Каким свойством обладают газы

Каким свойством обладают газы thumbnail

Анонимный вопрос  ·  14 февраля 2018

1,2 K

Какое самое плотное газообразное вещество в мире?

Химик. Пытаюсь сделать мир немножко лучше.  ·  koa.su

Если считать все рассматриваемые газы идеальными, то плотность газа зависит только от величины молярной массы соединения (на самом деле плотность газов, состоящих из сложных молекул, значительно отличается от рассчитанной для идеальных газов).

Вкратце говоря, поиск самого тяжелого газа ограничивается лишь информацией о существовании соединений и знанием агрегатного состояния вещества при необходимых условиях.

Вот что пришло мне на ум (комн. т.):

WF6 — 396 г/моль,

IF7 — 259 г/моль,

Rn — 222 г/моль,

список можно продолжать.

Какими свойствами обладают воздух и вода?

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме…  ·  vk.com/mendo_him

????Свойства воздуха????

✅Он прозрачен
✅Бесцветный
✅Не имеет запаха
✅При нагревании расширяется
✅При охлаждении сжимается
✅Сохраняет тепло
✅Сжимаем и упруг
✅Легче воды
✅Не имеет вкуса
✅Состоит из смеси газов

????Свойства воды ????

✅Прозрачная
✅Не имеет запаха

✅Обладает текучестью
✅Бесцветна
✅Является растворителем
✅Расширяется при нагревании
✅Сжимается при охлаждении
✅Из жидкого состояния может перейти в газообразное
✅Из жидкого состояния может перейти в твёрдое
✅Принимает форму сосуда

«В результате соединения атомов обычно образуются молекулы». А что еще может образовываться?

Researcher, Institute of Physics, University of Tartu

Существуют разные типы химической связи между атомами. Образование молекул происходит за счет ковалентного (ковалентно-полярного) связывания атомов. Но есть и другие возможности:
1) Ионная связь. Например, NaCl наш дорогой, который всегда отдувается в качестве примера ионного кристалла. Атомы образуют ионы, а отрицательные и положительные ионы образуют кристаллическую решетку, ну или расплав или даже пар (хотя там всё сложнее). При этом и в кристаллической решетке и в расплаве нельзя выделить никаких «молекул», в кристаллической решетке есть только ионы в ее узлах и элементарная ячейка решетки. В расплаве есть диффузные агломераты ионов — без какого-либо постоянного состава, естественно, чистая электростатика.
2) Металлическая связь. Характерна для металлов, очевидно. Атомы (или можно считать, что катионы) металла в узлах решетки и обобществленный электронный газ. Тоже никаких молекул нет, а газ вообще единый на весь кристалл.
3) Ковалентная неполярная связь в атомном кристалле. В узлах решетки индивидуальные атомы (алмаз, например). Можно, конечно,  считать, что атомы — это одноатомные молекулы, но зачем так считать — не очень понятно (вообще, понятие «одноатомная молекула» пришло из молекулярно-кинетической теории газов и вне ее не имеет большого смысла).

Как изменяется внутренняя энергия вещества при переходе из твердого в газообразное?

Книги, звери и еда — это хобби навсегда.

Для перехода из твердого состояния в газообразное обычно требуется сперва расплавить вещество, затем нагреть его до температуры кипения, а затем испарить. Все три процесса требуют затрат энергии, которая идет на увеличение внутренней энергии вещества, так что при переходе вещества из твердого состояния в газообразное внутренняя энергия растет.

Источник

Учебник для 6 класса
ФИЗИКА

   
   

Притяжение и отталкивание частиц определяют их взаимное расположение в веществе. А от расположения частиц существенно зависят свойства веществ. Так, глядя на прозрачный очень твердый алмаз (бриллиант) (рис. 111, а) и на мягкий черный графит (рис. 111, б) (из него изготавливают стержни карандашей), мы не догадываемся, что оба вещества состоят из совершенно одинаковых атомов углерода. Просто в графите эти атомы расположены иначе, чем в алмазе.

Каким свойством обладают газы

Рис. 111

Заметим, что на рисунках изображены не сами атомы, а их модели — шарики и в действительности никаких соединительных стержней или проволочек между ними нет. Это — условное изображение расположения атомов в веществе.

