щелочных металлов (pH 9,7). Можно получить гидролизом солей трёхвалентного галлия.
Проявляет амфотерные, с некоторым преобладанием кислотных, свойства, при растворении в щелочах образует галлаты (например, Na[Ga(OH)4]). Растворяется в концентрированном аммиаке и концентрированном растворе карбоната аммония, при кипячении осаждается. Нагреванием гидроксид галлия можно перевести в GaOOH, затем в Ga2O3*H2O, и, наконец, в Ga2O3.
Соли галлия. GaCl3 — бесцветные гигроскопичные кристаллы. tпл 78 °C, tкип 215 °C
Ga2(SO4)3*18H2O — бесцветное, хорошо растворимое в воде вещество, образует двойные соли типа квасцов. Ga(NO3)3*8H2O — бесцветные, растворимые в воде и этаноле кристаллы
Сульфид галлия, Ga2S3 — жёлтые кристаллы или белый аморфный порошок с tпл 1250°C , разлагается водой.
Гидриды галлия получают исходя из галлийорганических соединений. Подобны гидридам бора, алюминия: Ga2H6 — дигаллан, летучая жидкость, tпл − 21,4 °C, tкип 139 °C. [GaH3]x — полигаллан, белое твердое вещество. Гидриды неустойчивы, разлагаются с выделением водорода.
Галанат лития, Li[GaH4] получают в эфирном растворе реакцией 4LiH + GaCl3 = Li[GaH4] + 3LiCl
Бесцветные кристаллы, неустойчив, водой гидролизуется с выделением водорода.
Применение:
Галлий можно использовать для изготовления оптических зеркал, отличающихся высокой отражательной способностью.
Галлий — превосходный смазочный материал. На основе галлия и никеля, галлия и скандия созданы практически очень важные металлические клеи.
Арсенид галлия GaAs, а также GaP, GaSb, обладающие полупроводниковыми свойствами — перспективные материалы для полупроводниковой электроники. Они могут применяться в высокотемпературных выпрямителях и транзисторах, солнечных батареях а также в приемниках инфракрасного излучения.
Оксид галлия входит в состав важных лазерных материалов группы гранатов — ГСГГ, ИАГ, ИСГГ и др.
Галлий дорог, в 2005 году на мировом рынке тонна галлия стоила 1,2 млн долларов США, и в связи с высокой ценой и в то же время с большой потребностью в этом металле очень важно наладить его полное извлечение при алюминиевом производстве и переработке каменных углей на жидкое топливо.
Иванов Алексей
ХФ ТюмГУ, 561 группа.
Источники: Википедия: Галлий
Сайт «Справочник химика»: Галлий