Каким свойством обладают высоты треугольника

Каким свойством обладают высоты треугольника thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 апреля 2020;
проверки требуют 9 правок.

Высота в треугольниках различного типа

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону (точнее, на прямую, содержащую противоположную сторону).
В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника у тупоугольного треугольника.

Свойства[править | править код]

Свойства ортоцентра[править | править код]

  • Все 3 высоты треугольника пересекаются в 1 точке, называемой ортоцентром. Доказательства ниже.
  • Ортоцентр изогонально сопряжен центру описанной окружности.
  • Ортоцентр лежит на одной прямой с центроидом, центром описанной окружности и центром окружности девяти точек (см. прямая Эйлера).
  • Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник.
  • Центр описанной около треугольника окружности служит ортоцентром треугольника с вершинами в серединах сторон данного треугольника. Последний треугольник называют дополнительным треугольником по отношению к первому треугольнику.
  • Последнее свойство можно сформулировать так: Центр описанной около треугольника окружности служит ортоцентром дополнительного треугольника.
  • Точки, симметричные ортоцентру треугольника относительно его сторон, лежат на описанной окружности.
  • Точки, симметричные ортоцентру треугольника относительно середин сторон, также лежат на описанной окружности и совпадают с точками, диаметрально противоположными соответствующим вершинам.
  • Если О — центр описанной окружности ΔABC, то ,
  • Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
  • Любой отрезок, проведенный из ортоцентра до пересечения с описанной окружностью всегда делится окружностью Эйлера пополам. Ортоцентр есть центр гомотетии этих двух окружностей.
  • Теорема Гамильтона. Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих ту же самую окружность Эйлера (окружность девяти точек), что и исходный остроугольный треугольник.
  • Следствия теоремы Гамильтона:

    • Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника Гамильтона, имеющих равные радиусы описанных окружностей.
    • Радиусы описанных окружностей трёх треугольников Гамильтона равны радиусу окружности, описанной около исходного остроугольного треугольника.
  • В остроугольном треугольнике ортоцентр лежит внутри треугольника; в тупоугольном — вне треугольника; в прямоугольном — в вершине прямого угла.

Свойства высот равнобедренного треугольника[править | править код]

  • Если в треугольнике две высоты равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса), и третья высота одновременно является медианой и биссектрисой того угла, из которого она выходит.
  • Верно и обратное: в равнобедренном треугольнике две высоты равны, а третья высота одновременно является медианой и биссектрисой.
  • У равностороннего треугольника все три высоты равны.

Свойства оснований высот треугольника[править | править код]

  • Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.
  • Описанная около ортотреугольника окружность — окружность Эйлера. На этой окружности также лежат три середины сторон треугольника и три середины трёх отрезков, соединяющих ортоцентр с вершинами треугольника.
  • Другая формулировка последнего свойства:
    • Теорема Эйлера для окружности девяти точек. Основания трёх высот произвольного треугольника, середины трёх его сторон (основания его внутренних медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (на окружности девяти точек).
  • Теорема. В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.
  • Теорема. В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащие на двух сторонах, антипараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины третьей упомянутой стороны всегда можно провести окружность.
  • В 1860 году Шлёмильх доказал теорему: три прямые, соединяющие середины сторон треугольника с серединами его соответствующих высот, пересекаются в одной точке. В 1937 году советский математик С. И. Зетель показал, что эта теорема верна не только для высот, но и для любых других чевиан.

Другие свойства[править | править код]

  • Если треугольник разносторонний (неравносторонний), то его внутренняя биссектриса, проведённая из любой вершины, лежит между внутренними медианой и высотой, проведёнными из той же вершины.
  • Высота треугольника изогонально сопряжена диаметру (радиусу) описанной окружности, проведенному из той же самой вершины.
  • В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
  • В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Свойства минимальной из высот[править | править код]

Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:

  • Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
  • Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
  • При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
  • Минимальная высота в треугольнике всегда проходит внутри этого треугольника.
Читайте также:  Какие оксиды проявляют восстановительные свойства

Соотношения[править | править код]

где  — основание, — боковая сторона.

