Какие свойства проявляет соль хрома

Какие свойства проявляет соль хрома thumbnail

Какие свойства проявляет соль хрома

Элемент хром расположен в четвертом периоде и побочной подгруппе VI группы Периодической системы. Атом хрома имеет электронную конфигурацию $1s^22s^22p^63s^23p^63d^54s^1$. Обратите внимание на провал электрона: подобно другим элементам шестой группы в соединениях хром проявляет максимальную степень окисления +6, однако наиболее устойчив в более низкой степени окисления +3.

Элемент хром был обнаружен в природном минерале в конце XVIII века. Тогда же были получены его соли, яркая и разнообразная окраска которых и объясняет данное элементу название – оно происходит от греческого слова «chroma» — цвет, краска.

Нахождение в природе и получение

В природе встречается преимущественно в виде двойного оксида – хромистого железняка $FeCr_2O_4$, переработкой которого и получают металл. Восстановление хромистого железняка углем в электрических дуговых печах приводит к феррохрому – сплаву железа и хрома:

$FeCr_2O_4 + 4C xrightarrow[]{t, ^circ C} Fe + 2Cr + 4CO$

Содержание хрома в нем может достигать 70%. Феррохром используют для производства хромированной стали. Металл не содержащий железа получают восстановлением оксида алюминием:

$Cr_2O_3 + 2Al xrightarrow[]{t, ^circ C} Al_2O_3 + 2Cr$

Метод алюмотермии был разработан в конце XIX века как раз для производства хрома. Наиболее чистый хром получают электролизом растворов.

Физические свойства

В свободном виде хром – довольно тяжелый серебристо-белый  тугоплавкий (т. пл. $1875^0C$, т. кип. $2680^0C$) металл, обладающий высокой твердостью – он царапает стекло. Чистый хром пластичен, однако даже незначительные примеси кислорода, азота и углерода делают его хрупким. Такой металл при ударе молотком легко раскалывается. Значительное влияние даже ничтожного количества примесей на физические свойства характерно и для большинства других переходных металлов.

Химические свойства хрома

При комнатной температуре хром малоактивен. В отличие от железа он не окисляется и не тускнеет даже при хранении на влажном воздухе и в воде.  С этим качеством хрома связано его использование в борьбе с коррозией железа. Металлический хром используют в виде хромированного покрытия или добавляют при производстве нержавеющей стали. Лишь раскаленный до высокой температуры хром сгорает в кислороде с образованием темно-зеленого порошка оксида хрома(III): 

$4Cr + 3O_2 = 2Cr_2O_3$

. Выше 600°C хром реагирует с хлором и бромом, также давая соединения хрома(III).

Хотя в ряду напряжений хром расположен левее водорода, он не окисляется даже на влажном воздухе благодаря образованию на поверхности тонкой прозрачной пленки оксида. В разбавленных кислотах хром растворяется, образуя красивые ярко-синие растворы солей хрома(II), устойчивые лишь в отсутствие кислорода воздуха:

$Cr + 2HCl = CrCl_2 + H_2$

В присутствии кислорода воздуха образуются соли хрома (III):

$4Cr + 12HCl + 3O_2 = 4CrCl_3 + 6H_2O$

При комнатной температуре хром не реагирует с концентрированными растворами кислот-окислителей – серной и азотной. При нагревании с этими кислотами образуются соли хрома(III):

$2Cr + 6H2SO_{4textrm{(конц.)}} xrightarrow[]{t, ^circ C} Cr_2(SO_4)_3 + underline{3SO_2uparrow} + 6H_2O$

$Cr + 6HNO_{3textrm{(конц.)}} xrightarrow[]{t, ^circ C} Cr(NO_3)_3 + underline{3NO_2uparrow} + 3H_2O$

Подобно многим другим переходным металлам хром образует несколько рядов соединений, отвечающих различным степеням окисления.

