Какие свойства проявляет гидроксид магния проявляет

Какие свойства проявляет гидроксид магния проявляет thumbnail
Гидроксид магния
Систематическое
наименование
Гидроксид магния
Хим. формулаMg(OH)2
Рац. формулаMg(OH)2
Состояниетвёрдое
Молярная масса58.35 г/моль
Плотность2,3446 (20 °C)
Температура
 • плавления350 °C
 • вспышкиневоспламеняющийся °C
Энтальпия
 • образования–925 кДж/моль
Растворимость
 • в воде0,0012 г/100 мл
Показатель преломления1.559
Кристаллическая структуратригональная
Рег. номер CAS1309-42-8
PubChem73981
Рег. номер EINECS215-170-3
SMILES

[OH-].[Mg+2].[OH-]

InChI

1S/Mg.2H2O/h;2*1H2/q+2;;/p-2

VTHJTEIRLNZDEV-UHFFFAOYSA-L

Кодекс АлиментариусE528
RTECSOM3570000
ChEBI6637
ChemSpider14107 и 21169899
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Гидроксид магния (Гидроокись магния) — неорганическое вещество, осно́вный гидроксид металла магния, имеет формулу  Mg(OH)2. Слабое малорастворимое основание.

Гидроксид магния

Описание

При стандартных условиях гидроксид магния представляет собой аморфное вещество. При температуре выше 350 °C разлагается на оксид магния и воду. Поглощает углекислый газ и воду из воздуха с образованием основного карбоната магния. Гидроксид магния практически нерастворим в воде, но растворим в солях аммония. Является слабым основанием, даже ничтожная его часть, растворившаяся в воде, сообщает раствору слабощелочную реакцию и окрашивает индикаторы, например, фенолфталеин, в розовый цвет. Встречается в природе в виде минерала брусита.

Получение

  • Взаимодействие растворимых солей магния с щелочами:

В общем виде:

 Mg2+ + 2 OH− ⟶ Mg(OH)2 ↓

Примеры:

 MgCl2 + 2 NaOH ⟶ Mg(OH)2 ↓ + 2 NaCl

 Mg(NO3)2 + 2 KOH ⟶ Mg(OH)2 ↓ + 2 KNO3

  • Взаимодействие раствора хлорида магния с обожжённым доломитом:

 MgCl2 + CaO ⋅ MgO + 2 H2O ⟶ 2 Mg(OH)2 ↓ + CaCl2

  • Взаимодействие металлического магния с парами воды:

 Mg + 2 H2O ⟶ Mg(OH)2 ↓ + H2 ↑

Химические свойства

  • Как и все слабые основания, гидроксид магния термически неустойчив. Разлагается при нагревании до 350 °C:

 Mg(OH)2 →ΔT MgO + H2O

  • Взаимодействует с кислотами с образованием соли и воды (реакция нейтрализации):

 Mg(OH)2 + 2 HCl ⟶ MgCl2 + 2 H2O

 Mg(OH)2 + H2SO4 ⟶ MgSO4 + 2 H2O

  • Взаимодействие с кислотными оксидами с образованием соли и воды:

 Mg(OH)2 + SO3 ⟶ MgSO4 + H2O

  • Взаимодействие с горячими концентрированными растворами щелочей с образованием гидроксомагнезатов:

 Mg(OH)2 + 2 NaOH ⟶ Na2[Mg(OH)4]

 Mg(OH)2 + Sr(OH)2 ⟶ Sr[Mg(OH)4]

Гидроксид магния

В состав Магникора входит — Магния гидроксид.

Применение

Гидроксид магния применяется для связывания диоксида серы, как флокулянт для очистки сточных вод, в качестве огнезащитного средства в термопластических полимерах (полиолефины, ПВХ), как добавка в моющие средства, для получения оксида магния, рафинирования сахара, в качестве компонента зубных паст.

В медицине его применяют в качестве лекарства для нейтрализации кислоты в желудке, а также как очень сильное слабительное.

В Европейском союзе гидроксид магния зарегистрирован в качестве пищевой добавки E528.

