Каким свойством обладает средняя линия треугольника трапеции

Каким свойством обладает средняя линия треугольника трапеции thumbnail

Средняя линия фигур в планиметрии — отрезок, соединяющий середины двух сторон данной фигуры. Понятие употребляется для следующих фигур: треугольник, четырёхугольник, трапеция.

Средняя линия треугольника[править | править код]

Средняя линия треугольника

Средняя линия треугольника — отрезок, соединяющий середины двух сторон этого треугольника[1].

Свойства[править | править код]

  • средняя линия треугольника параллельна основанию и равна его половине.
  • средняя линия отсекает треугольник, подобный и гомотетичный исходному с коэффициентом 1/2; его площадь равна одной четвёртой площади исходного треугольника.
  • три средние линии делят исходный треугольник на четыре равных треугольника. Центральный из этих треугольников называется дополнительным или серединным треугольником.

Признаки[править | править код]

  • Если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей, то этот отрезок – средняя линия.

Средняя линия четырёхугольника[править | править код]

Средняя линия четырёхугольника — отрезок, соединяющий середины противолежащих сторон четырёхугольника.

Свойства[править | править код]

Первая линия соединяет 2 противоположные стороны.
Вторая соединяет 2 другие противоположные стороны.
Третья соединяет центры двух диагоналей (не во всех четырёхугольниках диагонали пунктом пересечения делятся пополам).

  • Если в выпуклом четырёхугольнике средняя линия образует равные углы с диагоналями четырёхугольника, то диагонали равны.
  • Длина средней линии четырёхугольника меньше полусуммы двух других сторон или равна ей, если эти стороны параллельны, и только в этом случае.
  • Середины сторон произвольного четырёхугольника — вершины параллелограмма. Его площадь равна половине площади четырёхугольника, а его центр лежит на точке пересечения средних линий. Этот параллелограмм называется параллелограммом Вариньона;
  • Последний пункт означает следующее: В выпуклом четырёхугольнике можно провести четыре средние линии второго рода. Средние линии второго рода — четыре отрезка внутри четырёхугольника, проходящие через середины его смежных сторон параллельно диагоналям. Четыре средние линии второго рода выпуклого четырёхугольника разрезают его на четыре треугольника и один центральный четырёхугольник. Этот центральный четырёхугольник является параллелограммом Вариньона.
  • Точка пересечения средних линий четырёхугольника является их общей серединой и делит пополам отрезок, соединяющий середины диагоналей. Кроме того, она является центроидом вершин четырёхугольника.
  • В произвольном четырёхугольнике вектор средней линии равен полусумме векторов оснований.

Средняя линия трапеции[править | править код]

Средняя линия трапеции — отрезок, соединяющий середины боковых сторон этой трапеции. Отрезок, соединяющий середины оснований трапеции, называют второй средней линией трапеции.

Она рассчитывается по формуле: , где AD и BC — основания трапеции.

Свойства[править | править код]

  • средняя линия параллельна основаниям
  • средняя линия равна полусумме оснований
  • cредняя линия разбивает фигуру на две трапеции, площади которых соотносятся как [1]

См. также[править | править код]

  • Теорема Вариньона (геометрия)

Примечания[править | править код]

Источник

[{Large{text{Произвольная трапеция}}}]

Определения

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.

Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.

Теоремы: свойства трапеции

1) Сумма углов при боковой стороне равна (180^circ).

2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.

Каким свойством обладает средняя линия треугольника трапеции

Доказательство

1) Т.к. (ADparallel BC), то углы (angle BAD) и (angle ABC) – односторонние при этих прямых и секущей (AB), следовательно, (angle
BAD
+angle ABC=180^circ).

2) Т.к. (ADparallel BC) и (BD) – секущая, то (angle DBC=angle
BDA) как накрест лежащие.
Также (angle BOC=angle AOD) как вертикальные.
Следовательно, по двум углам (triangle BOC sim triangle AOD).

Докажем, что (S_{triangle AOB}=S_{triangle COD}). Пусть (h) – высота трапеции. Тогда (S_{triangle ABD}=frac12cdot hcdot
AD=S_{triangle ACD}). Тогда: [S_{triangle AOB}=S_{triangle ABD}-S_{triangle AOD}=S_{triangle ACD}-S_{triangle AOD}=S_{triangle
COD}]

Определение

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Теорема

Средняя линия трапеции параллельна основаниям и равна их полусумме.