СОЕДИНЕНИЯ ХРОМА(II)

Ярко-синие растворы солей хрома(II), образующиеся при растворении металла с разбавленных кислотах в атмосфере азота, на воздухе мгновенно окисляются до хрома(III), что сопровождается изменением окраски на серо-фиолетовую или зеленую:

$4CrCl_2 + O_2 + 4HCl = 4CrCl_3 + 2H_2O$

Cr2+ – e–  -> Cr3+           |1              4|                   окисление,  $CrCl_2$– восстановитель за счет Cr2+

O20 + 4e– -> 2O2–         |4               1|                 восстановление, O20 – окислитель

$4Cr^{2+} + O_2^0 = 4Cr^{3+} + 2O^{2–}$

Это свидетельствует о том, что хром в степени окисления +2 является сильным восстановителем.

При действии на соли хрома(II) растворами щелочей выпадает желтый осадок гидроксида, не реагирующий с избытком щелочи, то есть проявляющий основные свойства:

$CrCl_2 + 2NaOH = Cr(OH)_2downarrow+ 2NaCl$

 Соответствующий ему оксид CrO также является основным.

Соединения хрома(III)

Одно из важнейших соединений хрома(III) – оксид $Cr_2O_3$ – представляет собой темно-зеленый порошок, нерастворимый в воде. В природе он встречается в виде минерала хромовой охры. На основе этого вещества изготавливают полировальные пасты.

Оксид и гидроксид хрома(III) реагируют как с кислотами, так и с щелочами, что доказывает их амфотерность. При растворении гидроксида хрома в кислотах образуются соли хрома(III) окрашенные в темно-зеленый или в фиолетовый цвет:

$2Cr(OH)_3 + 3H_2SO_4 = Cr_2(SO_4)_3 + 6H_2O$

Из фиолетового раствора, полученного добавлением к раствору сульфата хрома(III) сульфата калия на холоду кристаллизуются темно-фиолетовые октаэдрические кристаллы хромокалиевых квасцов $KCr(SO_4)_2cdot12H_2O$ – двойного сульфата хрома-калия. Раньше их использовали для выделки кож. При действии на раствор хромокалиевых квасцов ортофосфата аммония выпадает зеленый осадок фосфата хрома(III) $CrPO_4$. Соли хрома(III) и слабых кислот – сероводородной, угольной, сернистой, кремниевой – не удается осадить из водных растворов вследствие полного необратимого гидролиза. Если к зеленому раствору хлорида хрома(III) прибавить раствор сульфида натрия наблюдается выделение сероводорода и выпадение серо-зеленого осадка гидроксида:

Читайте также:  Каким свойством обладает объем фигуры

$2CrCl_3 + 3Na_2S + 6H_2O = 2Cr(OH)_3downarrow + 6NaCl + 3H_2S­uparrow$

При растворении гидроксида хрома(III) в щелочах образуются изумрудно-зеленые растворы хромитов:

$Cr(OH)_3 + 3KOH _{textrm{(водн.)}} = K_3[Cr(OH)_6]$

Сплавлением оксида хрома(III) с щелочами или карбонатами щелочных металлов получают хромиты другого состава, например, $NaCrO_2$:

$Cr_2O_3 + 2NaOH xrightarrow[]{t, ^circ C} 2NaCrO_2 + H_2O$

$Cr_2O_3 + Na_2CO_3 xrightarrow[]{t, ^circ C} 2NaCrO_2 + CO_2$

При действии кислот хромиты разрушаются:

  • при недостатке кислоты превращаясь в гидроксид хрома(III) $NaCrO_2 + HCl + H_2O = Cr(OH)_3downarrow + NaCl$

  • в избытке кислоты образуя соли $NaCrO_2 + 4HCl = CrCl_3 + NaCl + 2H_2O$

Степень окисления +3 для хрома наиболее устойчива, поэтому соединения хрома(III) могут быть восстановлены до хрома(II) лишь под действием сильных восстановителей: 

$2CrCl_3 + Zn = 2CrCl_2 + ZnCl2$

Сильные окислители, например, пероксид водорода или бром в щелочной среде переводят соединения хрома(III) в соединения хрома(VI):

$2Cr(OH)_3 + 3Br_2 + 10NaOH = 2Na_2CrO_4 + 6NaBr + 8H_2O$

 О протекании реакции свидетельствует появление желтого окрашивания раствора. Хроматы – это соли хромовой кислоты $H_2CrO_4$, известной лишь в разбавленных водных растворах.

