Какие свойства смазочных материалов характеризуют их качество

Главная / Информация / Основные параметры и свойства смазочных материалов

Материалы, способствующие уменьшению силы трения и износу трущихся поверхностей, увеличению нагрузочной способности механизмов, называют смазочными материалами.

Смазочные материалы широко применяются в современной технике, с целью уменьшения трения в движущихся механизмах (двигатели, подшипники, редукторы, и.т д), и с целью уменьшения трения при механической обработке конструкционных и других материалов на станках (точение, фрезерование, шлифование и т. д.). В зависимости от назначения и условий работы смазочных материалов (смазок), они бывают твёрдыми (графит, дисульфид молибдена, иодид кадмия, диселенид вольфрама, нитрид бора гексагональный и т. д.), полутвёрдыми, полужидкими (расплавленные металлы, солидолы, консталины и др), жидкими (автомобильные и другие машинные масла), газообразными (углекислый газ, азот, инертные газы).

По происхождению или исходному сырью различают такие смазочные материалы:
минеральные, или нефтяные, являются основной группой выпускаемых смазочных масел (более 90 %). Их получают при соответствующей переработке нефти. По способу получения такие материалы классифицируются на дистиллятные, остаточные, компаундированные или смешанные;

растительные и животные, имеющие органическое происхождение. Растительные масла получают путем переработки семян определенных растений. Наиболее широко в технике применяются касторовое масло.
животные масла вырабатывают из животных жиров (баранье и говяжье сало, технический рыбий жир, костное и спермацетовые масла и др.).
органические, масла по сравнению с нефтяными обладают более высокими смазывающими свойствами и более низкой термической устойчивостью. В связи с этим их чаще используют в смеси с нефтяными;
синтетические, получаемые из различного исходного сырья многими методами (каталитическая полимеризация жидких или газообразных углеводородов нефтяного и ненефтяного сырья; синтез кремнийорганических соединений — полисиликонов; получение фтороуглеродных масел). Синтетические масла обладают всеми необходимыми свойствами, однако, из-за высокой стоимости их производства применяются только в самых ответственных узлах трения.

По внешнему состоянию смазочные материалы делятся на:

жидкие смазочные масла, которые в обычных условиях являются жидкостями, обладающими текучестью (нефтяные и растительные масла);
пластичные, или консистентные, смазки, которые в обычных условиях находятся в мазеобразном состоянии (технический вазелин, солидолы, консталины, жиры и др.). Они подразделяются на антифрикционные, консервационные, уплотнительные и др.;
твердые смазочные материалы, которые не изменяют своего состояния под действием температуры, давления и т. п. (графит, слюда, тальк и др.). Их обычно применяют в смеси с жидкими или пластичными смазочными материалами.

По назначению смазочные материалы делятся на масла:
— моторные, предназначенные для двигателей внутреннего сгорания (бензиновых, дизельных, авиационных);
— трансмиссионные, применяемые в трансмиссиях тракторов, автомобилей, комбайнов, самоходных и других машин;
Эти два типа масел иногда объединяют термином «транспортные масла».
— индустриальные, предназначенные главным образом для станков;
— гидравлические для гидравлических систем различных машин;
Также выделяют компрессорные, приборные, цилиндровые, электроизоляционные, вакуумные и др. масла.

Основные параметры.

Основными характеристиками общими для всех жидких смазочных материалов являются:

· вязкость;

· температура застывания;

· температура вспышки;

· кислотное число.

Вязкость— одна из наиболее важных характеристик смазочного материала, во многом определяющая силу трения между перемещающимися поверхностями, на которые нанесен смазочный материал.

Значение вязкости смазочного материала всегда указывается при конкретном значении температуры, как прави ло, при 40 °С.

Температура застывания(точка утечки) — самая низкая температура, при которой масло растекается под действием силы тяжести. Понятие температуры застывания используется для определения прокачиваемости масла по трубопроводам и возможности смазки узлов трения, работающих при пониженной температуре. Под температурой застывания масла подразумевается температура, при которой масло, помещенное в пробирку и наклоненное под углом 45°, не изменяет своего уровня в течение одной минуты.Температура застывания должна быть на 5 … 7 °С ниже той температуры, при которой масло должно прокачиваться.

