Каким свойством обладает медиана равнобедренного треугольника

Каким свойством обладает медиана равнобедренного треугольника thumbnail

Содержание:

  1. Свойства равнобедренного треугольника.
  2. Признаки равнобедренного треугольника.
  3. Формулы равнобедренного треугольника:
    • формулы длины стороны;
    • формулы длины равных сторон;
    • формулы высоты, медианы, биссектрисы равнобедренного треугольника.

Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, а третья сторона — основанием.

АВ = ВС — боковые стороны

АС — основание

Свойства равнобедренного треугольника

Свойства равнобедренного треугольника выражаются через 5 теорем:

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Доказательство теоремы:

Рассмотрим равнобедренный Δ ABC с основанием АС.

Боковые стороны равны АВ = ВС,

Следовательно углы при основании ∠ BАC = ∠ BСA.

Теорема о биссектрисе, медиане, высоте, проведенной к основанию равнобедренного треугольника

  • Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
  • Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
  • Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Доказательство теоремы:

  • Дан Δ ABC.
  • Из точки В проведем высоту BD.
  • Треугольник разделился на Δ ABD и ΔCBD. Эти треугольники равны, т.к. гипотенузы и общий катет у них равны (теорема Пифагора).
  • Прямые АС и BD называются перпендикуляром.
  • В Δ ABD и Δ BCD ∠ BАD = ∠ BСD (из Теоремы 1).
  • АВ = ВС — боковые стороны равны.
  • Стороны АD = СD, т.к. точка D отрезок делит пополам.
  • Следовательно Δ ABD = ΔBCD.
  • Биссектриса, высота и медиана это один отрезок — BD

Вывод:

  1. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
  2. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
  3. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и высотой.

Запомни! При решении таких задач опусти высоту на основание равнобедренного треугольника. Чтобы разделить его на два равных прямоугольных треугольника.

  • Теорема 5. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательство теоремы:

Дано два Δ ABC и Δ A1B1C1. Стороны AB = A1B1; BC = B1C1; AC = A1C1.

Доказательство от противного.

  • Пусть треугольники не равны (а то треугольники были равны по первому признаку).
  • Пусть Δ A1B1C2 = Δ ABC, у которого вершина C2 лежит в одной полуплоскости с вершиной C1 относительно прямой A1B1. По предположению вершины C1 и C2 не совпадают. Пусть D – середина отрезка C1C2. Δ A1C1C2 и Δ B1C1C2 – равнобедренные с общим основанием C1C2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой C1C2. A1D и B1D имеют разные точки A1 и B1, следовательно, не совпадают. Но через точку D прямой C1C2 можно провести только одну перпендикулярную ей прямую.
  • Отсюда пришли к противоречию и теорему доказали.

Признаки равнобедренного треугольника

  1. Если в треугольнике два угла равны.
  2. Сумма углов треугольника 180°.
  3. Если в треугольнике биссектриса является медианой или высотой.
  4. Если в треугольнике медиана является биссектрисой или высотой.
  5. Если в треугольнике высота является медианой или биссектрисой.

Формулы равнобедренного треугольника

Формулы сторон равнобедренного треугольника

  • b — сторона (основание)
  • а — равные стороны
  • a — углы при основании
  • b — угол образованный равными сторонами

Формулы длины стороны (основания — b):

  • b = 2a sin( beta /2)= a sqrt { 2-2 cos beta }
  • b = 2a cos alpha

Формулы длины равных сторон(а):

  • a=frac { b } { 2 sin(beta /2) } = frac { b } { sqrt { 2-2 cos beta } }
  • a=frac { b } { 2 cosalpha }

Формулы высоты, медианы, биссектрисы равнобедренного треугольника

  • L — высота=биссектриса=медиана
  • b — сторона (основание)
  • а — равные стороны
  • a — углы при основании
  • b — угол образованный равными сторонами

Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):

  • L = a sina
  • L = frac { b } { 2 } *tgalpha
  • L = a sqrt { (1 + cos beta)/2 } =a cos (beta)/2)

Формула высоты, биссектрисы и медианы, через стороны, (L):

  • L = sqrt { a^ { 2 } -b^ { 2 } /4 }

Площадь равнобедренного треугольника

  • b — сторона (основание)
  • а — равные стороны
  • h — высота

Формула площади треугольника через высоту h и основание b, (S):

S=frac { 1 } { 2 } *bh

Смотри также:

  • Теорема о сумме углов треугольника
  • Формулы площади поверхности, основания, сечения призмы
  • Площадь поверхности куба, формулы и примеры
  • Основные формулы по математике
  • Справочные материалы ЕГЭ от ФИПИ по математике

Источник

У этого термина существуют и другие значения, см. Медиана.