СОЕДИНЕНИЯ ХРОМА(VI)

Хромат-ионы $CrO_4^{2-}$ устойчивы лишь в щелочной среде, а при подкислении переходят в оранжевые бихроматы, соли двухромовой кислоты $H_2Cr_2O_7$:

$2CrO_4^{2-}+  2H^+ leftrightarrow Cr_2O_7^{2–} + H_2O$

Реакция обратима, поэтому при добавлении щелочи желтая окраска хромата восстанавливается:

$Cr_2O_7^{2–} + 2OH^- leftrightarrow 2CrO_4^{2-}+  H_2O$

$textrm{оранжевый} Leftrightarrow textrm{желтый}$

$Cr_2O_7^{2–}  xrightarrow [OH^-]{H^+}CrO_4^{2-}$

$textrm{дихромат} Leftrightarrow textrm{хромат}$

Добавление к раствору бихромата калия $K_2Cr_2O_7$ концентрированной серной кислоты приводит к выделению ярко-красного осадка хромового ангидрида $CrO_3$:

$Na_2Cr_2O_7 + 2H_2SO_{4textrm{(конц.)}}= 2NaHSO_4 + 2CrO_3 + H_2O$

Оксид хрома(VI) является кислотным оксидом: с водой образует соответствующие кислоты:

$CrO_3 + H_2O = H_2CrO_4$

$2CrO_3 + H_2O = H_2Cr_2O_7$

Как типичный кислотный оксид $CrO_3$ реагирует с  щелочами и основными оксидами  с образованием хроматов:

$CrO_3 + BaO = BaCrO_4$

$CrO_3 + 2NaOH = Na_2CrO_4 + H_2O$

Соединения хрома(VI) – сильные окислители. Хромовый ангидрид воспламеняет этиловый спирт, легко окисляет многие органические вещества. Раствор бихромата калия в крепкой серной кислоте называют хромовой смесью. Ее часто применяют в химических лабораториях для мытья посуды. Благодаря входящему в ее состав бихромату хромовая смесь проявляет сильные окислительные свойства. Убедимся в этом на опыте. Пропустим через хромовую смесь сероводород. Оранжевая окраска раствора быстро сменяется на темно-зеленую, наблюдается выпадение осадка серы:

$3H_2S + K_2Cr_2O_7 + 4H2SO4 = 3S + Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O$

Бихроматы проявляют окислительные свойства не только в растворах, но и в твердом виде. Так, при спекании с серой или углем они восстанавливаются:

$Na_2Cr_2O_7 + S xrightarrow[]{t, ^circ C}Na_2SO_4 + Cr_2O_3$

Эти реакции используют для получения оксида хрома(III).

Хроматы и бихроматы некоторых металлов используют в качестве желтых, красных и оранжевых пигментов.

Генетический ряд хрома

Изучение химии соединений хрома в различных степенях окисления позволяет проследить закономерности изменения кислотно-основных и окислительно-восстановительных свойств в ряду Cr(II) – Cr(III) – Cr(VI).

Запомнить! Оксид и гидроксид хрома(II) обладают основными свойствами, соединения хрома (III) амфотерны, а хрома(VI) – кислотные.

Соединения хрома(II) – типичные восстановители, а соединения хрома в высшей степени окисления – типичные окислители. Для соединений хрома(III) характерны и окислительные, и восстановительные свойства.

 Cr(II)   Cr(III)  Cr(VI)
 CrO    $Cr_2O_3$    $CrO_3$
$ Cr(OH)_2$ $Cr(OH)_3$ $ H_2CrO_4, H_2Cr_2O_7$

Соли – с кислотами

$Cr^{2+}$

Соли – с кислотами

$Cr^{3+}$

Гидроксокомплексы: 

$[Cr(OH)_6]^{3-}$

Хроматы

$Na_2CrO_4$

Дихроматы

$K_2Cr_2O_7$

основный характерамфотерный характеркислотный характер
типичные восстановителимогут проявлять и окислительные и восстановительные свойстватипичные окислители

$xrightarrow[]{textrm{кислотные свойства возрастают}}$

$xleftarrow[]{textrm{ восстановительные свойства возрастают}}$

Восстановительные свойства хрома(II) ярче всего проявляются в кислой среде, а окислительные свойства хрома(VI) – в щелочной.

