Какие свойства присущи мембранам

Какие свойства присущи мембранам thumbnail

План лекции

1.Основные свойства мембран и их функции

2. Химический состав мембран

3.Физические свойства липидов. Поведение липидов в водных растворах.

3.1. Модельные мембраны

4.Подвижность углеводородных цепей фосфолипидных молекул в липидном бислое мембран

5. Подвижность молекулярных компонентов

в мембране

Почему будущему врачу необходимо знать основные свойства и функции клеточных мембран? Как можно исследовать биологические мембраны? Для чего это необходимо? Какие основные характеристики имеют клеточные мембраны? В каких жизненно важных функциях они участвуют?

Неклеточные формы жизни не существуют на Земле. Вирусы и бактериофаги не могут рассматриваться как самостоятельные живые системы – из всех функций живой клетки они обладают лишь способностью передавать генетическую программу. Напротив, основные характеристики жизни присущи как одноклеточным организмам, так и подавляющему большинству типов специализированных клеток многоклеточных организмов. Строение и поведение отдельных клеток настолько сложно, что оказывается возможным формулировать проблемы поведения на клеточном уровне, проблемы этологии. Эта область посвящена изучению, прежде всего, направленных движений внутриклеточных компонентов и самих клеток.

Если рассмотреть электронную микрофотографию ультратонкого среза живой ткани (после его фиксации и соответствующего прокрашивания), то первое, что обращает на себя внимание, — это тонкие двойные линии, которые «вырисовывают» контуры клетки и внутриклеточных органелл (слайд 1). Это — срезы через биологические мембраны — тончайшие плёнки, состоящие из двойного слоя молекул липидов и встроенных в этот слой белков. По сути дела, именно мембраны (наряду с цитоскелетом), формируют структуру живой клетки. Клеточная или цитоплазматическая мембрана окружает каждую клетку. Ядро окружено двумя ядерными мембранами: наружной и внутренней. Все внутриклеточные структуры: митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы, фагосомы, синаптосомы и т.д. представляют собой замкнутые мембранные везикулы (пузырьки).

Мембраны играют ключевую роль как в структурной организации, так и в функционировании всех клеток — прокариотических и эукариотических, растительных и животных. Мембраны формируют внутриклеточные компартменты (отсеки), с их помощью происходит разделение содержимого компартментов и окружающей их среды. Но если бы это была единственная функция мембран, они не были бы столь интересны. Мембраны не только разделяют клетку на отдельные компартменты, но и участвуют в регуляции всех связей и взаимодействий, которые осуществляются между наружной и внутренней сторонами этих компартментов.

Важнейшие физические и физико-химические функции клетки состоят в химическом метаболизме и синтезе, в биоэнергетических процессах запасания энергии и её преобразование при реализации электро- и механохимических процессов и регулируемого транспорта молекул и ионов (Слайд 2)

Во всех живых клетках биологические мембрану выполняют функцию барьера, отделяющего клетку от окружающей среды, и разделяющего внутренний объем клетки на сравнительно изолированные «отсеки» (compartments). Сами по себе перегородки, разделяющие клетки на отсеки, построены из двойного слоя липидных молекул (называемого часто липидным бислоем) и практически непроницаемы для ионов и полярных молекул, растворимых в воде. Но в этот липидный бислой встроены многочисленные белковые молекулы и молекулярные комплексы, одни из которых обладают свойствами селективных (т. е. избирательных) каналов для ионов и молекул, а другие — насосов, способных активно перекачивать ионы через мембрану. Барьерные свойства мембран и работа мембранных насосов создают неравновестное распределение ионов между клеткой и внеклеточной средой, что лежит в основе процессов внутриклеточной регуляции и передачи сигналов в форме электрического импульса между клетками.

Вторая функция, общая для всех мембран — это функция «монтажной платы» или матрицы, на которой располагаются в определенном порядке белки и белковые ансамбли, образующие системы переноса электронов, запасания энергии в форме АТФ, регуляции внутриклеточных процессов гормонами, поступающими извне и внутриклеточными медиаторами, узнавания других клеток и чужеродных белков, рецепции света и механических воздействий и т. д. О работе многих из таких систем читатель узнает из других статей данного тома.

Гибкая и эластичная пленка, которой по существу являются все мембраны, выполняет и определенную механическую функцию, сохраняя клетку целой при умеренных механических нагрузках и нарушениях осмотического равновесия между клеткой и окружающей средой.