Температура вспышки— самая низкая температура, при которой масло воспламеняется при воздействии на него пламени. Температуру вспышки паров масла необходимо знать при подаче масла к узлам трения, работающим при повышенной температуре. Температуру вспышки определяют в открытом или закрытом тигле. Обычно в справочниках указывается температура вспышки паров масла в открытом тигле.

Кислотное число— мера содержания в масле свободных органических кислот. Кислотное число определяется количеством миллиграмм гидроксида калия (КОН), необходимым для нейтрализации всех кислых компонентов, содержащихся в 1 г масла. При старении масла кислотное число повышается. Во многих случаях это число является основным показателем для смены масла в циркуляционных смазочных системах.

При выборе жидких смазочных материалов для конкретных условий работы руководствуются следующими характеристиками:

· индекс вязкости— оценка изменения вязкости смазочного материала в зависимости от изменения температуры;

· окисляемость— оценка способности масла вступать в реакцию с кислородом. Стойкость к окислению — показатель стабильности того или иного масла;

· экстремальное давление(ЕР) — мера качества прочности масляной пленки, используется для характеристики смазочных материалов тяжело нагруженных поверхностей трения;

· заедание(Stick-slip) — оценка способности смазочного материала предотвращать скачки или неустойчивое движения силового стола или каретки станка даже при крайне низких скоростях.

Срок службы смазочного масла зависит от скорости накопления в нем вредных примесей и его старения

Пластичные (консистентные) смазочные материалы.Представляют собой нефтяные или синтетические масла с добавлением многофункциональных присадок и загустителя, в качестве которого используются мыла высших сортов жирных кислот, твердые углеводороды (церазины, парафины), силикагель и сажа, относящиеся к термостойким загустителям и др.

Пластичные смазочные материалы применяют в следующих случаях:

· для тяжелонагруженных подшипников скольжения, работающих при небольших скоростях в условиях граничного трения с частыми реверсами или в повторно-кратковременном режиме;

· когда смазочный материал кроме основного назначения используется как уплотняющий для предохранения поверхности от попадания загрязнителей из окружающей среды;

· для создания защитной масляной пленки на поверхности трения при длительных остановках;

· в узлах трения, доступ к которым затруднен или которые могут работать длительное время без пополнения смазки;

· при необходимости одновременного использования смазочного материала для консервации и смазки механизма.

Основные характеристики пластичных смазок:

· вязкость;

· предел прочности на сдвиг;

· температура каплепадения;

· число пенетрации.

Вязкость пластичных смазочных материалов, в отличие от смазочных масел, зависит не только от температуры, но и от скорости деформации. Значение вязкости пластичного смазочного материала, определенное при заданной скорости деформации и температуре, является постоянным и называется эффективной вязкостью.

Предел прочности на сдвиг— минимальное напряжение сдвига, которое вызывает переход смазки к ее вязкому течению. Предел прочности на сдвиг характеризует способность смазки удерживаться на движущихся деталях, вытекать и выдавливаться из негерметизированных узлов трения.

Читайте также:  Какое свойство графита используется в карандаше

Температура каплепадения— температура, при которой смазка утрачивает свою густую консистенцию и переходит в состояние жидкой смазки (температура, при которой падает первая капля). Обычно пластичную смазку применяют при температурах на 15 … 20 °С ниже температуры каплепадения.

Число пенетрацииопределяет степень загустения пластичного смазочного материала, которая по ГОСТ5346-78 определяется глубиной погружения в смазочный материал стандартного конуса пенетрометра за 5 с при температуре 25 °С и общей нагрузке 150 г и выражается в десятых долях миллиметра.

Вниманию посетителей: Данная информация предоставляется для ознакмления. Формулировки и цифровые значения могут отличаться от оффициальных описаний и тестовых показателей. Для уточнения или дополнения интересующей информации вы можете обратиться к оффициальным источникам конкретных производителей и сертификационых центров.