Каким свойством обладает средняя линия треугольника трапеции

Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

1) Докажем параллельность.

Каким свойством обладает средняя линия треугольника трапеции

Проведем через точку (M) прямую (MN’parallel AD) ((N’in CD)). Тогда по теореме Фалеса (т.к. (MN’parallel ADparallel BC, AM=MB)) точка (N’) — середина отрезка (CD). Значит, точки (N) и (N’) совпадут.

2) Докажем формулу.

Проведем (BB’perp AD, CC’perp AD). Пусть (BB’cap MN=M’, CC’cap
MN=N’).

Каким свойством обладает средняя линия треугольника трапеции

Тогда по теореме Фалеса (M’) и (N’) — середины отрезков (BB’) и (CC’) соответственно. Значит, (MM’) – средняя линия (triangle
ABB’), (NN’) — средняя линия (triangle DCC’). Поэтому: [MM’=dfrac12 AB’, quad NN’=dfrac12 DC’]

Т.к. (MNparallel ADparallel BC) и (BB’, CC’perp AD), то (B’M’N’C’) и (BM’N’C) – прямоугольники. По теореме Фалеса из (MNparallel AD) и (AM=MB) следует, что (B’M’=M’B). Значит, (B’M’N’C’) и (BM’N’C) – равные прямоугольники, следовательно, (M’N’=B’C’=BC).

Таким образом:

[MN=MM’+M’N’+N’N=dfrac12 AB’+B’C’+dfrac12 C’D=] [=dfrac12 left(AB’+B’C’+BC+C’Dright)=dfrac12left(AD+BCright)]

Теорема: свойство произвольной трапеции

Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.

Читайте также:  Химические свойства какого элемента наиболее похожи элементы кремний

Каким свойством обладает средняя линия треугольника трапеции

Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

1) Докажем, что точки (P), (N) и (M) лежат на одной прямой.

Каким свойством обладает средняя линия треугольника трапеции

Проведем прямую (PN) ((P) – точка пересечения продолжений боковых сторон, (N) – середина (BC)). Пусть она пересечет сторону (AD) в точке (M). Докажем, что (M) – середина (AD).

Рассмотрим (triangle BPN) и (triangle APM). Они подобны по двум углам ((angle APM) – общий, (angle PAM=angle PBN) как соответственные при (ADparallel BC) и (AB) секущей). Значит: [dfrac{BN}{AM}=dfrac{PN}{PM}]

Рассмотрим (triangle CPN) и (triangle DPM). Они подобны по двум углам ((angle DPM) – общий, (angle PDM=angle PCN) как соответственные при (ADparallel BC) и (CD) секущей). Значит: [dfrac{CN}{DM}=dfrac{PN}{PM}]

Отсюда (dfrac{BN}{AM}=dfrac{CN}{DM}). Но (BN=NC), следовательно, (AM=DM).

2) Докажем, что точки (N, O, M) лежат на одной прямой.

Каким свойством обладает средняя линия треугольника трапеции

Пусть (N) – середина (BC), (O) – точка пересечения диагоналей. Проведем прямую (NO), она пересечет сторону (AD) в точке (M). Докажем, что (M) – середина (AD).

(triangle BNOsim triangle DMO) по двум углам ((angle OBN=angle
ODM) как накрест лежащие при (BCparallel AD) и (BD) секущей; (angle BON=angle DOM) как вертикальные). Значит: [dfrac{BN}{MD}=dfrac{ON}{OM}]

Аналогично (triangle CONsim triangle AOM). Значит: [dfrac{CN}{MA}=dfrac{ON}{OM}]

Отсюда (dfrac{BN}{MD}=dfrac{CN}{MA}). Но (BN=CN), следовательно, (AM=MD).

[{Large{text{Равнобедренная трапеция}}}]

Определения

Трапеция называется прямоугольной, если один из ее углов – прямой.

Трапеция называется равнобедренной, если ее боковые стороны равны.

Теоремы: свойства равнобедренной трапеции

1) У равнобедренной трапеции углы при основании равны.