Соединения магния

  • Магний (Mg)
  • Азид магния (Mg(N3)2) Тринитрид магний
  • Алюминат магния (Mg(AlO2)2) Метаалюминат магния
  • Амид магния (Mg(NH2)2)
  • Антимонид магния (Mg3Sb2) Магний сурмянистый
  • Арсенат магния (Mg3(AsO4)2) Магний мышьяковокислый
  • Арсенид магния (Mg3As2) Магний мышьяковистый
  • Аурат магния (Mg[AuO2]2)
  • Ацетат магния (Mg(C2H3O2)2) Магний уксуснокислый
  • Бензоат магния (Mg(C6H5COO)2) Магний бензойнокислый
  • Борид магния (MgB2) Магний бористый
  • Бромат магния (Mg(BrO3)2) Магний бромноватокислый
  • Бромид магния (MgBr2) Магний бромистый
  • Ванадат магния (Mg2V2O7) Магний ванадиевокислый
  • Висмутид магния (Mg3Bi2)
  • Вольфрамат магния (MgWO4) Магний вольфрамовокислый
  • Гексаборид магния (MgB6) Бористый магний
  • Гексафторогерманат магния (Mg[GeF6])
  • Гексафторосиликат магния (MgSiF6)
  • Гексацианоферрат II магния (Mg2[Fe(CN)6])
  • Гептагидрат сульфата магния (MgSO4·7H2O) Английская соль
  • Германид магния (Mg2Ge)
  • Гидрид магния (MgH2) Магний водородистый
  • Гидроарсенат магния (MgHAsO4)
  • Гидрокарбонат магния (Mg(HCO3)2) Бикарбонат магния, Магний двууглекислый
  • Гидрокарбонат магния-калия (MgKH(CO3)2)
  • Гидроксид магния (Mg(OH)2) Гидроокись магний
  • Гидроортофосфат магния (MgHPO4)
  • Гипофосфит магния (Mg(PH2O2)2) Магний фосфорноватистокислый (Фосфинат магния)
  • Глицерофосфат магния (MgC3H7O6P)
  • Дигидроортофосфат магния (Mg(H2PO4)2)
  • Дителлурид магния (MgTe2)
  • Дифенилмагний (Mg(C6H5)2)
  • Диэтилмагний (Mg(C2H5)2)
  • Додекаборид магния (MgB12)
  • Йодат магния (Mg(IO3)2) Магний йодноватокислый
  • Йодид магния (MgI2) Магний йодистый
  • Карбид магния (MgC2) Ацетиленид магния
  • Карбонат магния (MgCO3) Магний углекислый
  • Карбонат магния лекарственное средство
  • Каустический магнезит
  • Магнезит
  • Метаборат магния (Mg(BO2)2) Магний борнокислый мета
  • Метагерманат магния (MgGeO3) Магний германиевокислый
  • Метасиликат магния (MgSiO3) Магний кремнекислый магний
  • Метатитанат магния (MgTiO3) Магний титановокислый мета
  • Молибдат магния (MgMoO4) Магний молибденовокислый
  • Нитрат магния (Mg(NO3)2) Магний азотнокислый
  • Нитрид магния (Mg3N2) Магний азотистый
  • Нитрит магния (Mg(NO2)2) Магний азотистокислый
  • Оксид магния (MgO) Магний окись (магнезия жженая)
  • Оксалат магния (MgC2O4) Магний щавелевокислый
  • Олеат магния (Mg(C18H33O2)2) Магний олеиновокислый
  • Ортоарсенат магния (Mg3(AsO4)2)
  • Ортоборат магния (Mg3(BO3)2)
  • Ортосиликат магния (Mg2SiO4)
  • Ортотитанат магния (Mg2TiO4)
  • Перманганат магния (Mg(MnO4)2) Магний марганцовокислый
  • Пероксид магния (MgO2) Перекись магния
  • Перхлорат магния (Mg(ClO4)2) Магний хлорнокислый (Ангидрон)
  • Пирофосфат магния (Mg2P2O7)
  • Рицинолеат магния (Mg(C18H33O3)2) Магний рицинолевокислый
  • Селенат магния (MgSeO4) Магний селеновокислый
  • Селенид магния (MgSe) Магний селенистый
  • Селенит магния (MgSeO3) Магний селенистокислый
  • Силицид магния (Mg2Si) Магний кремнистый
  • Станнид димагния (Mg2Sn)
  • Стеарат магния (MgC36H70O4) Магний стеариновокислый
  • Стекломагниевый лист
  • Сульфат магния (MgSO4) Магний сернокислый
  • Сульфид магния (MgS) Магний сернистый
  • Сульфит магния (MgSO3) Магний сернистокислый
  • Тартрат магния (MgC4H4O6) Магний виннокислый
  • Теллурид магния (MgTe) Магний теллуристый
  • Тиосульфат магния (MgS2O3) Гипосульфит магния
  • Тиоцианат магния (Mg(SCN)2) Магний роданистый
  • Трикарбид димагния (Mg2C3)
  • Формиат магния (Mg(HCOO)2) Магний муравьинокислый
  • Фосфат магния (Mg3(PO4)2) Магний Фосфорнокислый (Фосфат магния)
  • Фосфид магния (Mg3P2) Магний фосфористый
  • Фторид магния (MgF2) Магний фтористый
  • Хлорат магния (Mg(ClO3)2) Магний хлорноватокислый
  • Хлорид магния (MgCl2) Магний хлористый
  • Хлорофилл
  • Хлорофилл с1
  • Хлорофилл с2
  • Хлорофилл с3
  • Хромат магния (MgCrO4) Магний хромовокислый
  • Хромит магния (MgCr2O4) Магний хромистокислый
  • Цирконат магния (MgZrO3) Магний циркониевокислый
  • Цитрат магния (MgC6H6O7) Магний лимоннокислый