Типы базовых масел и температурные характеристики.
Парафиновые- от -12 до 140 ° C
Рапсовое- от — 20 до 80 ° C
Подсолнечное- от -18 до 110° C
Синтетические эфиры- от -30 до 170° C
Диэфиры- от -75 до 240° C
Синтетические углеводороды- от -60 до 170° C
Силиконовые- от -70 до 230° C

Загустители представлены:
Мыльными основами. Они подразделяются на натриевые, кальциевые, алюминиевые, литиевые, комплексные. Составляют более 80 % всего производства смазок.
Углеводородными основами.  Где в качестве основы используются парафины, церезины, петролатумы.
Неорганическими основами. Для которых используются силикаты и их производные.
Органическими основами. В которых применяются сажевые компоненты и полимерные химические конструкции.

Показатели кинематической вязкости при 40° C— Вязкость определяет толшину смазывающей пленки и соответственно несущие способности смазки.
< 100 cSt-  Очень низкие температуры, высокая скорость, низкая нагрузка.
100 cSt — 200 cSt- Средняя температура, скорость, нагрузка, “автомобильные”
200 cSt — 500 cSt- Средняя скорость, нагрузка от средней до высокой, “промышленные”
500 cSt — 1000 cSt- Низкая скорость, тяжелая нагрузка. “тяжелые промышленные”
> 1000 cSt- Очень низкая скорость, очень тяжелая нагрузка.

Присадки и добавки:
Стабилизаторы и загустители.Представленные комплексом химических соединений регулирующих вязкость базового масла и общую густоту смеси.
Моющие компоненты.(детергенты)Предотвращяют либо уменьшают коксование и появление высокотемпературных отложений.
Антиокислительные и антикоррозионные добавки. Предотвращают преждевременное старение компонентов смазки, уменьшают количество окисляющих веществ и коррозийных соединений.
Противозадирные и противоизносные компоненты. Представляют комплекс высокопрочных химических соединений. Предотвращают разрушение взаимодействующих поверхностей при граничном трении путем образования прочной защитной смазывающей пленки. Предотвращают непосредственный контакт рабочих поверхностей.
Депрессорные присадки. Добавки позволяющие значительно снизить порог низкотемпературного застывания смазки.
Антифрикционные добавки.Компоненты уменьшающие общий индекс трения. Создают дополнительные условия для скольжения взаимодействующих элементов добавляя в структуру смазки высокоподвижные соединения.

ISO 2137        Показатель пенетрации      Класс NGL
Очень мягкие           400-430 445-475                  00/ 000
Мягкие                      355-385  310 -340                     0/ 1
Средне твердые           265-295                             2/ 3/4
Твердые                         130-160 85-115                    5/ 6

Классификация биоразлагаемых и огнестойких гидравлических жидкостей

Категория согласно
DIN 51 5202 и ISO 6743/4    Состав и основные характеристики  Область применения и рабочие температуры.
НЕАЕ —
  Эмульсии   «масло  в  воде»,  минеральное  масло или синтетический сложный эфир.   Содержание воды > 80% Передача мощности, около 300 атм, высокие рабочие давления.
HFAS —  Водные синтетические химические растворы, не содержащие минеральных масел. Содержание воды > 80% Гидростатические приводы, около 160 атм, низкие рабочие давления. От 5 до < 55 °С
HFB  Эмульсии «вода в масле». Содержание минерального масла около 60% Применяется в угольной промышленности. От 5 до 60 °С
HFC — Водные растворы полимеров. Содержание воды >35% Гидростатические приводы, применяемые в индустриальных устройствах. От–20 до 60 °С
HFDR —  Полиалкиленгликоли, растворимые в воде. Гидростатические приводы. От –30 до < 90 °С
HFDL —  Безводные синтетические жидкости (например, сложные эфиры карбоновых кислот) Гидростатические приводы, индустриальные гидравлические системы. От –35 до < 90 °С

Категория согласно
VDMA 24568 и ISO 15380       БИОРАЗЛАГАЕМЫЕ
HEPG — Полиалкиленгликоли, растворимые в воде Гидростатические приводы. От –30 до <90 °С
HETG — Триглицериды (растительные масла), нерастворимые в воде Мобильные гидравлические системы. От –20 до < 70 °С
HEES — Синтетические сложные эфиры, нерастворимые в воде Мобильные и промышленные гидравлические системы. От– 30 до < 90 °С
HEPR ПАО — и/или родственные углеводороды, нерастворимые в воде Мобильные и индустриальные гидравлические системы. От –35 до < 80 °С

Полиорганосилоксаны- высокомолекулярные кислородосодержащие кремнийорганические соединения. [R2SiO]n
Силиконы построены в виде основной несущей неорганической кремний-кислородной цепи (…-Si-O-Si-O-Si-O-…), в которой к атомам кремния присоеденены органические группы. Изменяя длину осносвной цепи и боковые группы можно получать силиконы с различными свойствами. 
Силиконы делятся на три группы по параметрам цепи:

1- Силиконовые жидкости- менее 3000 силоксановых звеньев.
2 Силиконовые эластомеры — от 3000 до 10000 силоксановых звеньев.
3 Силиконовые смолы — более 10000 силоксановых звеньев и высокая сила связей.