2) Диагонали равнобедренной трапеции равны.

3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.

Доказательство

1) Рассмотрим равнобедренную трапецию (ABCD).

Каким свойством обладает средняя линия треугольника трапеции

Из вершин (B) и (C) опустим на сторону (AD) перпендикуляры (BM) и (CN) соответственно. Так как (BMperp AD) и (CNperp AD), то (BMparallel CN); (ADparallel BC), тогда (MBCN) – параллелограмм, следовательно, (BM = CN).

Рассмотрим прямоугольные треугольники (ABM) и (CDN). Так как у них равны гипотенузы и катет (BM) равен катету (CN), то эти треугольники равны, следовательно, (angle DAB = angle CDA).

2) Каким свойством обладает средняя линия треугольника трапеции

Т.к. (AB=CD, angle A=angle D, AD) – общая, то по первому признаку (triangle ABD=triangle ACD). Следовательно, (AC=BD).

3) Т.к. (triangle ABD=triangle ACD), то (angle BDA=angle CAD). Следовательно, треугольник (triangle AOD) – равнобедренный. Аналогично доказывается, что и (triangle BOC) – равнобедренный.

Теоремы: признаки равнобедренной трапеции

1) Если у трапеции углы при основании равны, то она равнобедренная.

2) Если у трапеции диагонали равны, то она равнобедренная.

Доказательство

Рассмотрим трапецию (ABCD), такую что (angle A = angle D).

Каким свойством обладает средняя линия треугольника трапеции

Достроим трапецию до треугольника (AED) как показано на рисунке. Так как (angle 1 = angle 2), то треугольник (AED) равнобедренный и (AE
= ED). Углы (1) и (3) равны как соответственные при параллельных прямых (AD) и (BC) и секущей (AB). Аналогично равны углы (2) и (4), но (angle 1 = angle 2), тогда (angle 3 = angle 1 = angle 2 =
angle 4), следовательно, треугольник (BEC) тоже равнобедренный и (BE = EC).

В итоге (AB = AE — BE = DE — CE = CD), то есть (AB = CD), что и требовалось доказать.

2) Пусть (AC=BD). Т.к. (triangle AODsim triangle BOC), то обозначим их коэффициент подобия за (k). Тогда если (BO=x), то (OD=kx). Аналогично (CO=y Rightarrow AO=ky).

Каким свойством обладает средняя линия треугольника трапеции

Т.к. (AC=BD), то (x+kx=y+ky Rightarrow x=y). Значит (triangle AOD) – равнобедренный и (angle OAD=angle ODA).

Таким образом, по первому признаку (triangle ABD=triangle ACD) ((AC=BD, angle OAD=angle ODA, AD) – общая). Значит, (AB=CD), чтд.

Источник

[{Large{text{Подобие треугольников}}}]

Определения

Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого
(стороны называются сходственными, если они лежат напротив равных углов).

Коэффициент подобия (подобных) треугольников – это число, равное отношению сходственных сторон этих треугольников.

Каким свойством обладает средняя линия треугольника трапеции

Определение

Периметр треугольника – это сумма длин всех его сторон.

Теорема

Отношение периметров двух подобных треугольников равно коэффициенту подобия.

Доказательство

Рассмотрим треугольники (ABC) и (A_1B_1C_1) со сторонами (a,b,c) и (a_1, b_1, c_1) соответственно (см. рисунок выше).

Тогда (P_{ABC}=a+b+c=ka_1+kb_1+kc_1=k(a_1+b_1+c_1)=kcdot
P_{A_1B_1C_1})

Теорема

Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Доказательство

Пусть треугольники (ABC) и (A_1B_1C_1) подобны, причём (dfrac{AB}{A_1B_1} = dfrac{AC}{A_1C_1} = dfrac{BC}{B_1C_1} = k). Обозначим буквами (S) и (S_1) площади этих треугольников соответственно.

Каким свойством обладает средняя линия треугольника трапеции

Так как (angle A = angle A_1), то (dfrac{S}{S_1} = dfrac{ABcdot
AC}{A_1B_1cdot A_1C_1}) (по теореме об отношении площадей треугольников, имеющих по равному углу).