Общие для всех мембран функции барьера для ионов и молекул и матрицы для белковых ансамблей обеспечиваются главным образом липидным бислоем, который устроен в принципе одинаково во всех мембранах. Однако набор белков индивидуален для каждого типа мембран, что позволяет мембранам участвовать в выполнении самых

Сочетание транспорта вещества с сохранением и автономностью внутреннего устройства клетки осуществляется единственным возможным способом для выполнения своих функций клетка как целая отделена от внешней среды полунепроницаемой перегородкой. Каждая клетка окружена плазматической мембраной. Появление мембраны, по-видимому, было важным этапом в возникновении жизни – компарментация, отделение внутриклеточного пространства от внешнего мира, определяла решительное ускорение добиологической и биологической эволюции.

Биологическими мембранами называются функциональные структуры клеток толщиной в несколько молекулярных слоёв, ограничивающие цитоплазму и большинство внутриклеточных структур, а также образующие единую внутриклеточную систему канальцев, складок и замкнутых полостей.

Читайте также:  Каким свойством обладают клетки бластулы

Толщина биологических мембран редко превышает 10 нм, однако, вследствие сравнительно плотной упаковки в них основных молекулярных компонентов (белки и липиды), а также большой общей площади клеточных мембран они составляют более половины массы сухих клеток.

Таким образом, биологические мембраны являются одним из первых и наиболее универсальных типов надмолекулярных структур в живой природе. Биологические мембраны – надмолекулярные динамические системы, протяжённость которых в двух измерениях значительно превосходит их толщину. Однако, все механизмы, ответственные за биологическую функциональность мембраны, локализованы именно в её толще.

Таким образом, основная задача заключается в том, чтобы, опираясь на общие представления о структуре и функциях мембран, выявить молекулярно-биологические основы их структурного и функционального разнообразия.

Успехов в исследовании мембран удалось достичь благодаря сравнительному изучению мембран из множества разнообразных организмов. Бактериальные клетки имеют довольно простую наружную оболочку, содержащую одну или две мембраны, которые можно модифицировать генетически или путем изменения условий роста клеток. Вирусы с оболочкой внедряются в клетки животных благодаря слиянию с плазматической мембраной последних и высвобождаются из клетки-хозяина, отпочковываясь от нее. Изучение созревания вирусных белков позволяет узнать много нового о процессах биосинтеза мембранных белков.

Основными проблемами, решаемыми на настоящее время биофизикой мембран являются:

1. Молекулярное строение мембран, динамические свойства мембранной структуры, определяющие её функциональность.

2. Роль мембраны как системы, обеспечивающей транспорт веществ из клетки в клетку. Основная задача состоит в раскрытии молекулярной природы активного и пассивного транспорта и функциональности строения мембраны, определяющей транспорт. Иными словами, проблема сводится к установлению связи структуры и функции.

3. Изучение физической сущности возбудимости в мембран. Перемещение ионов сквозь мембрану определяет биоэлектрические явления – возникновение биопотенциалов, генерацию и распространение нервного импульса.

4. Изучение биоэнергетики мембран. С одной стороны, сюда относится конверсия энергии АТФ в работу, производимую при активном транспорте и генерации биопотенциалов, с другой, — образование АТФ в процессах окислительного формирования, происходящего, в частности, в биоэнергетических мембранах митохондрий. Биоэлектрические процессы катализируются ферментативной системой, локализованной в мембране. Как детальный механизм действия этой системы, так и характер и физический смысл её локализации представляют первостепенный интерес.

5. Физика процессов рецепции.

Источник

У этого термина существуют и другие значения, см. Мембрана.

Модель клеточной мембраны. Маленькие голубые и белые шарики — гидрофильные «головки» фосфолипидов, а присоединённые к ним линии — гидрофобные «хвосты». На рисунке показаны только интегральные мембранные белки (красные глобулы и жёлтые спирали). Жёлтые овальные точки внутри мембраны — молекулы холестерина. Жёлто-зелёные цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликс

Кле́точная мембра́на (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.

Основные сведения[править | править код]

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных, бактериальных и грибных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

История исследования[править | править код]

В 1925 году Гортер и Грендель с помощью осмотического «удара» получили так называемые «тени» эритроцитов — их пустые оболочки. Тени сложили в стопку и определили площадь их поверхности. Затем с помощью ацетона выделили из оболочек липиды и определили количество липидов на единицу площади эритроцита — этого количества хватило на сплошной двойной слой. Хотя этот эксперимент привёл исследователей к правильному выводу, ими было допущено несколько грубых ошибок — во-первых, с помощью ацетона нельзя выделить абсолютно все липиды, а во-вторых, площадь поверхности была определена неправильно, по сухому весу. В данном случае минус на минус дал плюс, соотношение определяемых показателей случайно оказалось верным и был открыт липидный бислой.

