Какие свойства у тригонометрических функции

Какие свойства у тригонометрических функции thumbnail

Подготовка к ЕГЭ по математике

Эксперимент

Урок 10. Тригонометрические функции. Тригонометрические уравнения и их системы.

Теория

Конспект урока

Тригонометрические функции и их свойства

Мы с вами уже многократно применяли термин «тригонометрическая функция». Еще на первом уроке этой темы мы определили их с помощью прямоугольного треугольника и единичной тригонометрической окружности. Используя такие способы задания тригонометрических функций, мы уже можем сделать вывод, что для них одному значению аргумента (или угла) соответствует строго одно значение функции, т.е. мы вправе называть синус, косинус, тангенс и котангенс именно функциями.

На этом уроке самое время попробовать абстрагироваться от рассмотренных ранее способов вычисления значений тригонометрических функций. Сегодня мы перейдем к привычному алгебраическому подходу работы с функциями, мы рассмотрим их свойства и изобразим графики.

Что касается свойств тригонометрических функций, то особое внимание следует обратить на:

— область определения и область значений, т.к. для синуса и косинуса есть ограничения по области значений, а для тангенса и котангенса ограничения по области определения;

— периодичность всех тригонометрических функций, т.к. мы уже отмечали наличие наименьшего ненулевого аргумента, добавление которого не меняет значение функции. Такой аргумент называют периодом функции и обозначают буквой . Для синуса/косинуса и тангенса/котангенса эти периоды различны.

Функция синус и ее график

Рассмотрим функцию:

Основные свойства этой функции:

1) Область определения ;

2) Область значений ;

3) Функция нечетная ;

4) Функция не является монотонной на всей своей области определения;

5) Функция периодична с периодом .

Построим график функции . При этом удобно начинать построение с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Кроме того, для построения полезно помнить значения синусов нескольких основных табличных углов, например, что  Это позволит построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

Функция косинус и ее график

Теперь рассмотрим функцию:

Основные свойства этой функции:

1) Область определения ;

2) Область значений ;

3) Функция четная  Из этого следует симметричность графика функции относительно оси ординат;

4) Функция не является монотонной на всей своей области определения;

5) Функция периодична с периодом .

Построим график функции . Как и при построении синуса удобно начинать с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Также нанесем на график координаты нескольких точек, для чего необходимо помнить значения косинусов нескольких основных табличных углов, например, что  С помощью этих точек мы можем построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

Функция тангенс и ее график

Перейдем к функции:

Основные свойства этой функции:

1) Область определения  кроме , где . Мы уже указывали в предыдущих уроках, что  не существует. Это утверждение можно обобщить, учитывая период тангенса;

2) Область значений , т.е. значения тангенса не ограничены;

3) Функция нечетная ;

4) Функция монотонно возрастает в пределах своих так называемых веток тангенса, которые мы сейчас увидим на рисунке;

5) Функция периодична с периодом 

Построим график функции . При этом удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е.  и т.д. Далее изображаем ветки тангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. При этом не забываем, что каждая ветка монотонно возрастает. Все ветки изображаем одинаково, т.к. функция имеет период, равный . Это видно по тому, что каждая ветка получается смещением соседней на  вдоль оси абсцисс.

Функция котангенс и ее график

И завершаем рассмотрением функции:

Основные свойства этой функции:

1) Область определения  кроме , где . По таблице значений тригонометрических функций мы уже знаем, что  не существует. Это утверждение можно обобщить, учитывая период котангенса;

2) Область значений , т.е. значения котангенса не ограничены;

3) Функция нечетная ;

4) Функция монотонно убывает в пределах своих веток, которые похожи на ветки тангенса;

5) Функция периодична с периодом 

Построим график функции . При этом, как и для тангенса, удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е.  и т.д. Далее изображаем ветки котангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. В этом случае учитываем, что каждая ветка монотонно убывает. Все ветки аналогично тангенсу изображаем одинаково, т.к. функция имеет период, равный .

