Какие свойства окислительные или восстановительные может проявлять сера

Какие свойства окислительные или восстановительные может проявлять сера thumbnail

Сера — элемент VIa группы 3 периода периодической таблицы Д.И. Менделеева. Относится к
группе халькогенов — элементов VIa группы.

Сера — S — простое вещество имеет светло-желтый цвет. Использовалась еще до нашей эры в составе священных курений при
религиозных обрядах.

Сера

Основное и возбужденное состояние атома серы

Электроны s- и p-подуровня способны распариваться и переходить на d-подуровень. Как и всегда, количество валентных
электронов отражает количество возможных связей у атома.

В разных электронных конфигурациях сера способна принимать валентности: II, IV и VI.

Основное и возбужденное состояние атома серы

Природные соединения
  • FeS2 — пирит, колчедан
  • ZnS — цинковая обманка
  • PbS — свинцовый блеск (галенит), Sb2S3 — сурьмяный блеск, Bi2S3 — висмутовый блеск
  • HgS — киноварь
  • CuFeS2 — халькопирит
  • Cu2S — халькозин
  • CuS — ковеллин
  • BaSO4 — барит, тяжелый шпат
  • CaSO4 — гипс

В местах вулканической активности встречаются залежи самородной серы.

Природные соединения серы

Получение

В промышленности серу получают из природного газа, который содержит газообразные соединения серы: H2S,
SO2.

H2S + O2 = S + H2O (недостаток кислорода)

SO2 + C = (t) S + CO2

Серу можно получить разложением пирита

FeS2 = (t) FeS + S

В лабораторных условиях серу можно получить слив растворы двух кислот: серной и сероводородной.

H2S + H2SO4 = S + H2O

Химические свойства

  • Реакции с неметаллами
  • На воздухе сера окисляется, образуя сернистый газ — SO2. Реагирует со многими неметаллами, без нагревания —
    только со фтором.

    S + O2 = (t) SO2

    S + F2 = SF6

    S + Cl2 = (t) SCl2

    S + C = (t) CS2

    Горение серы в кислороде

  • Реакции с металлами
  • При нагревании сера бурно взаимодействует со многими металлами с образованием сульфидов.

    K + S = (t) K2S

    Al + S = Al2S3

    Fe + S = (t) FeS

  • Реакции с кислотами
  • При взаимодействии с концентрированными кислотами (при длительном нагревании) сера окисляется до сернистого газа или серной кислоты.

    S + H2SO4 = (t) SO2 + H2O

    S + HNO3 = (t) H2SO4 + NO2 + H2O

  • Реакции с щелочами
  • Сера вступает в реакции диспропорционирования с щелочами.

    S + KOH = (t) K2S + K2SO3 + H2O

    Реакция серы и щелочи

Сероводород — H2S

Бесцветный газ с характерным запахом тухлых яиц. Огнеопасен. Используется в химической промышленности и в лечебных целях (сероводородные
ванны).

Сероводород

Получение

Сероводород получают в результате реакции сульфида алюминия с водой, а также взаимодействия разбавленных кислот с сульфидами.

Al2S3 + H2O = (t) Al(OH)3↓ + H2S↑

FeS + HCl = FeCl2 + H2S↑

Сульфид железа и соляная кислота

Химические свойства

  • Кислотные свойства
  • Сероводород плохо диссоциирует в воде, является слабой кислотой. Реагирует с основными оксидами, основаниями с образованием средних и кислых солей (зависит
    от соотношения основания и кислоты).

    MgO + H2S = (t) MgS + H2O

    KOH + H2S = KHS + H2O (гидросульфид калия, избыток кислоты)

    2KOH + H2S = K2S + 2H2O

    Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.

    Ca + H2S = (t) CaS + H2

  • Восстановительные свойства
  • Сероводород — сильный восстановитель (сера в минимальной степени окисления S2-). Горит в кислороде синим пламенем, реагирует с кислотами.

    H2S + O2 = H2O + S (недостаток кислорода)

    H2S + O2 = H2O + SO2 (избыток кислорода)

    H2S + HClO3 = H2SO4 + HCl

    Горение сероводорода

  • Качественная реакция
  • Качественной реакцией на сероводород является реакция с солями свинца, при котором образуется сульфид свинца.