Производство силиконов происходит стандартными методами химии полимеров, в том числе полимеризацией и поликонденсацией. Благодаря линейному строению молекулы появляется возможность создавать высокопрочные  соединения для получения силиконовых высокопрочных резин.
В быту силикон получил широкое распространение благодаря особым свойствам прочности, отсутствия токсичности, отличным адгезионным свойствам, гидрофобгости и способности выдерживать экстремально высокие и низкие температуры. Силиконы являются отличными изоляторами тока, обладают биологической и химической инертностью, экологической чистотой и долговечностью.
Силиконы широко применяются в виде: силиконовых антиадгезионных смазок для пресс-форм, гидрофобизирующих жидкостей, силиконовых масел и пластичных (консистентных) смазок, силиконовых амортизационных и демпфирующих жидкостей, силиконовых диэлектрических и герметизирующих составов, различных добавок и модификаторов, низкомолекулярных и высокомолекулярных каучуков, силиконовых герметиков холодного отверждения, силиконовых резин, силиконовых компаундов. Силиконовые смолы применяются в соединениях с другими полимерами в составах для нанесения покрытий, отличающихся стойкостью, электроизоляционной способностью или гидрофобностью.  Изделия из силикона сохраняют свою работоспособность от −60 °C до +200 °C В особых составах — от −100 °C до до +300 °C. Из-за высокой стоимости силиконов и особых свойств, пользующихся популярностью , в продажу регулярно поступают их подделки, чаще всего подделывается силиконовая резина и силиконовые герметики: их подменяют полихлорвинилом и акриловыми герметиками.

Источник

Важной характеристикой смазочных масел является вязкость и вязкостно-температурные свойства.

Вязкостью называют свойство жидкости оказывать сопротивление взаимному перемещению ее слоев под действием внешней силы. От вязкости масла зависит легкость пуска двигателя в холодную погоду, износ трущихся деталей, расход масла, а также мощность двигателя ( потери на трение).

Читайте также:  Какими свойствами обладает кора дуба

Различают динамическую, кинематическую и условную вязкость. Динамическая вязкость (h) измеряется в пуазах (Пз), размерность пуаза в системе СИ Па.с (кг/м.с). Чаще пользуются кинематической вязкостью (n), числено равной отношению динамической вязкости нефтепродукта к его плотности

n= h/r, где h- динамическая вязкость, Па.с

r — плотность нефтепродукта, кг/ мз.

Единицей кинематической вязкости является стокс (1 Ст = 1 см2/ с), сотая его часть называется сантистоксом (1 сСт=1 мм2/с).

Для оценки высоковязких темных продуктов пользуются условной вязкостью (ВУ), под которой понимают отношение времени истечения через стандартное отверстие вискозиметра определенного объема (например, 200 мл) испытуемой жидкости ко времени истечения такого же объема дистиллированной воды при 20оС. УВ, также как и кинематическая, может быть определена при различных температурах. Для взаимного пересчета различных единиц вязкости пользуются формулами, таблицами и номограммами.

Вязкость жидких продуктов зависит от их температур выкипания. Чем выше температура кипения фракции, тем больше ее вязкость. Среди различных углеводородов наименьшую вязкость имеют парафиновые, наибольшую — ароматические углеводороды. Вязкость возрастает с увеличением числа циклов в молекулах нафтеновых и ароматических углеводородов, а также с удлинением их боковых цепей. Абсолютное значение вязкости положено в основу классификации и маркировки смазочных масел. Так, например, моторные масла М-8 В и М-6з/ 12 Г и компрессорное К-19 имеют кинематическую вязкость при 100оС соответственно 8, 12 и 19 мм2/с, а индустриальные И-12А и ИГП-38 — кинематическую вязкость при 50оС соответственно 12 и 38 мм2/с.

