Какие свойства положены в основу классификации белков

Существует несколько классификаций белков. В основе классификации лежат различные принципы:

1. По степени сложности (простые и сложные);

2. По форме молекул (глобулярные и фибриллярные);

3. По растворимости;

4. По функциям.

Классификация по степени сложности

1. Протеины – простые белки, содержат только полипептидную связь.

2. Протеиды – сложные белки.

Протеины:

1. Альбумины

2. Глобулины

3. Протамины

4. Гистоны

5. Проламины

6. Глютелины

7. Склеропротеины (протеиноиды)

Альбумины. Самая распространенная группа белков. Характеризуются высоким содержанием лейцина (15 %) и низким – глицина. Молекулярная масса – 25000-70000. Водорастворимые белки. Осаждаются при насыщении растворов нейтральными солями. Добавление одной соли обычно не приводит к осаждению белков, за исключением (NН4)2SО4, для осаждения обычно требуется смесь солей одно- и двухвалентных катионов (NaCl и MgSO4, Na2SO4 и MgCl2). (NН4)2SО4 начинает осаждать альбумины при 65 %-ом насыщении, а полное осаждение наступает при 100 % насыщении.

Альбумины составляют 50 % белков плазмы крови, 50 % белков яиц.

Примеры: лактоальбумин – белок молока, овоальбумин – яичный альбумин, сероальбумин – сыворотка крови.

Глобулины. Наиболее многочисленная группа белков в организме животных. По аминокислотному составу глобулины похожи на альбумины, но отличаются высоким содержанием глицина (3-4 %). Молекулярная масса – 9 × 105 – 1,5 × 106. Фракция, не растворимая в воде, поэтому выпадает в осадок при отделении солей диализом. Растворяются в слабых растворах нейтральных солей, однако, высокие концентрации последних осаждают глобулины. Например, (NН4)2SО4 высаливает глобулины при 50 %-ом насыщении (однако, полного разделения альбуминов и глобулинов не происходит).

К глобулинам относятся сывороточный, молочный, яичный, мышечный и другие глобулины.

Распространены в семенах масличных и бобовых растений. Легумин – горох (семена), фазеолин – семена фасоли, эдестин – семена конопли.

Протамины. Сильно основные белки с низкой молекулярной массой (до 12000), благодаря чему некоторые из них проходят через целлофан при диализе. Протамины растворимы в слабых кислотах, не осаждаются при кипячении; в их молекуле содержание диаминомонокарбоновых кислот составляет 50-80 %, особенно много аргинина и 6-8 других аминокислот. В протаминах нет цис, три и асп, часто отсутствуют тир, фен.

Протамины содержится в половых клетках животных и человека, составляют основную массу нуклеопротеидов хроматина этого типа. Протамины придают ДНК биохимическую инертность, что является необходимым условием сохранения наследственных свойств организма. Синтез протаминов происходит в процессе сперматогенеза в цитоплазме половой клетки, протамины проникают в клеточное ядро, по мере созревания спермы вытесняют гистоны из нуклеотидов, образуя прочный комплекс с ДНК, таким образом защищая наследственные свойства организма от неблагоприятных воздействий.

Протамины в большом количестве встречаются в сперме рыб (сальмин – лососевые рыбы, клупеин – сельдь). Протамины обнаружены у представителей растений – выделены из спор плауна.

Гистоны. Представляют собой щелочные белки с молекулярной массой 12000-30000, на долю диаминомонокарбоновых кислот приходится 20-30 % (аргинин, лизин).Растворимы в слабыхкислотах (0,2 н HCl), осаждаются аммиаком, спиртом. Гистоны являются белковой частью нуклеопротидов.

Гистоны входят в структуру хроматина, преобладают среди белков хромосом, то есть находятся в ядрах клеток.

Гистоны – консервативные в эволюционном плане белки. Гистоны животных и растений характеризуются близкими величинами отношения аргинина к лизину, содержат близкий набор фракций.

Проламины. Являются белками растительного происхождения. Слабо растворяются в воде, хорошо растворимы в 60-80 %-ом этиловом спирте. В их составе много аминокислоты пролина (отсюда название проламин), а также глутаминовой кислоты. В очень незначительном количестве в эти белки входят лиз, арг, гли. Проламины характерны исключительно для семян злаков, где выполняют роль запасных белков: в семенах пшеницы и ржи – белок глиадин, в семенах ячменя – гордеин, кукурузы – зеин.