    H2S + Pb(NO3)2 = PbS↓ + HNO3

Оксид серы — SO2

Сернистый газ — SO2 — при нормальных условиях бесцветный газ с характерным резким запахом (запах загорающейся
спички).

Сернистый газ

Получение

В промышленных условиях сернистый газ получают обжигом пирита.

FeS2 + O2 = (t) FeO + SO2

В лаборатории SO2 получают реакцией сильных кислот на сульфиты. В ходе подобных реакций образуется сернистая кислота,
распадающаяся на сернистый газ и воду.

K2SO3 + H2SO4 = (t) K2SO4 + H2O + SO2↑

Сернистый газ получается также в ходе реакций малоактивных металлов с серной кислотой.

Cu + H2SO4(конц.) = (t) CuSO4 + SO2 + H2O

  • Кислотные свойства
  • С основными оксидами, основаниями образует соли сернистой кислоты — сульфиты.

    K2O + SO2 = K2SO3

    NaOH + SO2 = NaHSO3

    2NaOH + SO2 = Na2SO3 + H2O

    Сульфит натрия

  • Восстановительные свойства
  • Химически сернистый газ очень активен. Его восстановительные свойства продемонстрированы в реакциях ниже.

    Fe2(SO4)3 + SO2 + H2O = FeSO4 + H2SO4

    SO2 + O2 = (t, кат. — Pt) SO3

  • Как окислитель
  • В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства (понижать степень окисления).

    CO + SO2 = CO2 + S

    H2S + SO2 = S + H2O

Сернистая кислота

Слабая, нестойкая двухосновная кислота. Существует лишь в разбавленных растворах.

Получение

SO2 + H2O ⇄ H2SO3

Химические свойства

  • Диссоциация
  • Диссоциирует в водном растворе ступенчато.

    H2SO3 = H+ + HSO3-

    HSO3- = H+ + SO32-

  • Кислотные свойства
  • В реакциях с основными оксидами, основаниями образует соли — сульфиты и гидросульфиты.

    CaO + H2SO3 = CaSO3 + H2O

    H2SO3 + 2KOH = 2H2O + K2SO3 (соотношение кислота — основание, 1:2)

    H2SO3 + KOH = H2O + KHSO3 (соотношение кислота — основание, 1:1)

  • Окислительные свойства
  • С сильными восстановителями сернистая кислота принимает роль окислителя.

    H2SO3 + H2S = S↓ + H 2O

  • Восстановительные свойства
  • Как и сернистый газ, сернистая кислота и ее соли обладают выраженными восстановительными свойствами.

    H2SO3 + Br2 = H2SO4 + HBr

    Получение бромоводорода

Оксид серы VI — SO3

Является высшим оксидом серы. Бесцветная летучая жидкость с удушающим запахом. Ядовит.

Получение

В промышленности данный оксид получают, окисляя SO2 кислородом при нагревании и присутствии катализатора
(оксид ванадия — Pr, V2O5).

SO2 + O2 = (кат) SO3

В лабораторных условиях разложением солей серной кислоты — сульфатов.

Fe2(SO4)3 = (t) SO3 + Fe2O3

Химические свойства

  • Кислотные свойства
  • Является кислотным оксидом, соответствует серной кислоте. При реакции с основными оксидами и основаниями образует ее соли — сульфаты и
    гидросульфаты. Реагирует с водой с образованием серной кислоты.

    SO3 + 2KOH = K2SO4 + 2H2O (основание в избытке — средняя соль)

    SO3 + KOH = KHSO4 + H2O (кислотный оксид в избытке — кислая соль)

    SO3 + Ca(OH)2 = CaSO4 + H2O

    Сульфат кальция

    SO3 + Li2O = Li2SO4

    SO3 + H2O = H2SO4

  • Окислительные свойства
  • SO3 — сильный окислитель. Чаще всего восстанавливается до SO2.

    SO3 + P = SO2 + P2O5

    SO3 + H2S = SO2 + H2O

    SO3 + KI = SO2 + I2 + K2SO4

    Выделение йода

    © Беллевич Юрий Сергеевич 2018-2020

    Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
    (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
    без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
    обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Читайте также:  Какие из приведенных ниже свойств принадлежат всем твердым телам

2. Химические свойства соединений серы с точки зрения изменения степеней окисления

В данном разделе реакции выходят за рамки ЕГЭ, но также являются полезными.