Треугольник и его медианы.

Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.

Связанные определения[править | править код]

Три медианы, проходящие через общую точку

На рис. справа в треугольнике ABC через точку O проведены 3 медианы: AD, BE и CF. Тогда точка O пересечения 3 медиан разбивает каждую медиану на 2 отрезка прямых, один из них (который начинается в вершине, а заканчивается в точке пересечения O) мы назовем домедианой или предмедианой, а второй из них (который начинается в точке пересечения O, а заканчивается в точке его пересечения со стороной, противоположной вершине) мы назовем постмедианой.[1]
С помощью этих 2 понятий совсем просто формулируются некоторые теоремы геометрии. Например, в любом треугольнике отношение пред- и постмедианы равно двум.

Читайте также:  Какие свойства человека называют биологическими

Свойства[править | править код]

Основное свойство[править | править код]

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника[править | править код]

В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой. Верно и обратное: если в треугольнике две медианы равны, то треугольник — равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.

У равностороннего треугольника все три медианы равны.

Свойства оснований медиан[править | править код]

  • Теорема Эйлера для окружности девяти точек: основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (так называемой окружности девяти точек).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.
  • Теркем доказал теорему Теркема.[2] Она утверждает, что если окружность девяти точек пересекает стороны треугольника или их продолжения в 3 парах точек (в 3 основаниях соответственно высот и медиан), являющихся основаниями 3 пар чевиан, то, если 3 чевианы для 3 из этих оснований пересекаются в 1 точке (например 3 медианы пересекаются в 1 точке), то 3 чевианы для 3 других оснований также пересекаются в 1 точке (т. е. 3 высоты также обязаны пересечься в 1 точке).

Другие свойства[править | править код]

  • Если треугольник разносторонний (неравносторонний), то его биссектриса, проведённая из любой вершины, лежит между медианой и высотой, проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников. Центры описанных окружностей этих шести треугольников лежат на одной окружности, которая называется окружностью Ламуна.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку — точку Лемуана.
  • Медиана угла треугольника изотомически сопряжена самой себе.

Бесконечно удаленная прямая — трилинейная поляра центроида

  • Трилинейная поляра центроида (точки пересечения трех медиан) — бесконечно удаленная прямая (см. рис.).

Основные соотношения[править | править код]

Чтобы вычислить длину медианы, когда известны длины сторон треугольника, применяется теорема Аполлония (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):

где  — медианы к сторонам треугольника соответственно.

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон:

.

Обратно, можно выразить длину произвольной стороны треугольника через медианы:

где  — медианы к соответствующим сторонам треугольника,  — стороны треугольника.

Площадь любого треугольника, выраженная через длины его медиан:

где  — полусумма длин медиан.

См. также[править | править код]

  • Биссектриса
  • Высота треугольника
  • Инцентр
  • Симедиана
  • Центроид
  • Чевиана

Примечания[править | править код]

Литература[править | править код]

  • Ефремов Дм. Новая геометрия треугольника, 1902 год.

Источник

На данном уроке будет рассмотрена тема «Равнобедренный треугольник и его свойства». Вы узнаете, как выглядят и чем характеризуются равнобедренный и равносторонний треугольники. Докажете теорему о равенстве углов при основании равнобедренного треугольника. Рассмотрите также теорему о биссектрисе (медиане и высоте), проведенной к основанию равнобедренного треугольника. В конце урока вы разберете две задачи с использованием определения и свойств равнобедренного треугольника.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Основы геометрии»

Определение равнобедренного треугольника

Определение: Равнобедренным называется треугольник, у которого равны две стороны.