Все соединения хрома, особенно в высшей степени окисления, ядовиты!

Источник

Чистый хром — очень твердый тугоплавкий металл голубовато-серебристого цвета. Имеет самую большую твердость из всех применяемых в промышленности металлов. Т. пл. 1890°С, плотность 7,19 г/см.

24Cr [Ar]3d54s1

Изотопы:

50Cr (4.35 %)

52Cr (83,79 %)

53Cr (9.50 %)

54Cr (2.36 %)

ЭО 1,6

E°Cr0/Cr3+ -0,74 В

При образовании соединений с другими элементами хром может использовать от 1 до 6 валентных электронов. Наибольшую устойчивость и практическую значимость имеют соединения, в которых атомы Сг находятся в степенях окисления +2, +3, +6.

С повышением степени окисления атомов Сг в оксидах и гидроксидах их основный характер ослабевает,а кислотный — усиливается. В этом же направлении происходит замена восстановительной активности на окислительную.

Читайте также:  Какое свойство ртути лежит в основе

Cr+2

Cr+3

Cr+6

Оксиды

CrOосновный

Cr2O3амфотерный

CrO3кислотный

Гидроксиды

Cr(OH)2слабое основание

Cr(OH)3 ↔ HCrO2 + H2Oамфотерный гидроксид

2H2CrO4 ↔ H2Cr2O7 + H2O сильные кислоты

Соли

CrCl2,
CrSO4,
Cr(NO3)2,
CrS

Тип ICrCl3,
Cr(SO4)3,
Cr(NO3)3

Тип IIKCrO2,
Ca(CrO2)2,
Fe(CrO2)2хромиты

хроматыK2CrO4,
Na2(CrO4)2,
BaCrO4,PbCrO4

дихроматыK2Cr2O7,
Na2Cr2O7,
(NH4)2Cr2O7

Окислительно-восстановительная функция

Сильные восстановители

Окислители и восстановители

Сильные окислители

1. Алюминотермический: Сr2O3 + 2Al = Аl2O3 + 2Сr

2. Силикотермический: 2Сr2O3 + 3Si = 3SiO2 + 4Cr

3. Электролитический: 2CrCl3 = 2Сr + 3Cl2

Поверхностная оксидная пленка является причиной инертности хрома при обычной температуре, благодаря чему этот металл не подвергается атмосферной коррозии (в отличие от железа).

При нагревании хром проявляет свойства довольно активного металла, что соответствует его положению в электрохимическом ряду напряжений.

Тонкоизмельченный хром интенсивно горит в токе кислорода. На воздухе реакция с O2 происходит лишь на поверхности металла.

4Сr + 3O2 = 2Сr2O3

При осторожном окислении амальгамированного хрома образуется низший оксид CrO.

(Сr не взаимодействует с Н2, но поглощает его в больших количествах)

2Cr + 3Cl2 = 2CrCl3

Cr + S = CrS

CrCl3 и CrS — ионные соединения.

2Cr + N2 = 2CrN

Cr + C → CrxCy

CrN и rxCy — ковалентные тугоплавкие инертные вещества, по твердости сравнимы с алмазом.

Сr + 2HCl = СrСl2 + Н2↑

Сr + H2SO4 = CrSO4 + Н2↑

Эти кислоты не растворяют хром при обычной температуре, они переводят его в «пассивное» состояние.

Пассивацию можно частично снять сильным нагреванием, после чего хром начинает очень медленно растворяться в кипящих конц. HNO3, H2SO4, «царской водке».

Сr + 6HNO3 = Cr(NO3)3 + 3NO2↑ + 3H2O

2Сr + 6H2SO4 = Cr2(SO4)3 + 3SO2↑ + 6H2O

Царская водка — смесь концентрированных HNO33 и НСl (1:3), растворяет золото и платиновые металлы (Pd,Os,Ru).