Правило 2.1. Соединения S+4 преимущественно проявляют восстановительные свойства при взаимодействии с большинством окислителей, т.е. довольно легко окисляются до S+6 :

С такими окислителями как кислород, пероксид водорода и оксиды азота:

2SO2 + O2 → 2SO3 (t, kt = V2O5)

SO2 + H2O2 → H2SO4

С солями Fe+3 и Cu+2:

SO2 + 2FeCl3 + 2H2O → 2FeCl2 + H2SO4 + 2HCl

SO2 + 2CuCl2 + 2H2O → 2CuCl + H2SO4+ 2HCl

С растворами галогенов (кроме F2):

SO2 + Cl2 + H2O → H2SO4 + 2HCl

SO2 + Br2 + H2O → H2SO4 + 2HBr

SO2 + I2 + H2O → H2SO4 + 2HI

С раствором перманганата калия в различных средах:

5SO2 + 2KMnO4 +2H2O → 2MnSO4 + K2SO4 + 2H2SO4

SO2 + 2KMnO4 + 4KOH → 2K2MnO4 +K2SO4 + 2H2O

Примеры реакций окисления сульфита натрия до сульфата различными окислителями:

Na2SO3 + Cl2 + H2O → Na2SO4 + 2HCl

Na2SO3 + H2O2 → Na2SO4 + H2O

Na2SO3 + H2SO4(к) → Na2SO4 + SO2 + H2O

5Na2SO3 + 2KMnO4 + 3H2SO4 → 5Na2SO4 + 2MnSO4 + K2SO4 + 3H2O

3Na2SO3 + 2KMnO4 + H2O → 2Na2SO4 + 2MnO2 + 2KOH

Na2SO3 + 2KMnO4 + 2KOH → Na2SO4 + 2K2MnO4 + H2O

3Na2SO3 + K2Cr2O7 + 4H2SO4 → 3Na2SO4 + Cr2(SO4)3 + K2SO4 + 4H2O

3Na2SO3 + K2Cr2O7 + 4H2O → 3Na2SO4 + 2Cr(OH)3 + 2KOH

Только очень сильными восстановителями S+4 восстанавливается до S0:

SO2 + 2H2S → 3S + 2H2O

SO2 + 2C → S + 2CO2

SO2 + 4HI → S + 2I2 + 2H2O

SO2 + 2CO → S + 2CO2 (Al2O3, 500°C)

Серная кислота (конц.)

Правило 2.2.

  • При взаимодействии H2SO4(к) со слабыми восстановителями (неметаллами: S, P, C, средне- и малоактивными металлами: Fe, Cu, Ag, сложными веществами: H2S, сульфидами металлов, солями Fe2+ и т.д.) образуются SO2 и H2O.
  • При взаимодействии H2SO4(к) с сильными восстановителями (активными металлами: Li-Zn, некоторыми сложными веществами: HI, KI) образуются H2S или S.

4Zn + 5H2SO4(конц.) → 4ZnSO4 + H2SКакие свойства окислительные или восстановительные может проявлять сера + 4H2O (возможно образование SO2 и S, так как Zn — хороший восстановитель)

2Fe + 6H2SO4(конц.) → Fe2(SO4)3 + 3SO2Какие свойства окислительные или восстановительные может проявлять сера + 6H2O (только при нагревании)

Al, Cr, Fe пассивируются холодной концентрированной серной кислотой (т.е. покрываются оксидной пленкой, препятствующей дальнейшей реакции). Реакции идут только при нагревании.