Рис. 1. Равнобедренный треугольник

АВ = АС – боковые стороны. ВС – основание.

Читайте также:  Какими свойствами отличается медь

Площадь равнобедренного треугольника равна половине произведения его основания на высоту.

Определение равностороннего треугольника

Определение: Равносторонним называется треугольник, у которого все три стороны равны.

Рис. 2. Равносторонний треугольник

АВ = ВС = СА.

Теорема о равенстве углов при основании равнобедренного треугольника

Теорема 1: В равнобедренном треугольнике углы при основании равны.

Дано: АВ = АС.

Доказать: ∠В =∠С.

Рис. 3. Чертеж к теореме

Доказательство: треугольник АВС = треугольнику АСВ по первому признаку (по двум равным сторонам и углу между ними). Из равенства треугольников следует равенство всех соответствующих элементов. Значит, ∠В = ∠С, что и требовалось доказать.

Теорема о биссектрисе (медиане, высоте), проведенной к основанию равнобедренного треугольника

Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Дано: АВ = АС, ∠1 = ∠2.

Доказать: ВD = DC, AD перпендикулярно BC.

 

Рис. 4. Чертеж к теореме 2

Доказательство: треугольник ADB = треугольнику ADC по первому признаку (AD – общая, АВ = АС по условию, ∠BAD = ∠DAC). Из равенства треугольников следует равенство всех соответствующих элементов. BD = DC, так как они лежат против равных углов. Значит, AD является медианой. Также ∠3 = ∠4, поскольку они лежат против равных сторон. Но, к тому же, они в сумме равняются . Следовательно, ∠3 = ∠4 = . Значит, AD является высотой треугольника, что и требовалось доказать.

В единственном случае a = b = . В этом случае прямые АС и ВD называются перпендикулярными.

Поскольку биссектрисой, высотой и медианой является один и тот же отрезок, то справедливы и следующие утверждения:

— Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.

— Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.

Решение задач

Пример 1: В равнобедренном треугольнике основание в два раза меньше боковой стороны, а периметр равен 50 см. Найдите стороны треугольника.

Дано: АВ = АС, ВС = AC. Р = 50 см.

Найти: ВС, АС, АВ.

Решение:

Рис. 5. Чертеж к примеру 1

Обозначим основание ВС как а, тогда АВ = АС = 2а.

2а + 2а + а = 50.

5а = 50, а = 10.

Ответ: ВС = 10 см, АС = АВ = 20 см.

Пример 2: Докажите, что в равностороннем треугольнике все углы равны.

Дано: АВ = ВС = СА.

Доказать: ∠А = ∠В = ∠С.

Доказательство:

Рис. 6. Чертеж к примеру       

∠В = ∠С, так как АВ=АС, а ∠А = ∠В, так как АС = ВС.                           

Следовательно, ∠А = ∠В = ∠С, что и требовалось доказать.

Ответ: Доказано.

На сегодняшнем уроке мы рассмотрели равнобедренный треугольник, изучили его основные свойства. На следующем уроке мы порешаем задачи по теме равнобедренного треугольника, на вычисление площадт равнобедренного и равностороннего треугольника.

Список рекомендованной литературы

  1. Александров  А.Д., Вернер А.Л., Рыжик В.И. и др. Геометрия 7. – М.: Просвещение.
  2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7. 5-е изд. – М.: Просвещение.
  3. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А.  – М.: Просвещение, 2010.

Рекомендованные ссылки на интернет-ресурсы

  1. Словари и энциклопедии на «Академике» (Источник).
  2. Фестиваль педагогической идеи «Открытый урок» (Источник).
  3. Кaknauchit.ru  (Источник).

Рекомендованное домашнее задание

1. № 29. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А.  – М.: Просвещение, 2010.

2. Периметр равнобедренного треугольника равен 35 см, а основа втрое меньше боковой стороны. Найдите стороны треугольника.

3. Дано: АВ = ВС. Докажите, что ∠1 = ∠2.

4. Периметр равнобедренного треугольника равен 20 см, одна из его сторон в два раза больше другой. Найдите стороны треугольника. Сколько решений имеет задача?