Так как (dfrac{AB}{A_1B_1} = dfrac{AC}{A_1C_1} = k), то (dfrac{S}{S_1} = dfrac{AB}{A_1B_1}cdotdfrac{AC}{A_1C_1} = kcdot k = k^2), что и требовалось доказать.
 

[{Large{text{Признаки подобия треугольников}}}]

Теорема (первый признак подобия треугольников)

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

Доказательство

Пусть (ABC) и (A_1B_1C_1) – треугольники такие, что (angle A =
angle A_1), (angle B = angle B_1). Тогда по теореме о сумме углов треугольника (angle C = 180^circ — angle A — angle B = 180^circ
— angle A_1 — angle B_1 = angle C_1), то есть углы треугольника (ABC) соответственно равны углам треугольника (A_1B_1C_1).

Читайте также:  Какими свойствами обладают гидроксиды металлов

Каким свойством обладает средняя линия треугольника трапеции

Так как (angle A = angle A_1) и (angle B = angle B_1), то (dfrac{S_{ABC}}{S_{A_1B_1C_1}} = dfrac{ABcdot AC}{A_1B_1cdot
A_1C_1}) и (dfrac{S_{ABC}}{S_{A_1B_1C_1}} = dfrac{ABcdot
BC}{A_1B_1cdot B_1C_1}).

Из этих равенств следует, что (dfrac{AC}{A_1C_1} =
dfrac{BC}{B_1C_1}).

Аналогично доказывается, что (dfrac{AC}{A_1C_1} =
dfrac{AB}{A_1B_1}) (используя равенства (angle B = angle B_1), (angle C = angle C_1)).

В итоге, стороны треугольника (ABC) пропорциональны сходственным сторонам треугольника (A_1B_1C_1), что и требовалось доказать.

Теорема (второй признак подобия треугольников)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

Доказательство

Рассмотрим два треугольника (ABC) и (A’B’C’), таких что (dfrac{AB}{A’B’}=dfrac{AC}{A’C’}), (angle BAC = angle A’). Докажем, что треугольники (ABC) и (A’B’C’) – подобны. Учитывая первый признак подобия треугольников, достаточно показать, что (angle B = angle B’).

Каким свойством обладает средняя линия треугольника трапеции

Рассмотрим треугольник (ABC»), у которого (angle 1 = angle A’), (angle 2 = angle B’). Треугольники (ABC») и (A’B’C’) подобны по первому признаку подобия треугольников, тогда (dfrac{AB}{A’B’} =
dfrac{AC»}{A’C’}).

С другой стороны, по условию (dfrac{AB}{A’B’} = dfrac{AC}{A’C’}). Из последних двух равенств следует, что (AC = AC»).

Треугольники (ABC) и (ABC») равны по двум сторонам и углу между ними, следовательно, (angle B = angle 2 = angle B’).

Теорема (третий признак подобия треугольников)

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Доказательство

Пусть стороны треугольников (ABC) и (A’B’C’) пропорциональны: (dfrac{AB}{A’B’} = dfrac{AC}{A’C’} = dfrac{BC}{B’C’}). Докажем, что треугольники (ABC) и (A’B’C’) подобны.

Каким свойством обладает средняя линия треугольника трапеции

Для этого, учитывая второй признак подобия треугольников, достаточно доказать, что (angle BAC = angle A’).

Рассмотрим треугольник (ABC»), у которого (angle 1 = angle A’), (angle 2 = angle B’).

Треугольники (ABC») и (A’B’C’) подобны по первому признаку подобия треугольников, следовательно, (dfrac{AB}{A’B’} = dfrac{BC»}{B’C’}
= dfrac{C»A}{C’A’}).

Из последней цепочки равенств и условия (dfrac{AB}{A’B’} =
dfrac{AC}{A’C’} = dfrac{BC}{B’C’}) вытекает, что (BC = BC»), (CA
=
C»A).

Треугольники (ABC) и (ABC») равны по трем сторонам, следовательно, (angle BAC = angle 1 = angle A’).

Каким свойством обладает средняя линия треугольника трапеции

[{Large{text{Теорема Фалеса}}}]

Теорема

Если на одной из сторон угла отметить равные между собой отрезки и через их концы провести параллельные прямые, то эти прямые отсекут на второй стороне также равные между собой отрезки.