Сr + CuSO4 = CrSO4 + Сu

Сr + Pb(NO3)2 = Cr(NO3)2 + Pb

2Сr + KIO3 = Сr2O3 + KCl

2Сr + 3NaNO3 = Сr2O3 + 3NaNO2

Соединения Cr (II)

СrO — оксид хрома (II). Твердое черное вещество, н. р. в Н2O.

1) медленное окисление хрома, растворенного в ртути

2Сr + O2 = 2СrO

2) обезвоживание Сr(ОН)2 в восстановительной атмосфере:

Сr(ОН)2 = СrO + H2O

СrO — неустойчивое вещество, легко окисляется при небольшом нагревании до Сr2O3; при более высоких Т диспропорционирует:

3СrО = Сr + Сr2O3

СrO — типичный основный оксид, проявляет характерные для этого класса свойства. Реакции необходимо проводить в восстановительной среде.

Сr(OН)2 — гидроксид хрома (II) твердое желтое вещество, н. р. в Н2O.

Получают обменными реакциями из солей Сr2+:

CrCl2 + 2NaOH = Сr(ОН)2 + 2NaCl

Неустойчивое вещество, разлагается при нагревании; на воздухе быстро окисляется с образованием зеленого гидроксида хрома (III);

4Сr(ОН)2 + O2 + 2Н2O = 4Сr(ОН)3

желтый → зеленый

Наиболее важные: CrCl2, CrSO4, (СН3СОО)2Сr. Гидратированный ион Сr2+ имеет бледно-голубую окраску.

1. Сr + неметалл (S, Hal2)

Сr + 2HCl(r) = CrCl2 + Н2

2. Восстановление солей Сr3+:

2СrСl3 + Н2 = 2CrCl2 + 2HCl

1. Соли Сr2+ — сильные восстановители, так как очень легко окисляются до солей Сr3+

4CrCl2 + 4HCl + O2 = 4СrСl3 + 2Н2О

2. Раствор CrSO4 в разбавленной H2SO4 — превосходный поглотитель кислорода:

4CrSO4 + O2 + 2H2SO4 = 2Cr2(SO4)3 + 2Н2О

3. С аммиаком соли Сr2+ образуют комплексные соли — аммиакаты:

CrCl2 + 6NH3 = [Cr(NH3)6]Cl2

Для Сr2+ характерно образование двойных сульфатов, например: K2Cr(SO4)2• 6Н2O

Соединения Сr(III)

Сr2О3 — оксид хрома (III), важнейшее природное соединение хрома. Сr2О3, полученный химическими методами, представляет собой темно-зеленый порошок.

1. Синтез из простых веществ:

4Сr + 3O2 = 2Сr2О3

2. Термическое разложение гидроксида хрома (III) или дихромата аммония:

2Сr(ОН)3 = Сr2O3 + 3Н2O

(NH4)2Cr2O7 = Сr2O3 + N2 + 4Н2O

3. Восстановление дихроматов углеродом или серой:

К2Сr2O7 + S = Сr2O3 + K2SO4

Сr2O3 используется для изготовления краски «хромовая зеленая», обладающей термо- и влагоустойчивостью.

Сr2O3 — типичный амфотерный оксид

В порошкообразном виде реагирует с сильными кислотами и сильными щелочами, в кристаллическом виде — химически инертное вещество.

К наиболее практически важным реакциям относятся следующие:

1. Восстановление с целью получения металлического хрома:

Сr2O3 + 2Al = 2Сr + Аl2O3

2. Сплавление с оксидами и карбонатами активных металлов:

Сr2O3 + МgО = Мg(СrO2)2

Сr2O3 + Na2CO3 = 2NaCrO2 + CO2

Образующиеся метахромиты являются производными метахромистой кислоты НСrO2.