Вычисление периодов тригонометрических функций со сложным аргументом

Отдельно следует отметить тот факт, что у тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:

У них период равен . И о функциях:

У них период равен .

Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.

Подробнее разобраться и понять, откуда берутся эти формулы, вы сможете в уроке про построение и преобразование графиков функций.

Тригонометрические уравнения и методы их решения

Мы подошли к одной из самых главных частей темы «Тригонометрия», которую мы посвятим решению тригонометрических уравнений. Умение решать такие уравнения важно, например, при описании колебательных процессов в физике. Представим, что вы на спортивной машине проехали несколько кругов на картинге, определить сколько времени вы уже участвуете в гонке в зависимости от положения машины на трассе поможет решение тригонометрического уравнения. 

Запишем простейшее тригонометрическое уравнение:

Решением такого уравнения являются аргументы, синус которых равен . Но мы уже знаем, что из-за периодичности синуса таких аргументов существует бесконечное множество. Таким образом, решением этого уравнения будут  и т.п. То же самое относится и к решению любого другого простейшего тригонометрического уравнения, их будет бесконечное количество.

Тригонометрические уравнения делятся на несколько основных типов. Отдельно следует остановиться на простейших, т.к. все остальные к ним сводятся. Таких уравнений четыре (по количеству основных тригонометрических функций). Для них известны общие решения, их необходимо запомнить.

Простейшие тригонометрические уравнения и их общие решения выглядят следующим образом:

Читайте также:  Какие свойства личности вам известны

1)

2)

3)

4)

Обратите внимание, что на значения синуса и косинуса необходимо учитывать известные нам ограничения. Если, например, , то уравнение не имеет решений и применять указанную формулу не следует. 

Кроме того, указанные формулы корней содержат параметр в виде произвольного целого числа . В школьной программе это единственный случай, когда решение уравнения без параметра содержит в себе параметр. Это произвольное целое число показывает, что можно выписать бесконечное количество корней любого из указанных уравнений просто подставляя вместо  по очереди все целые числа.

Ознакомиться с подробным получением указанных формул вы можете, повторив главу «Тригонометрические уравнения» в программе алгебры 10 класса.

Отдельно необходимо обратить внимание на решение частных случаев простейших уравнений с синусом и косинусом. Эти уравнения имеют вид:

 и

.

К ним не следует применять формулы нахождения общих решений. Такие уравнения удобнее всего решаются с использованием тригонометрической окружности, что дает более простой результат, чем формулы общих решений.

Например, решением уравнения  является . Попробуйте сами получить этот ответ и решить остальные указанные уравнения.

Кроме указанного наиболее часто встречающегося типа тригонометрических уравнений существуют еще несколько стандартных. Перечислим их с учетом тех, которые мы уже указали:

1) Простейшие, например, ;

2) Частные случаи простейших уравнений, например, ;

3) Уравнения со сложным аргументом, например, ;

4) Уравнения, сводящиеся к простейшим путем вынесения общего множителя, например, ;

5) Уравнения, сводящиеся к простейшим путем преобразования тригонометрических функций, например, ;

6) Уравнения, сводящиеся к простейшим с помощью замены, например, ;

7) Однородные уравнения, например, ;

8) Уравнения, которые решаются с использованием свойств функций, например, . Пусть вас не пугает, что в этом уравнении две переменные, оно при этом решается;

А также уравнения, которые решаются с использованием различных методов.

Системы тригонометрических уравнений и методы их решения

Кроме решения тригонометрических уравнений необходимо уметь решать и их системы.

Наиболее часто встречаются системы следующих типов:

1) В которых одно из уравнений степенное, например, ;

2) Системы из простейших тригонометрических уравнений, например, .

На сегодняшнем уроке мы рассмотрели основные тригонометрические функции, их свойства и графики. А также познакомились с общими формулами решения простейших тригонометрических уравнений, указали основные типы таких уравнений и их систем.