C + H2SO4(конц.) → CO2 + 2SO2Какие свойства окислительные или восстановительные может проявлять сера + 2H2O (t)

S + H2SO4(конц.) → 3SO2Какие свойства окислительные или восстановительные может проявлять сера + 2H2O (t)

2P + 5H2SO4(конц.) → 2H3PO4 + 5SO2Какие свойства окислительные или восстановительные может проявлять сера + 2H2O (t)

Из галогеноводородов концентрированная серная кислота может окислить только ионы Br– и I– :

HF + H2SO4(конц.) → реакция не идет

HCl + H2SO4(конц.) → реакция не идет

2HBr + H2SO4(конц.) → Br2 + SO2Какие свойства окислительные или восстановительные может проявлять сера + 2H2O

8HI + H2SO4(конц.) → 4I2 + H2SКакие свойства окислительные или восстановительные может проявлять сера + 4H2O

2CuI + 4H2SO4(конц.) → 2CuSO4 + I2 + 2SO2Какие свойства окислительные или восстановительные может проявлять сера + 4H2O

2CrCl2 + 4H2SO4(конц.) → Cr2(SO4)3 + SO2Какие свойства окислительные или восстановительные может проявлять сера + 4HCl + 2H2O

Соли меди восстанавливают кислоту до SO2, тогда как соли активных металлов до H2S:

2CuI + 4H2SO4(конц.) → 2CuSO4 + I2 + 2SO2Какие свойства окислительные или восстановительные может проявлять сера + 4H2O

8KI + 5H2SO4(конц.) → 4K2SO4 + 4I2 + H2SКакие свойства окислительные или восстановительные может проявлять сера + 4H2O

Примеры реакций с солями (окисляем анион):

4H2SO4(конц., гор.) + CuS → CuSO4 + 4SO2Какие свойства окислительные или восстановительные может проявлять сера + 4H2O

Примеры реакций с солями (окисляем катион):

2H2SO4(к) + 2FeSO4 → Fe2(SO4)3 + SO2Какие свойства окислительные или восстановительные может проявлять сера + 2H2O

4H2SO4 + 2CrCl2 → Cr2(SO4)3 + SO2Какие свойства окислительные или восстановительные может проявлять сера + 4HCl + 2H2O

Правило 2.3. Окисление соединений S–2 до S+6 происходит под действием следующих окислителей: H2O2, Cl2(водн.), HNO3(конц.):

H2S + Cl2 + 4H2O → H2SO4 + 8HCl

PbS + 4H2O2 → PbSO4 + 4H2O (черный сульфид свинца превращается в белый сульфат)

H2S + 8HNO3(конц.) →  H2SO4 + 8NO2Какие свойства окислительные или восстановительные может проявлять сера + 4H2O (образование S будет считаться ошибкой!)

CuS + 8HNO3(конц., гор.) → CuSO4 + 8NO2 + 4H2O

Na2S + 8HNO3(конц, гор.) → Na2SO4 + 8NO2 + 4H2O

С H2SO4(к) при нагревании сероводород и сульфиды реагируют с образованием SO2, аналогично реакции кислоты с серой:

S + H2SO4(конц.) → 3SO2Какие свойства окислительные или восстановительные может проявлять сера + 2H2O (t)

H2S + 3H2SO4(конц.) → 4SO2Какие свойства окислительные или восстановительные может проявлять сера + 4H2O (t)

CuS + 4H2SO4(конц., гор.) → CuSO4 + 4SO2Какие свойства окислительные или восстановительные может проявлять сера + 4H2O

K2S + 4H2SO4(конц.) → K2SO4 + 4SO2Какие свойства окислительные или восстановительные может проявлять сера + 4H2O
В этой реакции сульфид-ион окисляется до SO2: S–2 -6e → S+4.
Часть сульфат-ионов восстанавливается также до SO2 и часть остается для образования соли K2SO4.

Без нагревания возможна реакция:

K2S + 2H2SO4 → SКакие свойства окислительные или восстановительные может проявлять сера + SO2Какие свойства окислительные или восстановительные может проявлять сера + K2SO4 + 2H2O

Источник: лекция на youtube.com от разработчиков экзамена «Методические рекомендации по подготовке ЕГЭ по химии», время 49:52.