Теорема о высоте прямоугольного треугольника[править | править код]

Если высота в прямоугольном треугольнике длиной , проведённая из вершины прямого угла, делит гипотенузу длиной на отрезки и , соответствующие катетам и , то верны следующие равенства:

Теорема о проекциях[править | править код]

См. с. 51, ф. (1.11-4)[1].
Теорема о проекциях: . Из теоремы о проекциях следует то, что высота, опущенная, например, из вершины , делит противоположную ей сторону на две части и , считая от вершины к .

Мнемоническое стихотворение[править | править код]

Высота похожа на кота,
Который выгнул спину
И под прямым углом
Соединил вершину
И сторону хвостом.[2]

История[править | править код]

Утверждение: «Все 3 высоты треугольника пересекаются в одной точке», называемой теперь ортоцентром, в «Началах» Евклида отсутствует. Часть историков приписывает это утверждение Архимеду и называют его теоремой Архимеда[3]. Ортоцентр впервые в греческой математике использован в «Книге лемм» Архимеда, хотя явного доказательства существования ортоцентра Архимед не привёл. Тем не менее до середины девятнадцатого века, ортоцентр нередко называли архимедовой точкой[4]. Другие историки математики считают автором первого доказательства Уильяма Чеппла[en] (Miscellanea Curiosa Mathematica, 1749 год)[5].

Вариации по теме. Высоты в четырёхугольнике[править | править код]

Теорема[6]. Пусть  — вписанный четырёхугольник,  — основание перпендикуляра (высоты), опущенного из вершины на диагональ ; аналогично определяются точки . Тогда точки лежат на одной окружности.

Это утверждение — следствие леммы о шестой окружности.

Две составные части высоты: предвысота и поствысота [7][править | править код]

Три чевианы, проходящие через общую точку

  • На рис. справа в треугольнике ABC через точку O проведены 3 высоты: AD, BE и CF. Тогда точка O пересечения 3 высот разбивает каждую высоту на 2 отрезка прямых, один из них (который начинается в вершине, а заканчивается в точке пересечения O) мы назовем довысотой или предвысотой, а второй из них (который начинается в точке пересечения O, а заканчивается в точке его пересечения со стороной, противоположной вершине) мы назовем поствысотой.
  • Эти 2 термина введены по аналогии с операторами цикла с учетом их изображения на блок-схемах в информатике. Там есть понятия цикла соответственно с пред- и пост-условием в зависимости от того, стоит ли это условие перед или после тела цикла. У нас в роли тела цикла выступает точка O пересечения высот, а в роли условия – первый или второй конец отрезка, вводимого, как понятие для одной из двух частей высоты.
  • С помощью этих 2 понятий совсем просто формулируются некоторые теоремы геометрии.

Например, в любом треугольнике (в остро-, прямо-, и в тупоугольном) 3 произведения пред- и поствысоты совпадают. Для остро-и прямоугольного треугольников это утверждение легко доказываемое. Оно верно и для любого тупоугольного треугольника, что удивительно, поскольку в таком треугольнике 2 из 3 высот даже не лежат внутри самого треугольника.

  • Замечание. На этом рис. справа в треугольнике ABC чевианы не являются высотами. На следующем рис. справа в треугольнике ABC три высоты:

Высоты в треугольнике ABC

Примечания[править | править код]

  1. Корн Г.А., Корн Т.М. Справочник по математике для научных работников и инженеров. — М.: «Наука», 1974. — 832 с.
  2. Сафронова Вера Николаевна,. Урок геометрии в 7-м классе по теме: «Медиана, биссектриса, высота». Открытый урок. Издательский дом «Первое сентября». Дата обращения 19 июля 2017.
  3. ↑ Ефремов Д. Новая геометрия треугольника. Одесса, 1902. С. 9, п. 16. Высоты треугольника. Теорема Архимеда.
  4. Maureen T. Carroll, Elyn Rykken. Geometry: The Line and the Circle. Дата обращения 10 апреля 2020.
  5. ↑ Bogomolny, Alexander, A Possibly First Proof of the Concurrence of Altitudes, <https://www.cut-the-knot.org/triangle/Chapple.shtml>. Проверено 17 ноября 2019.
  6. ↑ Вокруг задачи Архимеда. Упр. 7, рис. 11, следствие, c. 5.
  7. ↑ Стариков В.Н. 10-е исследование по геометрии (§ До- (пред-)- и пост-чевианы)// Научный рецензируемый электронный журнал МГАУ «Наука и образование». 2020. № 1. 7 с.// https://opusmgau.ru/index.php/see/article/view/ (недоступная ссылка) 1604

Ссылки[править | править код]

  • Справочник: Треугольники

См. также[править | править код]

  • Ортоцентр

Источник

Определение. Треугольник — фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами.