Источник

«Свойство медианы равнобедренного треугольника»

Цель: сформулировать и доказать теорему о свойстве медианы равнобедренного треугольника.

Задачи урока:

Углубить знания по теме «Равнобедренный треугольник»

сформулировать умение применения теоремы о свойстве медианы равнобедренного треугольника в стандартных и нестандартных ситуациях;

Развитие грамотной речи, развитие умений сравнивать, выявлять закономерности, обобщать, анализировать и делать выводы.

Воспитание интереса к предмету, настойчивости, воли при решении поставленной задачи.

Ход урока.

I. Организационная часть урока.

Мой юный друг!

Сегодня ты пришел вот в этот класс

На геометрии очередной урок,

Чтоб подвести изученному небольшой итог,

А также умом своим на новое взглянуть.

Пускай не станешь ты Евклидом. А вдруг?

Ведь столько не разгадано ещё вокруг?

Учитель: Кто ж такой Евклид?

  Ученик: Евклид – древнегреческий ученый, живший в III веке до н. э.

Учитель: А в чем состоит заслуга Евклида?

  Ученик: Его заслуга состоит в том, что он написал великий труд книгу «Начала».

Читайте также:  В каком ряду химические элементы расположены в порядке усиления кислотных свойств

Учитель: Из скольких частей состоят «Начала»?

  Ученик: «Начала» состоят из 13 частей.

Учитель: Ребята, 9 из них посвящены вопросам геометрии и более двух тысяч лет геометрию изучали по этой книге. Поэтому геометрия, которую мы изучаем в школе называется…

  Ученики: евклидовой.

Учитель: «Начала» считаются популярным рукописным памятником древности. Мировая наука начинается с геометрии. Ребята, большое место в «Началах» Евклида уделено сведениям о треугольниках. И в частности одному «удивительному» треугольнику. И, как вы догадались речь идет о равнобедренном треугольнике.

Ребята, а знаете ли вы, что среди равнобедренных треугольников есть «золотой» или «возвышенный»? Вы удивились этому? Сегодня на уроке мы с вами откроем еще одно свойство равнобедренного треугольника.

II. Устная работа. 

Учитель: Ребята, внимание на доску. Ответьте, пожалуйста, на следующие вопросы:

Задание №1 (устно)

а) Какие из треугольников являются равнобедренными? Почему?

б) В равнобедренных треугольниках назовите основание и боковые стороны.
в) Назовите равные углы.  Почему?

Каким свойством обладает медиана равнобедренного треугольника

Задание №2 (устно):

а) Назовите треугольник, на котором изображена биссектриса. Почему?
б) Назовите треугольник, на котором изображена высота. Почему?

в) Назовите треугольник, на котором изображена медиана. Почему?

Каким свойством обладает медиана равнобедренного треугольника
       

Задание №3 (в тетрадях): Начертите равнобедренный треугольник АВС, с основанием АВ.
Проведите в данном треугольнике медиану из вершины С к основанию АВ.
На этом же чертеже проводим высоту из вершины С к основанию АВ. И биссектрису угла С.

(В процессе построения вести диалог с учеником у доски и всем классом, объясняя каждый шаг построения).

Учитель: Ребята, что вы увидели? Какой вывод можно сделать, исходя из построения?

Мы это с вами сейчас сделали. Но геометрия – эта наука, в которой нельзя делать вывод, исходя из решения одной задачи. Всё, кроме аксиом, необходимо доказать. Поэтому переходим к изучению нового материала.

III. Постановка учебной задачи. Формирование новых понятий.

Цель: сформулировать и доказать свойство медианы равнобедренного треугольника.

Учитель: Ребята, запишите в тетрадях тему нашего урока «Свойство медианы равнобедренного треугольника». Ребята, скажите, пожалуйста, изучив сегодняшнюю тему, на какой вопрос в конце урока вы сможете ответить?

Да, действительно цель нашего урока сформулировать и доказать свойство медианы равнобедренного треугольника, и на примерах показать его применение.