Глютелины. Хорошо растворимы в щелочных растворах (0,2-2 % NаОН). Это белок растений, содержатся в семенах злаков и других культур, а также в зеленых частях растений. Комплекс щелочнорастворимых белков семян пшеницы получил название глютенин, риса – оризенин. Глиадин семян пшеницы в соединении с глютенином образует клейковину, свойства которой в значительной мере определяют технологические качества муки и теста.

Склеропротеины (протеиноиды). Белки опорных тканей (костей, хрящей, сухожилий, шерсти, волос). Отличительная особенность – нерастворимость в воде, солевых растворах, разведенных кислотах и щелочах. Не гидролизуются ферментами пищеварительного тракта. Протеиноиды – фибриллярные белки. Богаты глицином, пролином, цистином, нет фенилаланина, тирозина, триптофана, гистидина, метионина, треонина.

Примеры протеиноидов: коллаген, проколлаген, эластин, кератины.

Сложные белки (протеиды)

Включают два компонента – белковый и небелковый.

Белковая часть – простой белок. Небелковая часть – простетическая группа (от греч. рrostheto — присоединяю, прибавляю).

В зависимости от химической природы простетической группы протеиды подразделяются на:

1. Фосфопротеиды (фосфопротеины)

2. Гликопротеиды (гликопротеины)

3. Нуклеопротеиды (нуклеопротеины)

4. Хромопротеиды (хромопротеины)

5. Металлопротеиды (металлопротеины)

6. Липопротеиды (липопротеины)

7. Белки-ферменты

Фосфопротеиды. Характерной особенностью является присутствие в значительных количествах ортофосфорной кислоты, которая связана обычно с оксигруппой сер, реже тре сложноэфирной связью.

К фосфопротеидам относятся многие белки, играющие важную роль в питании молодых организмов. Это основной белок молока – казеин, осаждающийся при створаживании, яичного желтка – вителлин, вителлинин и фосвитин, икры рыб – ихтулин, ферменты – пепсин и фосфорилаза. Они содержат 1-10 % фосфора. Фосфопротеиды обнаружены в мозге.

Гликопротеиды. Сложные белки, в составе которых имеется углеводный компонент. Белок в данных соединениях является своеобразной основой, к нему прикрепляются углеводные группировки. В соответствии с особенностями химического строения гликопротеиды подразделяются на истинные гликопротеиды и протеогликаны.

Основное различие между ними заключается в том, что углеводные группировки истинных гликопротеинов содержат обычно до 15-20 моносахаридных компонентов, не образующих повторяющихся олигосахаридных фрагментов, в то время как у протеогликанов они построены из очень большого числа повторяющихся единиц, в основном имеющих своеобразный дисахаридный характер.

Гликопротеиды подразделяются на нейтральные и кислые. Нейтральные содержат в небольшом количестве аминосахара, не содержат гексуроновых кислот, сульфатов.

К нейтральным относятся фибриноген плазмы крови.

К кислым гликопротеидам относятся муцины и мукоиды.

Муцины – основа слизей организма (слюны, желудочного и кишечного сока). Защитная функция: ослабляют раздражение слизистой оболочки пищеварительного тракта. Муцины стойки к действию ферментов, которые гидролизуют белок.

Мукоиды – белки синовиальной жидкости суставов, хрящей, жидкости глазного яблока. Выполняют защитную функцию, являются смазочным материалом в аппарате движения.

Нуклеопротеиды. Все нуклеиновые кислоты делятся на два типа в зависимости от того, какой моносахарид входит в состав. Нуклеиновая кислота называется рибонуклеиновой (РНК), если в ее состав входит рибоза, или дезоксирибонуклеиновой (ДНК), если в ее состав входит дезоксирибоза.

С участием нуклеиновых кислот происходит образование белков, являющихся материальной основой всех жизненных процессов. Информация, определяющая особенности структуры белков, «записана» в ДНК и передается в ряду поколений молекулами ДНК. РНК являются обязательными и первостепенными участниками самого механизма биосинтеза белков. В связи с этим организм содержит РНК особенно много в тех тканях, в которых интенсивно образуются белки.

Нуклеопротеиды – сложные белки, которые содержат белковый компонент (протамины, гистоны) и небелковый компонент – нуклеиновые кислоты.