Читайте также:  Какими магнитными свойствами обладает атом титана

Типы треугольников

По величине углов

  1. Остроугольный треугольник

    Остроугольный треугольник — все углы треугольника острые.

  2. Тупоугольный треугольник

    Тупоугольный треугольник — один из углов треугольника тупой (больше 90°).

  3. Прямоугольный треугольник

    Прямоугольный треугольник — один из углов треугольника прямой (равен 90°).

По числу равных сторон

  1. Остроугольный треугольник

    Разносторонний треугольник — все три стороны не равны.

  2. равнобедренный треугольник

    Равнобедренный треугольник — две стороны равны.

  3. правильный треугольник

    Равносторонним треугольник или правильный треугольник — все три стороны равны.

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Вершины и углы треугольника

Сумма углов треугольника равна 180°:

α + β + γ = 180°

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β, тогда a > b

если α = β, тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a2 = b2 + c2 — 2bc·cos α

b2 = a2 + c2 — 2ac·cos β

c2 = a2 + b2 — 2ab·cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Формулы сторон через медианы

a = 23√2(mb2 + mc2) — ma2

b = 23√2(ma2 + mc2) — mb2

c = 23√2(ma2 + mb2) — mc2

Медианы треугольника

Медианы треугольника

Определение. Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Свойства медиан треугольника:

  1. Медианы треугольника пересекаются в одной точке. (Точка пересечения медиан называется центроидом)

  2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

  3. Медиана треугольника делит треугольник на две равновеликие части

    S∆ABD = S∆ACD

    S∆BEA = S∆BEC

    S∆CBF = S∆CAF

  4. Треугольник делится тремя медианами на шесть равновеликих треугольников.

    S∆AOF = S∆AOE = S∆BOF = S∆BOD = S∆COD = S∆COE

  5. Из векторов, образующих медианы, можно составить треугольник.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 12√2b2+2c2-a2

mb = 12√2a2+2c2-b2

mc = 12√2a2+2b2-c2

Биссектрисы треугольника

Биссектрисы треугольника

Определение. Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.

Свойства биссектрис треугольника:

  1. Биссектрисы треугольника пересекаются в одной точке, равноудаленной от трех сторон треугольника, — центре вписанной окружности.

  2. Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

  3. Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

    Угол между lc и lc’ = 90°

  4. Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√bcp(p — a)b + c

lb = 2√acp(p — b)a + c

lc = 2√abp(p — c)a + b

где p = a + b + c2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2bc cos α2b + c

lb = 2ac cos β2a + c

lc = 2ab cos γ2a + b

Высоты треугольника

Высоты треугольника

Определение. Высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на прямую содержащую противоположную сторону.

В зависимости от типа треугольника высота может содержаться

  • внутри треугольника — для остроугольного треугольника;
  • совпадать с его стороной — для катета прямоугольного треугольника;
  • проходить вне треугольника — для острых углов тупоугольного треугольника.

Свойства высот треугольника

Высоты треугольника пересекаются в одной точке, называемой ортоцентром треугольника.

Если в треугольнике две высоты равны, то треугольник — равнобедренный.

ha:hb:hc =

1a

:

1b

:

1c

= (bc):(ac):(ab)

Формулы высот треугольника

Формулы высот треугольника через сторону и угол:

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Формулы высот треугольника через сторону и площадь:

ha = 2Sa

hb = 2Sb

hc = 2Sc

Формулы высот треугольника через две стороны и радиус описанной окружности:

ha = bc2R

hb = ac2R

hc = ab2R

Окружность вписанная в треугольник

Окружность вписанная в треугольник

Определение. Окружность называется вписанной в треугольник, если она касается всех трех его сторон.

Свойства окружности вписанной в треугольник

Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.

В любой треугольник можно вписать окружность, и только одну.