Для определения вязкости жидких нефтепродуктов используются приборы, которые называются вискозиметрами. По принципу действия эти приборы делятся на три группы:

1. Капиллярные вискозиметры, основанные на определении текучести жидкости через капилляры — кинематическая вязкость.

2. Ротационные, основанные на измерении сопротивления сдвига относительно слоев жидкости и объемные — времени перемещения стандартного тела в объеме жидкости для определения динамической вязкости.

3. Вискозиметры, в которых измерение вязкости жидкости основано на измерении времени истечения стандартного объема жидкости к времени истечения такого же количества эталонного образца (например, воды) предназначены для измерения условной вязкости.

Для измерения вязкости топлив, масляных дистиллятов, масел и других светлых нефтепродуктов наибольшее распространение получили капиллярные вискозиметры. Для измерения вязкости темных нефтепродуктов пользуются условной вязкостью.

Особо важное значение при эксплуатации механизмов в широком интервале температур приобретает зависимость вязкости от температуры. При пуске холодного двигателя температура масла, как правило, равна температуре окружающей Среды. При работе двигателя температура масла возрастает и может превышать 100оС. Для облегчения пуска двигателя вязкость масла должна быть как можно меньше, а при работе прогретого двигателя желательно, чтобы вязкость была достаточно высокой для обеспечения жидкостного трения между его деталями. Вязкостно-температурные свойства смазочных масел оцениваются индексом вязкости (ИВ). Этот показатель определяется расчетным путем при известных кинематических вязкостях при 40 и 100оС. Чем меньше меняется вязкость масла с изменением температуры, тем выше его индекс вязкости. Индекс вязкости зависит от углеводородного состава. наибольшим индексом вязкости обладают парафиновые углеводороды, наименьшим полициклические конденсированные нафтеновые и нафтеноароматические углеводороды.

Смазочная способность.Основными функциями нефтяных масел являются снижение трения между твердыми поверхностями движущихся деталей, уменьшение износа и предотвращение задира, заедания и сваривания металлических поверхностей Под смазочной способностью следует понимать способность масел обуславливать малое сопротивление контактирующих поверхностей тангенциальным силам сдвига и высокое сопротивление сближению их под действием нормальной нагрузки. Различаю два основных режима трения, в которых проявляется действия масел — жидкостной гидродинамический) и граничный. В условиях жидкостного трения трущиеся поверхности разделены непрерывным слоем смазочного материала, в условиях граничного трения — его тонкой (0,1 — 0,5 мкм) и неравномерной пленкой. В реальных условиях в большинстве случаев трение бывает смешанным: и жидкостным, и граничным.

При жидкостном трении основную роль в проявлении антифрикционного действия масла играют состав и строение входящих в него углеводородов, при гранитном трении этот эффект зависит прежде всего от состава растворенных в масле природных поверхностно-активных веществ (ПАВ) и специально вводимых добавок. В условиях граничной смазки микронеровности металлических поверхностей приводят к деформации отдельных микроучастков или отрыву микрочастиц металла при перемещении поверхностей

Таким образом, смазочное действие масел зависит от многих физических, физико-химических и химических явлений и обусловлено процессами адсорбции и хемосорбции на поверхностях твердого тела и их модифицированием.

Стабильность к окислению кислородом воздуха является одним из важнейших показателей эксплуатационных свойств масел. Особенно важен этот показатель для моторных и других нефтяных масел, многократно прокачиваемых через узлы трения (циркуляционная система смазки) или предназначенных для длительного применения без замены и дозаправки. Исследованию окисления нефтяных масел и решению многих важных проблем посвящены фундаментальные работы Н.И.Черножукова, С.Э.Крейна и К.И.Иванова.