Хромопротеиды. К хромопротеидам относятся сложные белки, у которых небелковой частью являются окрашенные соединения, принадлежащие к различным классам органических веществ: порфириновые структуры, флавинадениндинуклеотид (ФАД), флавинаденинмононуклеотид (ФМН) и др.

Порфириновое кольцо с координационно связанным с ним ионом железа входит в как простетическая часть в состав ряда окислительно-восстановительных ферментов (каталаза, пероксидаза) и группы переносчиков электронов – цитохромов. Хромопротеидами являются и флавиновые дегидрогеназы или «желтые дыхательные ферменты» – флавопротеины (ФП). Белковая часть их молекулы связана с ФАД или ФМН. Типичными хромопротеидами являются родопсин, гемоглобин крови.

Металлопротеиды. Комплексы ионов металлов с белками, в которых ионы металлов присоединены к белку непосредственно, являясь составной частью белковых молекул.

В составе металлопротеидов часто встречаются такие металлы, как Cu, Fe, Zn, Mo и др. Типичными металлопротеидами являются некоторые ферменты, содержащие перечисленные металлы, а также Mn, Ni, Se, Ca и др.

К металлопротеидам относятся цитохромы – белки дыхательной цепи, содержащие железо.

К медьсодержащим белкам относятся, например, цитохромоксидаза, пластоцианин (переносчики электронов), белок крови церулоплазмин; к железосодержащим – лактоферрин (белок молока), ферритин и др. В сыворотке крови найден специфический никельсодержащий белок класса макроглобулинов, названный никелеплазмином.

Обнаружены белки – селенопротеины, в которых селен, вероятнее всего, ковалентно присоединен к ароматической или гетероциклической группе. Один из селенопротеинов содержится в мышцах животных.

У некоторых морских животных обнаружен белок, содержащий ванадий – ванадохром, являющийся, вероятнее всего, переносчиком кислорода.

Липопротеиды. Простетической группой в этих сложных белках являются различные жироподобные вещества – липиды. Связь между компонентами липопротеидов может быть различной степени прочности.

В составе липопротеидов обнаружены как полярные, так и нейтральные липиды, а также холестерин и его эфиры. Липопротеиды являются обязательными компонентами всех клеточных мембран, где их небелковая часть представлена, в основном, полярными липидами – фосфолипидами, гликолипидами. Липопротеиды всегда присутствуют в крови. Инозитолдифосфатсодержащий липопротеид выделен из белого вещества мозга, в состав липопротеидов серого вещества мозга входят сфинголипиды. У растений значительная часть фосфолипидов в протоплазме находится также в форме липопротеидов.

Известны комплексы липидов и белков, белковая часть которых содержит много гидрофобных аминокислот, липидный компонент часто преобладает над белковым. В результате такие сложные белки растворимы, например в смеси хлороформа и метанола. Подобного рода комплексы называются протеолипидами. Они в большом количестве содержатся в миелиновых оболочках нервных клеток, а также в синаптических мембранах и внутренних мембранах митохондрий.

Функция липопротеидов – транспортируют липиды в организме.

Белки-ферменты. Большая группа протеидов, построенных из простых белков и простетических групп различной природы, выполняющих функции биологических катализаторов. Небелковые компоненты – витамины, моно- и динуклеотиды, трипептиды, фосфорные эфиры моносахаридов.

Источник

В основу классификации белков положены разные признаки. Так, простые белки отличаются от сложных разными продуктами гидролиза.

Простые белки (протеины) гидролизуются до аминокислот.
К ним относятся запасные, скелетные и ферментные белки.
По растворимости в отдельных растворителях выделяют главные:

ü альбумины – белки с относительно небольшой молекулярной массой, хорошо растворимы в воде и в слабых солевых растворах; нейтральны; трудно осаждаются солями. Содержаться в курином белке, молоке;

ü глобулины – нерастворимы в воде, но растворяются в растворах солей; имеют слабо кислую реакцию. Содержаться в сыворотке крови, мышечной ткани, молоке, курином яйце. Молекулярная масса от 69000 до 300000 у.е. В растительном мире глобулины составляют большую часть белка многих семян, особенно бобовых
и масленичных культур;

ü глютелины – растворяются только в растворах щелочей. Содержаться в рисе, в клейковинных белках пшеницы.

ü проламины – белки, не растворимые в воде, растворимы в 80% спирте, содержаться в зернах злаках: пшеницы, ржи, ячменя, кукурузы, овса.