Формулы радиуса окружности вписанной в треугольник

Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру:

r = Sp

Радиус вписанной в треугольник окружности через три стороны:

r = (a + b — c)(b + c — a)(c + a — b)4(a + b + c)

Читайте также:  Каким свойством обладает цветочная пыльца

Радиус вписанной в треугольник окружности через три высоты:

1r = 1ha + 1hb + 1hc

Окружность описанная вокруг треугольника

Окружность описанная вокруг треугольника

Определение. Окружность называется описанной вокруг треугольника, если она содержит все вершины треугльника.

Свойства окружности описанной вокруг треугольника

Центр описанной вокруг треугольника окружности лежит на пересечении серединных перпендикуляров к его сторонам.

Вокруг любого треугольника можно описать окружность, и только одну.

Свойства углов

Центр описанной окружности лежит внутри остроугольного треугольника, снаружи тупоугольнго треугольника, на середине гипотенузы прямоугольного треугольника.

Формулы радиуса окружности описанной вокруг треугольника

Радиус описанной окружности через три стороны и площадь:

R = abc4S

Радиус описанной окружности через площадь и три угла:

R = S2 sin α sin β sin γ

Радиус описанной окружности через сторону и противоположный угол (теорема синусов):

R = a2 sin α = b2 sin β = c2 sin γ

Связь между вписанной и описанной окружностями треугольника

Если d — расстояние между центрами вписанной и описанной окружностей, то.

d2 = R2 — 2Rr

rR

= 4 sin

α2

sin

β2

sin

γ2

= cos α + cos β + cos γ — 1

Средняя линия треугольника

Определение. Средняя линия треугольника — отрезок, соединяющий середины двух сторон треугольника.

Свойства средней линии треугольника

1. Любой треугольник имеет три средних линии

2.

Средняя линия

Средняя линия треугольника параллельна основанию и равна его половине.

MN = 12AC     KN = 12AB     KM = 12BC

MN || AC     KN || AB     KM || BC

3. Средняя линия отсекает треугольник, подобный данному, площадь которого равна четвёрти площади исходного треугольника

S∆MBN = 14 S∆ABC

S∆MAK = 14 S∆ABC

S∆NCK = 14 S∆ABC

4. При пересечении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.

∆MBN ∼ ∆ABC

∆AMK ∼ ∆ABC

∆KNC ∼ ∆ABC

∆NKM ∼ ∆ABC

Признаки. Если отрезок параллелен одной из сторон треугольника и соединяет середину стороны треугольника с точкой, лежащей на другой стороне треугольника, то этот отрезок — средняя линия.

Периметр треугольника

Периметр треугольника

Периметр треугольника ∆ABC равен сумме длин его сторон

P = a + b + c

Формулы площади треугольника

площадь треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты

    S = 

    12

    a · ha
    S = 

    12

    b · hb
    S = 

    12

    c · hc

  2. Формула площади треугольника по трем сторонам

    Формула Герона

    S = √p(p — a)(p — b)(p — c)

    где p =

    a + b + c2

    — полупериметр треугльника.

  3. Формула площади треугольника по двум сторонам и углу между ними

    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

    S = 

    12

    a · b · sin γ
    S = 

    12

    b · c · sin α
    S = 

    12

    a · c · sin β

  4. Формула площади треугольника по трем сторонам и радиусу описанной окружности

  5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

Равенство треугольников

Определение. Если два треугольника АВС и А1В1С1 можно совместить наложением, то они равны.

Свойства. У равных треугольников равны и их
соответствующие элементы. (В равных треугольниках против равных сторон лежат равные углы, против равных углов лежат равные стороны)

Признаки равенства треугольников

Теорема 1.

Первый признак равенства треугольников — по двум сторонам и углу между ними

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Теорема 2.

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Теорема 3.

Третий признак равенства треугольников — по трем сторонам

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Подобие треугольников

Подобие треугольников

Определение. Подобные треугольники — треугольники соответствующие углы которых равны, а сходственные стороны пропорциональны.

∆АВС ~ ∆MNK => α = α1, β = β1, γ = γ1 и ABMN = BCNK = ACMK = k,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Второй признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Третий признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого, а углы, между этими сторонами, равны, то такие треугольники подобны.

Свойства. Площади подобных треугольников относятся как квадрат коэффициента подобия:

S∆АВСS∆MNK = k2

Источник