При окислении масел в условия эксплуатации увеличивается их кислотность и ухудшаются другие эксплуатационные свойства. Первое обусловлено накоплением в маслах низко- и высокомолекулярных кислот. Низкомолекулярные кислоты вызывают повышенную коррозию металлов, особенно цветных. Повышение кислотности масел за счет высокомолекулярных кислот (до 3-5 мг КОН/г) может и не влиять на коррозию и износ смазываемых деталей. Химическая активность высокомолекулярных кислот проявляется только при повышенных температурах и попадании в масло воды. В этих условиях они взаимодействуют с гидроокисью железа, образуя соли, выпадающие в осадок и катализирующие первичные реакции окисления. Накопление кислородсодержащих продуктов вызывает нежелательный рост электропроводности электроизоляционных масел. Высокомолекулярные продукты окисления (смолы, асфальтены и др.) плохо растворяются в маслах и являются причиной образования на металлических поверхностях лаковых пленок, нагаров и углистых отложений, вызывающих пригорание и потерю подвижности поршневых колец, а также перегрев деталей двигателя. При этом увеличивается износ цилиндро-поршневой группы двигателя; осадки и углистые отложения (размер частиц может достигать 1-2 мм) забивают фильтры и форсунки, вязкость масла повышается, что затрудняет его доступ к узлам трения.

Окисление масел ускоряется при повышенных температурах, каталитическом воздействии некоторых металлов (меди, свинца и др.), автокаталитическом воздействии продуктов окисления и т.п. Масла окисляются в объеме (в картере двигателя и т.п.) и в тонком слое ( на поверхности подшипников, колец, поршней, шестернях и др.). В результате окисления тонких пленок масел на нагретых деталях двигателя на поверхности металла образуются лаковые пленки. Лакообразование обычно начинается при 230 — 260 оС и достигает максимума при 300 — 320 оС. При более высокой температуре происходит термическое разложение лаковой пленки с выделением газообразных продуктов. Интенсивность лакообразования определяется температурой, составом масла и металла. В связи с этим в условиях повышенных температур и каталитического воздействия металлов обычно говорят о термоокислительной стабильности масел. Устойчивость масел к окислению в объеме называют иногда химической стабильностью. Основные закономерности окисления масел в объеме и в тонком слое при температурах до 250оС близки. Более высокие температуры вызывают глубокие термоокислительные превращения углеводородов и усиленное образование летучих продуктов.

Читайте также:  Какие свойства в гранате

Об окислении масел при эксплуатации судят по изменению кислотного числа, накоплению осадков и другим показателям (см. приложение 2). наиболее резко кислотность и содержание осадков увеличивается в первые часы работы двигателя на свежем масле. В дальнейшем свойства масла стабилизируются, способствует фильтрование и центрифугирование, периодический долив свежего масла и другие факторы. Процесс окисления эффективно тормозится смолистыми веществами, содержание которых в маслах регулируется глубиной их очистки. В промышленной практике стабильность масла повышают введением антиокислительных присадок.

Коррозионные и защитные свойства. Надежность и долговечность работы машин и механизмов во многом определяются эффективностью защиты металлических поверхностей от коррозии. Отсутствие коррозионного воздействия на металлы и защита их от коррозионно-агрессивных компонентов внешней Среды — требования ко всем нефтяным маслам. Особенно высоки эти требования к консервационным маслам, специально предназначенным защиты машин и оборудования от атмосферной коррозии. Под слоем смазочного материала могут протекать химическая и электрохимическая коррозия металла.

Химическая коррозия — это взаимодействие металла с коррозионно-агрессивными компонентами Среды и смазочного материала, приводящие к его разрушению не сопровождающееся возникновением в металле электрического тока. Применительно к химической коррозии говорят о коррозионных свойствах масел, т.е. их способность вызывать (коррозионная агрессивность) или предотвращать (противокоррозионные свойства) коррозию металлов при повышенных температурах. Характерными особенностями химических процессов, протекающих на поверхности металла, являются зависимость их скорости от температуры и сопровождение их выделением или поглощением тепла.

Электрохимическая коррозия — это разрушение металла при взаимодействии с коррозионной средой (электролитом), сопровождающееся возникновением в металле электрического тока. Скорость электрохимической коррозии контролируется работой микрогальванических пар на поверхности металла и зависит от разности потенциалов ее катодных и анодных участков. При электрохимических процессах продукты реакции отводятся с поверхности металла вглубь смазочного материала; ионизация атомов металла (анодный процесс) и ассимиляция образующихся в металле избыточных электронов деполяризатором (катодный процесс) протекают в результате пространственного разделения участков реакции не единовременно, Применительно к электрохимической коррозии говорят о защитных свойствах масла, т.е. о способности его тонкого слоя защищать металл от коррозионного воздействия внешних факторов (прежде всего электролитов).