Сложные белки (протеиды) гидролизуются до аминокислот
и веществ небелкового происхождения. Отметим только следующие:

ü фосфопротеиды – белки, гидролизующиеся до аминокислот
и фосфорной кислоты; это казеин молока и вителлин желтка куриного яйца;

ü нуклеопротеиды – белки, гдролизующиеся до аминокислот
и нуклеиновых кислот (ДНК, РНК);

ü липопротеиды – белки, гидролизующиеся до аминокислот, жиров, лецитинов и других фосфатидов. Принимают участие
в формировании клейковинных белков.

Белковую часть сложных белков называют апобелком, небелковую — простетической группой.

Синтез белков

В состав природных белков входят 23 -аминокислоты. Возникает вопрос: каким образом небольшое количество кислот дает такое разнообразие белков? Ответ находится в порядке построения аминокислот в молекуле белка, их последовательности в природном полимере. Человеку удалось синтезировать несколько белков, ничем не отличающихся
от аналогичных природных.

Для того, чтобы добиться результатов без участия ферментов, человек был вынужден проводить синтез по этапам, принимая определенные приемы: защищать в аминокислотах то одну, то другую реакционную группировку. Так, синтез простейшего дипептида (Гли-Ала) из глицина и аланина осуществляют по этапам по схеме:

1 Карбоксил глицина защищают этерификацией спиртом:

2 Аминогруппу аланина защищают ацетилированием:

3 Соединяют (конденсация) производные аминокислот в дипептид:

4 Снимают защитные группы гидролизом.

На основе трех аминокислот можно получить трипептид, четырех-, тетрапептид и т.д. Более совершенный способ синтеза полипептидов был предложен в 1960 году американским ученым Мерифильдом. Этот процесс идет с участием смолы в качестве твердофазного компонента, сорбирующего защитные аминокислоты одну за другой, тем самым процесс как бы автоматизируется. Таким способом в 1968 году была синтезирована рибонуклеаза в результате проведения 369 последовательных реакций.

Структура белков

Свойства макромолекул белка в значительной степени зависят
от структуры, молекулярной массы, от аминокислотного состава
и пространственной ориентации.

Главная особенность белка, которая имеет решающее значение
для их функционирования – способность самопроизвольно формировать пространственную структуру, свойственную только данному белку (так называемая самоорганизация структуры). Эта структура может быть компактной (глобулярные белки) или вытянутой (фибриллярные белки).

В глобулярных белках пространственно сближенные функциональные группы аминокислотных остатков образуют ансамбли, обладающие высокой реакционной способностью (каталитические центры ферментов) или способностью к образованию комплексов с другими молекулами. К глобулярным относятся большинство белков.

Фибриллярные белки (коллаген, кератины) – обычно выполняют
в организме структурообразующую функцию. От способа укладки полипептидных цепей в этих белках зависит их прочность, растяжимость
и другие функциональные свойства.

В белках выделяют 4 уровня организации: первичная, вторичная, третичная, четвертичная.

Первичная структура – это уникальная последовательность расположения аминокислотных остатков в молекуле белка.

Вторичная структура – это -спираль, образованная скручиванием полипептидной цепи и поддерживаемая в пространстве с помощью водородных связей.

Третичная структура – “упакованная” -спираль в глобулу. Кроме водородных связей в данной структуре значение имеют еще и ионное и гидрофобное взаимодействия.

Четвертичная структура – это образование из нескольких глобул единой “субъединицы” (это наиболее уязвимая структура, которая подвергается разрушению при любом вмешательстве в молекулу белка).

Не нашли, что искали? Воспользуйтесь поиском:

Источник

Белки — природные высокомолекулярные органические соединения, построенные из остатков 20 аминокислот, которые соединены пептидными связями в полипептидные цепи. В процессах жизнедеятельности всех организмов белки выполняют структурную, регуляторную, каталитическую, защитную, транспортную, энергетическую и другие функции. Белки — основа кожи, шерсти, шелка и других натуральных материалов, важнейшие компоненты пищи человека и корма животных. Названию белки, наиболее принятому в отечественной литературе, соответствует термин протеины (от греч. proteios — первый).