Читайте также:  Укажите какие свойства металлов относятся к физическим

Эксперименты с искусственными билипидными плёнками показали, что они обладают высоким поверхностным натяжением, гораздо большим, чем в клеточных мембранах. То есть в них содержится что-то, что снижает натяжение — белки. В 1935 году Даниэлли и Доусон представили научному сообществу модель «сендвича», которая говорит о том, что в основе мембраны лежит липидный бислой, по обеим сторонам от которого находятся сплошные слои белков, внутри бислоя ничего нет. Первые электронно-микроскопические исследования 1950-х годов подтвердили эту теорию — на микрофотографиях были видны 2 электронно-плотных слоя — белковые молекулы и головки липидов и один электронно-прозрачный слой между ними — хвосты липидов. Дж. Робертсон сформулировал в 1960 году теорию унитарной биологической мембраны, в которой постулировалось трёхслойное строение всех клеточных мембран.

Но постепенно накапливались аргументы против «бутербродной модели»:

  • накапливались сведения о глобулярности плазматической мембраны;
  • оказалось, что структура мембраны при электронной микроскопии зависит от способа её фиксации;
  • плазматическая мембрана может различаться по структуре даже в одной клетке, например в головке, шейке и хвосте сперматозоида;
  • «бутербродная» модель термодинамически не выгодна — для поддержания такой структуры нужно затрачивать большое количество энергии, и протащить вещество через мембрану очень сложно;
  • количество белков, связанных с мембраной электростатически, очень небольшое, в основном белки очень тяжело выделить из мембраны, так как они погружены в неё.

Всё это привело к созданию в 1972 году С. Д. Сингером (S. Jonathan Singer) и Г. Л. Николсоном (Garth L. Nicolson) жидкостно-мозаичной модели строения мембраны. Согласно этой модели белки в мембране не образуют сплошной слой на поверхности, а делятся на интегральные, полуинтегральные и периферические. Периферические белки действительно находятся на поверхности мембраны и связаны с полярными головками мембранных липидов электростатичесткими взаимодействиями, но никогда не образуют сплошной слой. Доказательствами жидкостности мембраны служат методы FRAP, FLIP и соматическая гибридизация клеток, мозаичности — метод замораживания-скалывания, при котором на сколе мембраны видны бугорки и ямки, так как белки не расщепляются, а целиком отходят в один из слоёв мембраны.

Функции[править | править код]

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой[1]. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки[1]. Транспорт через мембрану обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.
    При пассивном транспорте вещества пересекают липидный бислой без затрат энергии так как происходит перенос веществ из области высокой концентрации в область низкой, то есть против градиента концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
    Активный транспорт требует затрат энергии, так как происходит перенос веществ из области низкой концентрации в область высокой, то есть по градиенту концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
  • Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
    Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • Ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • Осуществление генерации и проведения биопотенциалов.
    С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
  • Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.
Читайте также:  Какие свойства пульса характеризуют уровень ад

Структура и состав биомембран[править | править код]

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку.

Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Рядом с белками находятся аннулярные липиды — они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён, но может происходить спонтанно, примерно раз в 6 месяцев или с помощью белков-флиппаз и скрамблазы плазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки.

Мембранные органеллы[править | править код]

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость[править | править код]

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

См. также[править | править код]

  • Липиды
  • Внешняя бактериальная мембрана

Примечания[править | править код]

  1. 1 2 Твердислов В. А., Яковенко Л. В. Физика биологических мембран // Школьникам о современной физике. Акустика. Теория относительности. Биофизика. — М., Просвещение, 1990. -ISBN 5-09-001323-3. — Тираж 200 000 экз. — С. 131-158

Литература[править | править код]

  • Антонов В. Ф., Смирнова Е. Н., Шевченко Е. В. Липидные мембраны при фазовых превращениях / РАН, Моск. о-во испытателей природы. — М.: Наука, 1992. — 136 с. — ISBN 5-02-004090-8.
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). — 1-е изд. — М.: Мир, 1997. — ISBN 5-03-002419-0.
  • Ивков В. Г., Берестовский Т. Н. Липидный бислой биологических мембран / Отв. ред. чл.-корр. АН СССР Л. Д. Бергельсон; Институт биологической физики АН СССР. — М.: Наука, 1982. — 224 с. — (Теоретическая и прикладная биофизика).
  • Рубин А. Б. Биофизика, учебник в 2 тт. — 3-е изд., испр. и доп. — М.: Изд-во Моск. ун-та, 2004. — ISBN 5-211-06109-8.
  • Bruce Alberts, et al. Molecular Biology Of The Cell. — 5th ed. — New York: Garland Science, 2007. — ISBN 0-8153-3218-1. — учебник по молекулярной биологии на английском языке

Ссылки[править | править код]

  • Владимиров Ю. А., Повреждение компонентов биологических мембран при патологических процессах

Источник