Взаимодействие частиц вещества приводит к тому, что оно может находиться в трех состояниях: твердом, жидком и газообразном. Например, лед, вода, пар (рис. 112). В трех состояниях может находиться любое вещество, но для этого нужны определенные условия: давление, температура. Например, кислород в воздухе — газ, но при охлаждении ниже -193°С он превращается в жидкость, а при температуре -219°С кислород — твердое вещество. Железо при нормальном давлении и комнатной температуре находится в твердом состоянии. При температуре выше 1539°С железо становится жидким, а при температуре выше 3050°С — газообразным. Жидкая ртуть, используемая в медицинских термометрах, при охлаждении до температуры ниже -39°С становится твердой. При температуре выше 357°С ртуть превращается в пар (газ).

Читайте также:  Какие общие свойства характерны для митохондрий и хлоропластов ответы

Каким свойством обладают газы

Рис. 112

Превращая металлическое серебро в газ, его напыляют на стекло и получают «зеркальные» очки.

Какими свойствами обладают вещества в различных состояниях?

Начнем с газов, в которых поведение молекул (рис. 113) напоминает движение пчел в рое. Однако пчелы в рое самостоятельно изменяют направление движения и практически не сталкиваются друг с другом. В то же время для молекул в газе такие столкновения не только неизбежны, но происходят практически непрерывно. В результате столкновений направления и значения скорости движения молекул изменяются.

Каким свойством обладают газы

Рис. 113

Результатом такого движения и отсутствия взаимодействия частиц при движении является то, что газ не сохраняет ни объема, ни формы, а занимает весь предоставленный ему объем. Каждый из вас посчитает сущей нелепицей утверждения: «Воздух занимает половину объема комнаты» и «Я накачал воздух в две трети объема резинового шарика». Воздух, как и любой газ, занимает весь объем комнаты и весь объем шарика.

А какие свойства имеют жидкости? Проведем опыт.

Каким свойством обладают газы

Рис. 114

Перельем воду из мензурки 1 в мензурку 2. Форма жидкости изменилась, но объем воды остался тем же (рис. 114). Молекулы не разлетелись по всему объему, как это было бы в случае с газом. Значит, взаимное притяжение молекул жидкости существует, но оно не удерживает жестко соседние молекулы. Они колеблются и перескакивают из одного места в другое (рис. 115), чем и объясняется текучесть жидкостей.

Каким свойством обладают газы

Рис.115

Наиболее сильным является взаимодействие частиц в твердом теле. Оно не дает возможности частицам разойтись. Частицы лишь совершают хаотические колебательные движения около определенных положений (рис. 116). Поэтому твердые тела сохраняют и объем, и форму. Резиновый мяч будет сохранять форму шара и объем, куда бы его не поместили: в банку, на стол и т. д.

Каким свойством обладают газы

Рис. 116

Подумайте и ответьте

  1. Какими основными свойствами обладает газ?
  2. Почему жидкость не сохраняет форму?
  3. Чем отличается твердое состояние вещества от жидкого и газообразного?
  4. Отличаются ли молекулы воды от молекул льда?
  5. Какие из перечисленных веществ в обычных условиях (при комнатной температуре и нормальном давлении) находятся в газообразном состоянии, а какие — в жидком или твердом: олово, бензин, кислород, железо, ртуть, воздух, стекло, пластмасса?
  6. Может ли ртуть находиться в твердом состоянии, а воздух — в жидком? При каких условиях?

Домашнее задание

  1. В пластмассовую бутылку (0,5 л) налейте доверху воду и закройте герметично крышкой. Попробуйте сжать в бутылке воду. Затем вылейте воду и снова закройте бутылку. Теперь сожмите в ней воздух. На основании результатов опыта выскажите гипотезу о строении газов и жидкостей.
  2. Задание-конкурс: составьте таблицу, в которой сравните характер движения, взаимодействия частиц, а также свойства вещества в газообразном, твердом и жидком состояниях. Победителем конкурса будет тот, чья таблица содержит наиболее полную и правильную информацию.

Повторим главное в изученном

  • Все вещества состоят из отдельных частиц (атомов, молекул), между которыми имеются расстояния.
  • Частицы веществ непрерывно и хаотически движутся.
  • Скорость движения частиц тем больше, чем выше температура тела.
  • Диффузией называется явление взаимного проникновения веществ друг в друга. Особенно быстро диффузия протекает в газах, медленнее — в жидкостях, очень медленно — в твердых телах. При увеличении температуры диффузия идет быстрее.
  • На расстояниях, больших, чем размеры самих частиц, преобладает притяжение частиц. На расстояниях, меньших размеров самих частиц, — отталкивание. Притяжение частиц очень быстро ослабевает при их удалении друг от друга.
  • Изменение размеров тела при его нагревании называется тепловым расширением.
  • Тепловое расширение разных твердых и жидких веществ различно, а всех газов — одинаково.
Читайте также:  На какое свойство элемента указывает водород

Источник

Идеальный газ, теоретическая модель газа, в которой пренебрегается взаимодействием частиц газа (средняя кинетическая энергия частиц много больше энергии их взаимодействия) .