Классификация белков

Белки разделяются на протеины (простые белки), состоящие только из аминокислот и при гидролизе почти не образующие других продуктов, и протеиды (сложные белки), состоящие из собственно белковой части, построенной из α-аминокислот, и из соединенной с ней небелковой части, иначе называемой простетической группой. При гидролизе протеиды кроме α-аминокислот образуют и другие вещества, например, фосфорную кислоту, глюкозу, гетероциклические соединения и т. д.

1. Протеины разделяются на группы в зависимости от их растворимости и положения изоэлектрической точки:

1) Альбумины. Растворимы в воде, при нагревании свертываются. Осаждаются насыщенными растворами солей (не осаждаются насыщенным раствором хлорида натрия NaCl, но могут быть осаждены при насыщении раствора сульфатом аммония). Имеют сравнительно небольшую молекулярную массу. При гидролизе дают мало гликоколя. Входят в состав белка яйца, сыворотки крови, молока, а также ферментов и семян растений.

2) Глобулины. Нерастворимы в воде. Растворяются в разбавленных растворах солей и осаждаются концентрированными растворами солей. Свертываются при нагревании. Имеют большую молекулярную массу, чем альбумины. Входят в состав мышечных волокон (миозин), яйца, молока, крови, растительных семян (конопля, горох).

3) Проламины. Нерастворимы в воде. Растворяются в 60—80 %-ном спирте. Не свертываются при кипячении. Содержат много пролина. Входят в состав растительных белков (глиадин пшеницы, гордеин ячменя, зеин кукурузы).

4) Протамины. Сильные основания. Хорошо растворимы в воде, в разбавленных кислотах и щелочах. Не свёртываются при нагревании. Не содержат серы. Имеют простой аминокислотный состав (состоят преимущественно из диаминокислот) и низкую молекулярную массу. Входят в состав спермы и икры рыб, а также в состав сложных белков – нуклеопротеидов.

5) Гистоны. Менее сильные основания. Содержат значительное количество диаминокислот со свободными аминогруппами. Растворимы в воде и в разбавленных кислотах, но нерастворимы в разбавленных щелочах. Обычно представляют собой собственно белковые части сложных белков. В качестве примера можно назвать глобин – белок, входящий в состав сложного белка крови – гемоглобина.

6) Склеропротеины. Нерастворимы в воде, растворах солей, кислот и щелочей (они растворяются лишь при длительной обработке концентрированными кислотами и щелочами, причем с расщеплением молекул). Устойчивы к гидролизу. Характеризуются высоким содержанием серы. В животных организмах выполняют опорные и покровные функции; в растениях не встречаются. Представители: коллаген – белковое вещество костей, кожи, хрящей, соединительных тканей; эластин – белок стенок кровеносных сосудов, сухожилий; кератин — белок шерсти, волос, рогового вещества, ногтей, эпидермиса кожи; фиброин – белок шелка.

2. Протеиды разделяются на группы в зависимости от состава небелковой части:

1) Нуклеопротеиды. Гидролизуются на простой белок (чаще всего гистоны или протамины) и нуклеиновые кислоты. Последние в свою очередь гидролизуются с образованием углевода, фосфорной кислоты, гетероциклического основания. Растворимы в щелочах и нерастворимы в кислотах. Входят в состав протоплазмы, клеточных ядер, вирусов.

2) Фосфопротеиды. Гидролизуются на простой белок и фосфорную кислоту. Слабые кислоты. Свертываются не при нагревании, а от действия кислот. К ним относятся казеин коровьего молока и вителлин – белок, входящий в состав желтка куриного яйца.

3) Гликопротеиды. Гидролизуются на простой белок и углевод. Нерастворимы в воде. Растворяются в разбавленных щелочах. Нейтральны. Не свертываются при нагревании. Входят в состав слизей. Представитель: муцин, входящий в состав слюны.

4) Хромопротеиды. Распадаются при гидролизе на простой белок и красящее вещество. Примером является гемоглобин крови; при гидролизе он расщепляется, образуя белок глобин и красящее вещество гем красного цвета.

5) Липопротеиды. Это соединения белка с липидами. Содержатся в протоплазме клеток, в сыворотке крови, в яичном желтке.

Белки классифицируются также по форме их молекул:

1) фибриллярные (волокнистые) белки, молекулы которых имеют нитевидную форму; к ним относят фиброин шелка, кератин шерсти;

2) глобулярные белки, молекулы которых имеют округлую форму; к ним относятся, например, альбумины, глобулины и ряд других, в том числе и сложные белки.

Источник