В практической части урока мы разберем методы решения тригонометрических уравнений и их систем.

Вставка 1. Решение частных случаев простейших тригонометрических уравнений.

Как мы уже говорили в основной части урока частные случаи тригонометрических уравнений с синусом и косинусом вида:

 и

 

имеют более простые решения, чем дают формулы общих решений.

Для этого используется тригонометрическая окружность. Разберем метод их решения на примере уравнения .

Изобразим на тригонометрической окружности точку, в которой значение косинуса равно нулю, оно же является координатой по оси абсцисс. Как видим, таких точек две. Наша задача указать чему равен угол, который соответствует этим точкам на окружности.

 
 

Начинаем отсчет от положительного направления оси абсцисс (оси косинусов) и при откладывании угла  попадаем в первую изображенную точку, т.е. одним из решений будет это значение угла. Но нас же еще устраивает угол, который соответствует второй точке. Как попасть в нее?

Для этого необходимо к уже отложенному углу добавить развернутый угол . Второй угол, который является решением уравнения, равен . Но нельзя забывать, что это еще не все, т.к. мы можем построить угол больший полного круга, и он еще раз попадет в первую точку и также будет решением нашего уравнения. Для этого необходимо прибавить ко второму вычисленному углу еще раз , и получим значение . Продолжать эти действия можно бесконечное количество раз.

Если выписать первые три полученных нами корня уравнения, то можно увидеть закономерность:

, , , …и выписать формулу для всех корней:

Как видим, эта формула действительно выглядит проще общего решения уравнения с косинусом, хотя бы потому, что в ней отсутствует «». Однако это не значит, что общая формула даст неверное решение.

Аналогично можно получить решения для всех остальных указанных частных случаев тригонометрических уравнений.

Полезные ссылки:

1)  Алгебра 9 класс: «Функция y=sinx, её свойства и график» 

2)  Алгебра 9 класс: «Функция y=cosx. Её свойства и график» 

3)  Алгебра 9 класс: «Функция y=cos t, её свойства и график» 

4)  Алгебра 9 класс: «Простейшие тригонометрические уравнения и сопутствующие задачи» 

5)  Алгебра 9 класс: «Элементы теории тригонометрических функций. Функция y=sinx» 

6)  Алгебра 9 класс: «Элементы теории тригонометрических функций. Функция y=cosx» 

7)  Алгебра 10 класс: «Функция y=sinx, ее основные свойства и график» 

8)  Алгебра 10 класс: «Функция y=sinx, её свойства, график и типовые задачи» 

9)  Алгебра 10 класс: «Функция y=cos t, её основные свойства и график» 

10) Алгебра 10 класс: «Функция y=cos t, её свойства, график и типовые задачи» 

11) Алгебра 10 класс: «Периодичность функций y=sin t, y=cos t» 

12) Алгебра 10 класс: «Как построить график функции y=m*f(x), если известен график функции y=f(x)» 

13) Алгебра 10 класс: «Как построить график функции y=f(kx), если известен график функции y=f(x)» 

14) Алгебра 10 класс: «Как построить график функции y=f(kx), если известен график функции y=f(x). Примеры построения» 

15) Алгебра 10 класс: «График гармонического колебания» 

16) Алгебра 10 класс: «Функция y=tgx, ее свойства и график» 

17) Алгебра 10 класс: «Функция y=сtgx, ее свойства и график» 

18) Алгебра 10 класс: «Первые представления о решении тригонометрических уравнений» 

19) Алгебра 10 класс: «Простейшие тригонометрические уравнения» 

Источник

Запрос «sin» перенаправляется сюда; см. также другие значения.

Запрос «sec» перенаправляется сюда; см. также другие значения.

Запрос «Синус» перенаправляется сюда; см. также другие значения.

Рис. 1.
Графики тригонометрических функций:      синуса,      косинуса,      тангенса,      котангенса,      секанса,      косеканса

Тригонометри́ческие фу́нкции — элементарные функции[1], которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.

Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.