Каким свойством обладает медиана равнобедренного треугольника

Учитель: Ребята, займемся геометрическим исследованием (в результате исследования учащиеся должны сформулировать и доказать теорему о свойстве медианы равнобедренного треугольника). Результаты исследования должны быть представлены в виде схемы. Учащиеся вместе с учителем рассматривают рисунок и делают выводы.

Итак, перед нами рисунок. Узнай об этом треугольнике все что можно.

В результате исследования должна получиться следующая схема:

Учащиеся делают вывод: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой, и ЗАПИСЫВАЮТ в тетрадях из учебника формулировку теоремы.

IV. Формирование умений и навыков.

Решение задач.

Каким свойством обладает медиана равнобедренного треугольника

  №1 (устно)  В

Найдите Каким свойством обладает медиана равнобедренного треугольникаКаким свойством обладает медиана равнобедренного треугольника,

Если Каким свойством обладает медиана равнобедренного треугольникаКаким свойством обладает медиана равнобедренного треугольника

  С  D  А

№2

Начертите равнобедренный треугольник, основание которого равно 5см, а медиана проведенная к основанию равна 3,5см. (воспользуйтесь чертёжным треугольником и линейкой с делениями)

№3

Каким свойством обладает медиана равнобедренного треугольника

Высота МТ  Каким свойством обладает медиана равнобедренного треугольникаКаким свойством обладает медиана равнобедренного треугольникаКМР является бисссектрисой этого треугольника. Докажите, что данный треугольник является равноберенным.

Доказательство:

1.Рассмотрим треугольники  …………… и ………….….:

Их элементы: ………………………  …………………….  ………………………………………………….

2.Воспользуемся………………………….. признаком, ………………………………………………………………………….

откуда, Каким свойством обладает медиана равнобедренного треугольникаКаким свойством обладает медиана равнобедренного треугольника КМТ………………………..

3. Следовательно, ………………………..

Значит,……………………. является равнобедренным.

Каким свойством обладает медиана равнобедренного треугольника

№4

На медиане  BF равнобедренного  Каким свойством обладает медиана равнобедренного треугольникаКаким свойством обладает медиана равнобедренного треугольникаАВС с основанием АС отмечена точка М. Докажите, что МА= МС.

Доказательство.

1.Рассмотрим Каким свойством обладает медиана равнобедренного треугольникаКаким свойством обладает медиана равнобедренного треугольника АВМ и  Каким свойством обладает медиана равнобедренного треугольникаКаким свойством обладает медиана равнобедренного треугольника ……… :

АВ = ……… (по ………………………), сторона МВ-  …………………………… Каким свойством обладает медиана равнобедренного треугольникаКаким свойством обладает медиана равнобедренного треугольникаАВМ= Каким свойством обладает медиана равнобедренного треугольникаКаким свойством обладает медиана равнобедренного треугольника……………, так как медиана ВF —  ………………………………….. (по свойству  ……………………………………).

2. Воспользуемся …………признаком …………….………………………………………………Получим, что ……..…….=……………,поэтому …………….=…………..

V. Подведение итогов.

    Какой треугольник называется равнобедренным? Каким свойством обладает равнобедренный треугольник? Сколько медиан в треугольнике можно провести? Каким свойством обладает медиана равнобедренного треугольника? Этим свойством обладают все медианы в равнобедренном треугольнике? Верно ли утверждение «Биссектриса, проведённая к основанию равнобедренного треугольника, является медианой и высотой?»

VI. Выставление оценок.

Учитель: Знания, накопленные в геометрии, использовались в архитектуре, в живописи. Древние зодчие, художники были прекрасными геометрами. использовали они и свойства равнобедренного треугольника, в частности «золотого треугольника» — у которого углы при основании по 720, а при вершине 360. Он обладает особым свойством: биссектриса угла при основании делит противолежащую сторону в золотом сечении. Равнобедренный треугольник основа пропорциональной сетки, которую используют художники и архитекторы при написании картин и создании прекрасных зданий.

Примеры. Миланский собор, картина Леонардо да Винчи «Джоконда».

VII. Домашнее задание: пункт 26, вопрос 11, №28.        

ДЛЯ УСТНОЙ РАБОТЫ

Источник