Доказательство

Докажем сначала лемму: Если в (triangle OBB_1) через середину (A) стороны (OB) проведена прямая (aparallel BB_1), то она пересечет сторону (OB_1) также в середине.

Каким свойством обладает средняя линия треугольника трапеции

Через точку (B_1) проведем (lparallel OB). Пусть (lcap a=K). Тогда (ABB_1K) — параллелограмм, следовательно, (B_1K=AB=OA) и (angle
A_1KB_1=angle ABB_1=angle OAA_1); (angle AA_1O=angle KA_1B_1) как вертикальные. Значит, по второму признаку (triangle
OAA_1=triangle B_1KA_1 Rightarrow OA_1=A_1B_1). Лемма доказана.

Каким свойством обладает средняя линия треугольника трапеции

Перейдем к доказательству теоремы. Пусть (OA=AB=BC), (aparallel
bparallel c) и нужно доказать, что (OA_1=A_1B_1=B_1C_1).

Таким образом, по данной лемме (OA_1=A_1B_1). Докажем, что (A_1B_1=B_1C_1). Проведем через точку (B_1) прямую (dparallel OC), причем пусть (dcap a=D_1, dcap c=D_2). Тогда (ABB_1D_1, BCD_2B_1) — параллелограммы, следовательно, (D_1B_1=AB=BC=B_1D_2). Таким образом, (angle A_1B_1D_1=angle C_1B_1D_2) как вертикальные, (angle
A_1D_1B_1=angle C_1D_2B_1) как накрест лежащие, и, значит, по второму признаку (triangle A_1B_1D_1=triangle C_1B_1D_2
Rightarrow A_1B_1=B_1C_1).

Теорема Фалеса

Параллельные прямые отсекают на сторонах угла пропорциональные отрезки.

Каким свойством обладает средняя линия треугольника трапеции

Доказательство

Пусть параллельные прямые (pparallel qparallel rparallel s) разбили одну из прямых на отрезки (a, b, c, d). Тогда вторую прямую эти прямые должны разбить на отрезки (ka, kb, kc, kd) соответственно, где (k) – некоторое число, тот самый коэффициент пропорциональности отрезков.

Проведем через точку (A_1) прямую (pparallel OD) ((ABB_2A_1) — параллелограмм, следовательно, (AB=A_1B_2)). Тогда (triangle OAA_1
sim triangle A_1B_1B_2) по двум углам. Следовательно, (dfrac{OA}{A_1B_2}=dfrac{OA_1}{A_1B_1} Rightarrow A_1B_1=kb).

Аналогично проведем через (B_1) прямую (qparallel OD Rightarrow
triangle OBB_1sim triangle B_1C_1C_2 Rightarrow B_1C_1=kc) и т.д.

Каким свойством обладает средняя линия треугольника трапеции

[{Large{text{Средняя линия треугольника}}}]

Определение

Средняя линия треугольника – это отрезок, соединяющий середины любых двух сторон треугольника.

Теорема

Средняя линия треугольника параллельна третьей стороне и равна ее половине.

Доказательство

1) Параллельность средней линию основанию следует из доказанной выше леммы.

2) Докажем, что (MN=dfrac12 AC).

Каким свойством обладает средняя линия треугольника трапеции

Через точку (N) проведем прямую параллельно (AB). Пусть эта прямая пересекла сторону (AC) в точке (K). Тогда (AMNK) — параллелограмм ((AMparallel NK, MNparallel AK) по предыдущему пункту). Значит, (MN=AK).

Т.к. (NKparallel AB) и (N) – середина (BC), то по теореме Фалеса (K) – середина (AC). Следовательно, (MN=AK=KC=dfrac12 AC).

Следствие

Средняя линия треугольника отсекает от него треугольник, подобный данному с коэффициентом (frac12).

Источник

Трапе́ция (от др.-греч. τραπέζιον — «столик» от τράπεζα — «стол») — выпуклый четырёхугольник, у которого две стороны параллельны. Часто в определение трапеции добавляют условие, что две другие стороны должны быть не параллельны[1]. Параллельные противоположные стороны называются основаниями трапеции, а две другие — боковыми сторонами. Средняя линия — отрезок, соединяющий середины боковых сторон.

Варианты определения[править | править код]

Существует и другое определение трапеции.