Читайте также:  Какое свойство организма обеспечивает жизнь на земле

К тригонометрическим функциям традиционно причисляют:

прямые тригонометрические функции:производные тригонометрические функции:другие тригонометрические функции:обратные тригонометрические функции:

  • арксинус, арккосинус и т. д.

В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются , , . До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах[2], но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.

Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках , а у котангенса и косеканса — в точках .
Графики тригонометрических функций показаны на рис. 1.

Способы определения[править | править код]

Определение для любых углов[править | править код]

Рис. 2.
Определение тригонометрических функций

Обычно тригонометрические функции определяются геометрически[3]. Пусть нам дана декартова система координат на плоскости, и построена окружность радиуса с центром в начале координат . Всякий угол можно рассматривать как поворот от положительного направления оси абсцисс до некоторого луча , при этом направление поворота против часовой стрелки считается положительным, а по часовой стрелке — отрицательным. Абсциссу точки обозначим , ординату обозначим (см. рисунок 2).

В силу свойств подобных фигур значения тригонометрических функций не зависят от величины радиуса окружности . Часто радиус принимают равным величине единичного отрезка; тогда синус равен ординате , а косинус — абсциссе . На рисунке 3 показаны величины тригонометрических функций для единичной окружности.

Если  — вещественное число, то синусом в математическом анализе называется синус угла, радианная мера которого равна . Аналогично для прочих тригонометрических функций.

Определение для острых углов[править | править код]

Рис. 4.
Тригонометрические функции острого угла

В школьном курсе геометрии тригонометрические функции
острого угла определяются как отношения сторон прямоугольного треугольника[4]. Пусть OAB — прямоугольный треугольник с острым углом α. Тогда:

Построив систему координат с началом в точке , направлением оси абсцисс вдоль и в случае необходимости изменив ориентацию (перевернув) треугольник так, чтобы он находился в первой четверти системы координат, и затем, построив окружность с радиусом, равным гипотенузе, сразу находим, что такое определение функций приводит к тому же результату, что и предыдущее.

Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (См.: теорема синусов, теорема косинусов).

Тригонометрические функции являются периодическими функциями с периодами (360°) для синуса, косинуса, секанса и косеканса, и (180°) для тангенса и котангенса.

Тригонометрические функции любого угла можно свести к тригонометрическим функциям острого угла, используя их периодичность и так называемые формулы приведения.
Это необходимо, например, для нахождения значений тригонометрических функций по таблицам, поскольку в таблицах обычно приводятся значения только для острых углов.

Определение как решений дифференциальных уравнений[править | править код]

Функции косинус и синус можно определить как чётное (косинус) и нечётное (синус) решения дифференциального уравнения

с дополнительными условиями:
для косинуса и для синуса, то есть как функций одной переменной, вторая производная которых равна самой функции, взятой со знаком минус:

Определение как решений функциональных уравнений[править | править код]

Функции косинус и синус можно определить[5]
как решения ( и соответственно) системы функциональных уравнений:

при дополнительных условиях:

и при .

Определение через ряды[править | править код]

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу, и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:

Пользуясь этими формулами, а также равенствами и можно найти разложения в ряд и других тригонометрических функций:

где

 — числа Бернулли,
 — числа Эйлера.

Значения тригонометрических функций для некоторых углов[править | править код]

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («∞» означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).

Значения косинуса и синуса на окружности

Значения тригонометрических функций нестандартных углов[править | править код]

Значения тригонометрических функций для некоторых других углов

Свойства тригонометрических функций[править | править код]

Простейшие тождества[править | править код]

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности или теореме Пифагора, имеем:

Это соотношение называется основным тригонометрическим тождеством.