3. Получение хлорида хрома (III):

Сr2O3 + ЗС + 3Cl2 = 2СrСl3 + ЗСО

Сr2O3 + ЗССl4 = 2СrСl3 + ЗСОСl2

Образуется в виде синевато-серого осадка при действии щелочей на соли Сr3+:

СrСl3 + 3NaOH = Сr(ОН)3 + 3NaCl

Практически нерастворимый в воде гидроксид может существовать в виде коллоидных растворов.

В твердом состоянии гидроксид хрома (III) имеет переменный состав Сr2O3• nН2O. Теряя молекулу воды, Сr(ОН)3 превращается в метагидроксид СrО(ОН).

Читайте также:  Какие свойства характерны для веществ с молекулярной кристаллической

Сr(ОН)3 — амфотерный гидроксид, способный растворяться как в кислотах, так и в щелочах:

Cr(OH)3 + 3HCl = СrСl3 + ЗН2O

Сr(ОН)3 + ЗН+ = Сr3+ + ЗН2O

Сr(ОН)3 + 3NaOH = Na3(Cr(OH)6]

Сr(ОН)3 + ЗОН- = [Cr(OH)6]3-гексагидроксохромитанион

При сплавлении с твердыми щелочами образуются метахромиты:

Сr(ОН)3 + NaOH = NaCrO2 + 2Н2O

Растворением осадка Сr(ОН)3 в кислотах получают нитрат Cr(NO3)3, хлорид СrСl3, сульфат Cr2(SO4)3 и другие соли. В твердом состоянии чаще всего содержат в составе молекул кристаллизационную воду, от количества которой зависит окраска соли.

Самой распространенной является двойная соль КСr(SO4)2• 12H2O — хромокалиевые квасцы (сине-фиолетовые кристаллы).

Хромиты, или хроматы (III) — соли, содержащие Сr3+ в составе аниона. Безводные хромиты получают сплавлением Сr2O3 с оксидами двухвалентных металлов:

Сr2O3 + МеО = Ме(СrO2)2 метахромиты

В водных растворах хромиты существуют в виде гидроксокомплексов.

К наиболее характерным свойствам солей Cr(III) относятся следующие:

1. Осаждение катиона Сг3+ под действием щелочей:

Сr3+ + ЗОН- = Сr(ОН)3

Характерный цвет осадка и его способность растворяться в избытке щелочи используется для отличия ионов Сг3+ от других катионов.

2. Легкая гидролизуемость в водных растворах, обусловливающая сильнокислый характер среды:

Сr3+ + Н2O = СrОН2+ + Н+

Соли Сr (III) с анионами слабых и летучих кислот в водных растворах не существуют; так как подвергаются необратимому гидролизу, например:

Cr2S3 + 6Н2O = 2Сr(ОН)3 + 3H2S

3. Окислительно-восстановительная активность:

а) окислитель: соли Cr(III) → соли(VI)

см. «Получение солей Cr(VI)»

б) восстановительь: соли Cr(III) → соли(II)

см. «Получение солей Cr(II)»

4. Способность к образованию комплексных соединений — аммиакатов и аквакомплексов, например:

СrСl3 + 6NH3 = [Cr(NH3)6]Cl3

Соединения Cr(VI)

Кристаллическое вещество темно-красного цвета, очень гигроскопичное, легко растворимое в воде. Основной способ получения:

К2Сr2O7(кр.) + H2SO4 = 2CrO3 + K2SO4 + Н2O

СrО3 — кислотный оксид, активно взаимодействует с водой и щелочами, образуя хромовые кислоты и хроматы.

Хромовый ангидрид — чрезвычайно энергичный окислитель. Например, этанол воспламеняется при соприкосновении с СrO3:

С2Н6ОН + 4СrO3 = 2CO2 + ЗН2O + 2Сr2O3

Продуктом восстановления хромового ангидрида, как правило, является Сr2O3.

Хромовые кислоты — Н2СrO4, Н2Сr2O7.