Коррозионное действие масел в отличие от их защитной способности проявляется при повышенных температурах (от 80 до 300оС) и контактировании металла с объемом масла, в котором водный электролит отсутствует или его количество крайне незначительно. Способствуют коррозии также вторичные продукты окисления и термодеструкции масел.

В последние годы к нефтяным маслам различного назначения предъявляют повышенные требования по защитным свойствам. В основе высокого защитного действия лежит способность масел быстро вытеснять воду с поверхности металла, удерживать ее в объеме смазочного материала и образовывать на нем прочные адсорбционные и хемосорбционные пленки, препятствующие развитию электрохимических процессов. Базовые нефтяные масла не способны длительно защищать металлы от электрохимической коррозии. Их защитные свойства улучшают введением 3-5% ингибиторов коррозии (окисленных парафинов и церезинов, нитрованных масел, сульфонатов, сукцинимидов и др.).

Моющедиспергирующие свойства характеризуют способность масла обеспечивать необходимую чистку деталей двигателя, поддерживать продукты окисления и загрязнения во взвешенном состоянии. Чем выше моющедиспергирующие свойства масел, тем больше нерастворимых веществ – продуктов старения может удерживаться в работающем масле без выпадения в осадок, и меньше лакообразных отложений и нагаров образуется и остается на горячих деталях. Для уменьшения или предупреждения образования углеродистых отложений в моторные масла вводят специальные поверхностно-активные вещества (ПАВ), называемые моющедиспергирующими присадками. К их числу относятся сульфонаты, феноляты, салицилаты металлов (преимущественно бария, кальция и магния), а также беззольные соединения (сукцинимиды, различного рода сополимерные продукты и др.).

Моющедиспергирующие присадки адсорбируются на металлической поверхности, формируя на ней двойной электрический слой. Этот слой обладает экранирующим действием и препятствует образованию отложений. Участие молекул моющедиспергирующих присадок в поверхностных процессах, результатом которых является снижение склонности к образованию отложений, принято условно называть собственно моющим действием, а присадки — моющими присадками.

Моющие присадки проявляют разную эффективность действия по разным направлениям. Одна присадка не состоянии обеспечить требуемый уровень моющих свойств. Поэтому в современных моторных маслах используют сочетания моющих присадок, отличающихся по характеру действия. Как правило композиции присадок в отечественных моторных маслах высокого уровня качества включают в свой состав одну – две зольные моющие присадки и одну – две беззольные.

Для оценки моющего действия, а также для получения наиболее полного представления об уровне моющих свойств масел используют различные методы. Из них самыми распространенными в отечественной практике являются методы определения моющего потенциала и моющих свойств на установке ПЗВ.

Основу смазочных нефтяных масел, как правило, составляют высококипящие фракции нефти с пределами выкипания 300-500оС. Повышенная испаряемость масел, т.е. потеря маслом легких фракций, наблюдается преимущественно при его работе. Помимо повышения взрывоопасности высокая испаряемость масла ведет к его повышенному расходу. Испаряемость регламентируется фракционном составом масла и температурой вспышки.

Температура вспышки характеризует содержание в масле легких фракций: чем она ниже, тем при более низкой температуре выкипают первые фракции. Из двух равновязких масел лучшими эксплуатационными свойствами (большим индексом вязкости и высокой антиокислительной стабильностью) обладает масло с более узким пределом выкипания.

Низкотемпературные свойства масел характеризуются температурой застывания и вязкостью при низких температурах.

Температурой застывания называют ту температуру, при которой масло теряет свою подвижность. Потерю подвижности могут обуславливать две причины: 1-я – это значительное повышение вязкости при понижении температуры; 2-я – образование структурного каркаса кристаллов твердых углеводородов, выделяющихся при охлаждении. Этот показатель имеет значение при транспортировке и применении масла в зимних условиях.

Вязкость при низких температурах, в частности при минус 18оС влияет на пусковые свойства, в основном, моторных и трансмиссионных масел.

Коксуемость оценивает склонность масел к нагарообразованию. Этот показатель характеризует степень очистки масел от асфальтово смолистых веществ. Прсутствие присадок увеличивает этот показатель.

Источник