Деля это уравнение на квадрат косинуса и синуса соответственно, имеем далее:

Из определения тангенса и котангенса следует, что

Любую тригонометрическую функцию можно выразить через любую другую тригонометрическую функцию с тем же аргументом[6]:

Непрерывность[править | править код]

  • Синус и косинус — непрерывные функции.
  • Тангенс и секанс имеют точки разрыва ±π/2, ±3π/2, ±5π/2, …, ±(n + 1/2)π, … (в градусной мере: ±90°, ±270°, ±450°, …, ±(n + 1/2)·180°, …).
  • Котангенс и косеканс имеют точки разрыва 0, ±π, ±2π, …, ±nπ, … (в градусной мере: 0°, ±180°, ±360°, …, ±n·180°, …).

Чётность[править | править код]

Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:

Периодичность[править | править код]

Функции  — периодические с периодом , функции и  — c периодом .

Формулы приведения[править | править код]

Формулами приведения называются формулы следующего вида:

Здесь  — любая тригонометрическая функция,  — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), n — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол α острый, например:

или что то же самое:

Некоторые формулы приведения:

Формулы сложения[править | править код]

Значения тригонометрических функций суммы и разности двух углов:

Аналогичные формулы для суммы трёх углов:

Формулы для кратных углов[править | править код]

Формулы двойного угла:

Формулы тройного угла:

Читайте также:  Какие свойства характерны для металлов и сплавов

Прочие формулы для кратных углов:

следует из формулы дополнения и формулы Гаусса для гамма-функции.

Из формулы Муавра можно получить следующие общие выражения для кратных углов:

где  — целая часть числа ,  — биномиальный коэффициент.

Формулы половинного угла:

Произведения[править | править код]

Формулы для произведений функций двух углов:

Аналогичные формулы для произведений синусов и косинусов трёх углов:

Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.

Степени[править | править код]

Иллюстрация равенства

Суммы[править | править код]

Существует представление:

где угол находится из соотношений:

Универсальная тригонометрическая подстановка[править | править код]

Все тригонометрические функции можно выразить через тангенс половинного угла:

Исследование функций в математическом анализе[править | править код]

Разложение в бесконечные произведения[править | править код]

Тригонометрические функции могут быть представлены в виде бесконечного произведения многочленов:

Эти соотношения выполняются при любом значении .

Цепные дроби[править | править код]

Производные и первообразные[править | править код]

Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:

Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом[7]:

Тригонометрические функции комплексного аргумента[править | править код]

Определение[править | править код]

Формула Эйлера:

Формула Эйлера позволяет определить тригонометрические функции от комплексных аргументов через экспоненту или (с помощью рядов) как аналитическое продолжение их вещественных аналогов:

где

Соответственно, для вещественного x:

Комплексные синус и косинус тесно связаны с гиперболическими функциями:

Большинство перечисленных выше свойств тригонометрических функций сохраняются и в комплексном случае. Некоторые дополнительные свойства:

  • комплексные синус и косинус, в отличие от вещественных, могут принимать сколь угодно большие по модулю значения;
  • все нули комплексных синуса и косинуса лежат на вещественной оси.

Комплексные графики[править | править код]

На следующих графиках изображена комплексная плоскость, а значения функций выделены цветом. Яркость отражает абсолютное значение (чёрный — ноль). Цвет изменяется от аргумента и угла согласно карте.

Тригонометрические функции в комплексной плоскости

История названий[править | править код]

Линия синуса (линия AB на рис. 2) у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды данной дуги, поскольку дуга с хордой напоминает лук с тетивой). Затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские математики, переводя индийские книги с санскрита, не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали его арабскими буквами и стали называть линию синуса «джиба» (جيب‎). Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса как «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus — «синус», имеющим то же значение (именно в этом значении оно применяется как анатомический термин синус). Термин «косинус» (лат. cosinus) — это сокращение от лат. complementi sinus — дополнительный синус.

Современные краткие обозначения , введены Уильямом Отредом и Бонавентурой Кавальери и закреплены в трудах Леонарда Эйлера.

Термины «тангенс» (лат. tangens — касающийся) и «секанс» (лат. secans — секущий) были введены датским математиком Томасом Финке в его книге «Геометрия круглого» (Geometria rotundi, 1583).