При растворении CrO3 в воде образуются 2 кислоты:

CrO3 + Н2O = Н2СrO4 хромовая

2CrO3 + Н2O = Н2Сr2O7 дихромовая

Обе кислоты существуют только в водных растворах. Между ними устанавливается равновесие:

2Н2СrO4 = Н2Сr2O7 + Н2O

Обе кислоты очень сильные, по первой ступени диссоциированы практически полностью:

Н2СrO4 = Н+ + НCrO4-

Н2Сr2O7 = Н+ + НСr2O7-

Хроматы (VI)
— соли, содержащие анионы хромовой кислоты CrO42-. Почти все имеют желтую окраску (реже — красную). В воде хорошо растворяются только хроматы щелочных металлов и аммония. Хроматы тяжелых металлов н. р. в Н2O. Наиболее распространены: Na2CrO4, К2CrO4, РЬCrO4 (желтый крон).

1. Сплавление CrO3 с основными оксидами, основаниями:

CrO3 + 2NaOH = Na2CrO4 + Н2O

2. Окисление соединений Cr(III) в присутствии щелочей:

2К3[Сr(ОН)6]+ ЗВr2+ 4КОН = 2К2СrO4 + 6КВr + 8Н2O

3. Сплавление Сr2O3 со щелочами в присутствии окислителя:

Сr2О3 + 4КOН + КClO3 = 2К2СrO4 + KCl + 2Н2O

Хроматы существуют только в разбавленных щелочных растворах, которые имеют желтую окраску, характерную для анионов СrO42-. При подкислении раствора эти анионы превращаются в оранжевые дихромат-анионы:

2СrO42- + 2Н+ = Сr2O72- + Н2O Это равновесие мгновенно сдвигается в ту или иную сторону при изменении рН растворов.

Хроматы — сильные окислители.

При нагревании хроматы тяжелых металлов разлагаются; например:

4Нg2СrO4 = 2Сr2O3 + 8Нg + 5O2

Дихроматы (VI)
— соли, содержащие анионы дихромовой кислоты Сr2O72-

В отличие от монохроматов имеют оранжево-красную окраску и обладают значительно лучшей растворимостью в воде. Наиболее важные дихроматы — К2Сr2O7, Na2Cr2O7, (NH4)2Cr2O7.

Их получают из соответствующих хроматов под действием кислот, даже очень слабых, например:

2Na2CrO4 + 2СO2 + Н2O → Na2Cr2O7 + 2NaHCO3

Водные растворы дихроматов имеют кислую среду вследствие устанавливаемого равновесия с хроматанионами (см. выше). Окислительные свойства дихроматов наиболее сильно проявляются в подкисленных растворах:

Сr2O72- + 14Н+ + 6e- = 2Сr3+ + 7Н2O

При добавлении восстановителей к кислым растворам дихроматов окраска резко изменяется от оранжевой до зеленой, характерной для соединений Сг3+.

K2Cr2O7 + 14HCl = 2CrCl3 + 3Cl2↑ + 2KCl +7Н2О

K2Cr2O7 + 3H2S + 4H2SO4 = Cr2(SO4)3 + 3S↓ + K2SO4

K2Cr2O7 + 3SO2 + H2SO4 = Cr2(SO4)3 + K2SO4 + H2O

Эта реакция используется для получения хромокалиееых квасцов KCr(SO4)2 • 12H2O

K2Cr2O7 + 6HI + 4H2SO4 = Cr2(SO4)3 + 3I2↓ + K2SO4 + 7H2O

K2Cr2O7 + 6FeSO4 +7H2SO4 = 3Fe2(SO4)3 + Cr2(SO4)3 + K2SO4 + 7H2O

K2Cr2O7 + H2O2 + 4H2SO4 = Cr2(SO4)3 + K2SO4 + 3O2↑ + 7H2O

2K2Cr2O7 + 3CH3OH + 8H2SO4 = Cr2(SO4)3 + 3HCOOH + 2K2SO4 + 11H2O

8K2Cr2O7 + 3C12H22O11 + 32H2SO4 = 8Cr2(SO4)3 + 12CO2↑ + 8K2SO4 + 43H2O

Сплавление:

Na2Cr2O7 + 2C = Cr2O3 + Na2CO3 + CO↑

Очень сильным окислителем является «хромовая смесь» — насыщенный раствор K2Cr2O7 или Na2Cr2O7 в концентрированной H2SO4.

Источник