Источник

Читайте также:  Какой треугольник называется равносторонним его свойства

IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами.

Все элементы IIA группы относятся к s-элементам, т.е. содержат все свои валентные электроны на s-подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns2 , где n – номер периода, в котором находится элемент.

Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:

Ме0 – 2e— → Ме+2

Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.

Взаимодействие с простыми веществами

с кислородом

Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.

Читайте также:  Какие есть свойства у киви

Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO2):

2Mg + O2 = 2MgO

2Ca + O2 = 2CaO

2Ba + O2 = 2BaO

Ba + O2 = BaO2

Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me3N2.

с галогенами

Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:

Мg + I2 = MgI2 – иодид магния

Са + Br2 = СаBr2 –  бромид кальция

Ва + Cl2 = ВаCl2 – хлорид бария

с неметаллами IV–VI групп

Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно большая температура.

Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C22-, фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:

vzaimodejstvie-berillija-s-uglerodom-2

Остальные металлы II А группы образуют с углеродом ацетилениды:

vzaimodejstvie-magnija-kalcija-i-barija-s-uglerodom

С кремнием металлы IIA группы образуют силициды — соединения вида Me2Si, с азотом – нитриды (Me3N2), фосфором – фосфиды (Me3P2):

Читайте также:  Какие свойства электростатического поля

vzaimodejstvie-metallov-vtoroj-gruppy-s-fosforom-kremniem-seroj-i-azotom

с водородом

Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.

vzaimodejstvie-kalcija-i-magnija-s-vodorodom-3

Взаимодействие со сложными веществами

с водой

Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:

magnij-kalcij-i-berilij-s-vodoj

c кислотами-неокислителями

Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:

Ве + Н2SO4(разб.) = BeSO4 + H2↑

Mg + 2HBr = MgBr2 + H2↑

Ca + 2CH3COOH = (CH3COO)2Ca + H2↑

c кислотами-окислителями

− разбавленной азотной кислотой

С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N2O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH4NO3):

4Ca + 10HNO3(разб.) = 4Ca(NO3)2 + N2O↑ + 5H2O

4Mg + 10HNO3(сильно разб.) = 4Mg(NO3)2 + NН4NO3 + 3H2O

− концентрированной азотной кислотой

Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:

berillij-s-koncentrirovannoj-azotnoj-kislotoj

Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.

− концентрированной серной кислотой

Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:

Be + 2H2SO4 → BeSO4 + SO2↑+ 2H2O

Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.

Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы происходит преимущественно до сероводорода:

4Mg + 5H2SO4(конц.) = 4MgSO4 + H2S↑ + 4H2O

с щелочами

Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:

Be + 2KOH + 2H2O = H2↑ + K2[Be(OH)4] — тетрагидроксобериллат калия

При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород

Be + 2KOH = H2↑+ K2BeO2 — бериллат калия

с оксидами

Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:

vzaimodejstvie-magnija-i-barija-s-oksidami-nemetallov

Метод восстановления металлов из их оксидов магнием называют магниетермией.

Источник