Сам термин тригонометрические функции введён Клюгелем в 1770 году.

Позднее были введены и термины для обратных тригонометрических функций — арксинус, арккосинус, арктангенс, арккотангенс, арксеканс, арккосеканс — с помощью добавления приставки «арк» (от лат. arcus — дуга), — Ж. Лагранжем и др.

См. также[править | править код]

  • Гиперболические функции
  • Интегральный синус
  • Интегральный косинус
  • Интегральный секанс
  • Обратные тригонометрические функции
  • Редко используемые тригонометрические функции
  • Решение треугольников
  • Синус-верзус
  • Сферическая тригонометрия
  • Тригонометрические тождества
  • Тригонометрические функции от матрицы
  • Тригонометрический ряд Фурье
  • Функция Гудермана
  • Четырёхзначные математические таблицы (Таблицы Брадиса)
  • Эллиптические функции

Литература[править | править код]

  • Бермант А. Ф., Люстерник Л. А. Тригонометрия. — М.: Наука, 1967.
  • Тригонометрические функции — статья из Большой советской энциклопедии.  — М.: Советская энциклопедия, 1977. — Т. 26. — С. 204—206.
  • Бронштейн И. Н., Семендяев К. А. Прямолинейная тригонометрия // Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 179—184.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.

    • Переиздание: М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6 www.alleng.ru/d/math/math42.htm
  • Двайт Г. Б. Тригонометрические функции // Таблицы интегралов и другие математические формулы. — 4-е изд. — М.: Наука, 1973. — С. 70—102.
  • Кожеуров П. А. Тригонометрия. — М.: Физматгиз, 1963.
  • Маркушевич А. И. Замечательные синусы. — М.: Наука, 1974.
  • Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1984. — И. М. Виноградов. Тригонометрические функции // Математическая энциклопедия. — М.: Советская энциклопедия (рус.). — 1977—1985.
  • Тригонометрические функции // Энциклопедический словарь юного математика / Ред. коллегия, Гнеденко Б. В. (гл. ред.), Савин А. П. и др. — М.: Педагогика, 1985 (1989). — С. 299—301—305. — 352 с., ил. — ISBN 5-7155-0218-7 (С. 342, 343 — таблицы тригонометрических функций 0°-90°, в том числе в радианах)
  • Тригонометрические функции // Справочник по математике (для ср. уч. заведений) / Цыпкин А. Г., под ред. Степанова С. А. — 3-е изд. — М.: Наука, Гл. редакция физ.-мат. литературы, 1983. — С. 240—258. — 480 с.

Ссылки[править | править код]

  • GonioLab — прояснённая единичная окружность, тригонометрические и гиперболические функции (Java Web Start)
  • Weisstein, Eric W. Trigonometric Functions (англ.) на сайте Wolfram MathWorld.
  • Онлайн калькулятор: вычисление значений тригонометрических функций (в том числе нахождение углов треугольника по сторонам)
  • Интерактивная карта значений тригонометрических функций
  • Тригонометрические таблицы (0° — 360°)
  • «Синус и косинус — это проценты» — перевод статьи How To Learn Trigonometry Intuitively | BetterExplained (англ.)

Примечания[править | править код]

  1. ↑ Справочник: Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с. относит их к специальным функциям.
  2. ↑ Знак математический. // Большая советская энциклопедия. 1-е изд. Т. 27. — М., 1933.
  3. ↑ Справочник по элементарной математике, 1978, с. 282—284.
  4. ↑ Справочник по элементарной математике, 1978, с. 271—272.
  5. Ильин В. А., Позняк Э. Г. Основы математического анализа. Ч. 1. — М.: Наука, 1998. — ISBN 5-02-015231-5.
  6. ↑ Для значений аргумента, для которых нижеприведённые формулы определены.
  7. ↑ В формулах, содержащих логарифм в правой части равенств, константы интегрирования , вообще говоря, различны для различных интервалов непрерывности.

Источник