Различают классический И. г. (его свойства описываются законами классической физики) и квантовый И. г. , подчиняющийся законам квантовой механики.

Частицы классического И. г. движутся независимо друг от друга, так что давление И. г. на стенку равно сумме импульсов, переданных за единицу времени отдельными частицами при столкновениях со стенкой, а энергия — сумме энергий отдельных частиц. Классический И. г. подчиняется уравнению состояния Клапейрона p = nkT, где р — давление, n — число частиц в единице объёма, k — Больцмана постоянная, Т — абсолютная температура. Частными случаями этого уравнения являются законы Бойля-Мариотта, Гей-Люссака и Шарля (см. Газы) . Частицы классического И. г. распределены по энергиям согласно распределению Больцмана (см. Больцмана статистика) . Реальные газы хорошо описываются моделью классического И. г. , если они достаточно разрежены.

При понижении температуры Т газа или увеличении его плотности n до определённого значения становятся существенными волновые (квантовые) свойства частиц И. г. Переход от классического И. г. к квантовому происходит при тех значениях Т и n, при которых длины волн де Бройля частиц, движущихся со скоростями порядка тепловых, сравнимы с расстоянием между частицами.

В квантовом случае различают два вида И. г. ; частицы газа одного вида имеют целочисленный спин, к ним применима статистика Бозе — Эйнштейна, к частицам другого вида (с полуцелым спином) — статистика Ферми — Дирака (см. Статистическая физика) .

И. г. Ферми — Дирака отличается от классического тем, что даже при абсолютном нуле температуры его давление и плотность энергии отличны от нуля и тем больше, чем выше плотность газа. При абсолютном нуле температуры существует максимальная (граничная) энергия, которую могут иметь частицы И. г. Ферми — Дирака (так называемая Ферми энергия) . Если энергия теплового движения частиц И. г. Ферми — Дирака много меньше энергии Ферми, то его называют вырожденным газом. Согласно теории строения звезд, в звездах, плотность которых превышает 1—10 кг/см3, существует вырожденный Ферми — Дирака И. г. электронов, а в звёздах с плотностью, превышающей 109 кг/см3, вещество превращается в Ферми — Дирака И. г. нейтронов (см. Нейтронные звёзды) .

Применение теории И. г. Ферми — Дирака к электронам в металлах позволяет объяснить многие свойства металлического состояния. Реальный вырожденный Ферми — Дирака И. г. тем ближе к идеальному, чем он плотнее.

Частицы И. г. Бозе — Эйнштейна при абсолютном нуле температуры занимают наинизший уровень энергии и обладают равным нулю импульсом (И. г. в состоянии конденсата) . С повышением Т число частиц в конденсате постепенно уменьшается и при некоторой температуре Т0 (температуре фазового перехода) конденсат исчезает (все частицы конденсата приобретают импульс) . При Т < Т0 давление И. г. Бозе — Эйнштейна зависит только от температуры. Свойствами такого И. г. обладает при температурах, близких к абсолютному нулю, гелий. Другим примером И. г. Бозе — Эйнштейна является электромагнитное излучение (И. г. фотонов) , находящееся в тепловом равновесии с излучающим телом. И. г. фотонов является также примером ультрарелятивистского И. г. , то есть совокупности частиц, движущихся со скоростями, равными или близкими скорости света. Уравнение состояния такого газа: р = e/3, где e — плотность энергии газа. При достаточно низких температурах различного рода коллективные движения в жидкостях и твёрдых телах (например, колебания атомов кристаллической решётки) можно представить как И. г. слабых возбуждений (квазичастиц) , энергия которых вносит свой вклад в энергию тела (см. Твёрдое тело, Квантовая жидкость).

Читайте также:  Основной оксид какие свойства

Источник

Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.
Физические свойства жидкостей
Текучесть

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.
Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях) . Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов) . Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0°С до приблизительно 4°С.
Вязкость

Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной их части относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую – энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.
Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар) , и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшится.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади жидкости. (См. Поверхностное натяжение. )
Испарение и конденсация

Испарение – постепенный переход вещества из жидкости в газообразную фазу (пар) .

При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем прих

Источник