Трапеция — это выпуклый четырёхугольник, у которого две стороны параллельны[2][3]. Согласно этому определению, параллелограмм и прямоугольник — частные случаи трапеции. Однако при использовании такого определения большинство признаков и свойств равнобедренной трапеции перестают быть верными (так как параллелограмм становится её частным случаем). Приведённые в разделе Общие свойства формулы верны для обоих определений трапеции.

Связанные определения[править | править код]

Элементы трапеции[править | править код]

Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой

  • Параллельные противоположные стороны называются основаниями трапеции.
  • Две другие стороны называются боковыми сторонами.
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
  • Углом при основании трапеции называется ее внутренний угол, образованный основанием с боковой стороной.

Виды трапеций[править | править код]

  • Трапеция, у которой боковые стороны равны, называется равнобедренной трапецией (реже равнобокой[4] или равнобочной[5] трапецией).
  • Трапеция, имеющая прямые углы при боковой стороне, называется прямоугольной.
  • Равнобедренная трапеция

  • Прямоугольная трапеция

Свойства[править | править код]

Основной источник: [6]

  • Средняя линия трапеции параллельна основаниям и равна их полусумме.[7]
  • Отрезок, соединяющий середины диагоналей трапеции, равен половине разности оснований и лежит на средней линии.
  • Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен среднему гармоническому длин оснований трапеции.
  • В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон.
  • Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
  • Если сумма углов при одном из оснований трапеции равна 90°, то продолжения боковых сторон пересекаются под прямым углом, а отрезок, соединяющий середины оснований, равен полуразности оснований.
  • Диагонали трапеции делят ее на 4 треугольника. Два из них, прилежащие к основаниям, подобны. Два других, прилежащие к боковым сторонам, имеют одинаковую площадь.
  • Если отношение оснований равно , то отношение площадей треугольников, прилежащих к основаниям, равно .
  • Высота трапеции определяется формулой:

где  — большее основание,  — меньшее основание, и  — боковые стороны.
Их можно выразить в явном виде:

Если, наоборот, известны боковые стороны и диагонали, то основания выражаются формулами:

а при известных основаниях и диагоналях боковые стороны следующие:

Если же известна высота , то

  • Прямая Гаусса для трапеции совпадает с ее средней линией.

Равнобедренная трапеция[править | править код]

Трапеция является равнобедренной тогда и только тогда, когда выполнено любое из следующих эквивалентных условий:

  • прямая, которая проходит через середины оснований, перпендикулярна основаниям (то есть является осью симметрии трапеции);
  • высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований;
  • углы при любом основании равны;
  • сумма противоположных углов равна 180°;
  • длины диагоналей равны;
  • вокруг этой трапеции можно описать окружность;
  • вершинами этой трапеции также являются вершины некоторого антипараллелограмма.

Кроме того

  • если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная и описанная окружность[править | править код]

  • Если сумма оснований трапеции равна сумме боковых сторон, то в неё можно вписать окружность. Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований).
  • В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.
  • Если трапецию можно вписать в окружность — то она равнобедренная.
  • Радиус описанной окружности равнобедренной трапеции:[источник не указан 1798 дней]

где  — боковая сторона,  — бо́льшее основание,  — меньшее основание,  — диагонали равнобедренной трапеции.

  • Если , то в равнобедренную трапецию можно вписать окружность радиуса

Площадь[править | править код]

Здесь приведены формулы, свойственные именно трапеции. См. также формулы для площади произвольных четырёхугольников.

Примечание: Приведённые выше две формулы эквивалентны, так как полусумма оснований равняется средней линии трапеции:

или

  • Средняя линия разбивает фигуру на две трапеции, площади которых соотносятся как[8]
  • Площадь равнобедренной трапеции:

где  — боковая сторона,  — бо́льшее основание,  — меньшее основание,  — угол между бо́льшим основанием и боковой стороной[9].

  • Площадь равнобедренной трапеции через её стороны

История[править | править код]

Слово «трапеция» происходит от греческого слова др.-греч. τραπέζιον «столик» (уменьш. от τράπεζα «стол»), означающего стол. В русском языке от этого слова происходит слово «трапеза» (еда).

Примечания[править | править код]

Источник