Правило 2.4. Сера в степени окисления -2 может быть окислена до простого вещества галогенами (Cl2, Br2, I2) или солями Fe+3, Mn+7 и Cr+6 :

1. Реакции с Cl2, Br2 и I2:

H2S + Cl2 (газ) → S + 2HCl

H2S + Br2 → S + 2HBr

H2S + I2 → S + 2HI

2. Реакции с солями Fe+3, Mn+7 и Cr+6:

3H2S + 2FeCl3 → S + 2FeCl2 + 2HCl

5H2S + 2KMnO4 + 3H2SO4 → 5S + 2MnSO4 + K2SO4 + 8H2O

Читайте также:  Какими свойствами обладает энергия

3H2S + 2KMnO4 → 3S + 2MnO2 + 2KOH + 2H2O

3H2S + 2KMnO4 + 2CO2 → 3S + 2MnO2 + 2KHCO3 + 2H2O

3H2S + K2Cr2O7 + 4H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 7H2O

3H2S + 2K2CrO4 + 2H2O → 3S + 2Cr(OH)3 + 4KOH

3H2S + 2HMnO → 3S + 2MnO2+ 4H2O

3K2S + 2KMnO4 + 4H2O → 3S + 2MnO2 + 8KOH

3H2S + Na2Cr2O7 + 4H2SO4 → 3S + Cr2(SO4)3 + Na2SO4 + 7H2O

3Na2S + K2Cr2O7 + 7H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 3Na2SO4 + 7H2O

3(NH4)2S + K2Cr2O7 + 7H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 3(NH4)2SO4 + 7H2O.

Согласно разработчикам экзамена (Вебинар «Методические рекомендации по подготовке к ЕГЭ по химии от разработчиков«, время 33:41, ссылка естьв разделе «О проекте»), окисление сульфид-ионов протекает с образованием S0, но образование сульфат-иона (в реакциях с такими сильными окислителями, как KMnO4, K2Cr2O7) также будет засчитано как правильный ответ.

Источник

Сера

Элемент сера 16S, как и кислород 8О, находится в главной подгруппе VI группы периодической системы элементов. Однако химия серы существенно отличается от химии кислорода. Это обусловлено следующими причинами:

1. В отличие от кислорода сера проявляет и окислительные, и восстановительные свойства. 

2. В отличие от кислорода, имеющего постоянную валентность II и степень окисления в соединениях -2, сера — элемент с переменной валентностью и с переменной степенью окисления.

Характеристика элемента

16S1s22s22p63s23p4

Аr = 32,066

ЭО — 2,5

Изотопы: 32S (95,084 %); 34S (4,16 %); 33S и 36S (

Кларк в земной коре 0,05 % по массе. Формы нахождения:

1) самородная сера (свободная S);

2) S2- (H2S и сульфиды металлов);

3) S+6 (сульфаты Ва и Са);

4) в составе белков, витаминов.

Сера — типичный неметалл, р-элемент. Устойчивые С.О. в соединениях -2, +4, +6.

Отличительное свойство — способность образовывать прочные гомоатомные связи-S-S-S- что приводит к существованию линейных и циклических цепей.

Важнейшие S-содержащие вещества

S-2

S0

S+4

S+6

восстановители

окислительно — восстановительная двойственность

окислители

H2S сероводород CS2 — сероуглерод

S, свободная сера, большое число аллотропов

SO2 сернистый ангидрид
H2SO3 сернистая кислота
Mex(SO3)y
сульфиты

SO3
серный ангидрид H2SO4 серная кислота
Mex(SO4)y сульфаты

Свободная сера

Аллотропные модификации серы: ромбическая — S8. Твердое кристаллическое вещество ли монно-желтого цвета; нерастворимо в воде, хорошо растворимо в сероуглероде, ацетоне, бензоле.

Моноклинная — S8. Существует при температуре около 950С. Отличается от ромбической взаимной ориентацией октаэдров в кристаллической решетке.

Пластическая. Длинные зигзагообразные цепи.

Получение серы

1. Извлечение самородной серы из ее месторождений

2. Переработка природных газов, содержащих H2S (окисление при недостатке О2).

3. В лаборатории серу получают взаимодействием SО2 и H2S в водном растворе:

SО2 + 2H2S = 3S↓ + 2H2О

Химические свойства серы

При обычной температуре твердофазная сера малореакционноспособна. Однако при нагревании, и особенно в расплавленном состоянии, сера ведет себя как очень химически активное вещество

Сера — окислитель:

S + 2e- = S2-

Для завершения октета на внешнем слое атомы серы принимают недостающие 2 электрона и в состоянии S2- образуют ионные и ковалентные связи с водородом, металлами и некоторыми неметаллами.

1) Сера непосредственно соединяется с большинством Me (кроме Pt, Au), образуя сульфиды. С некоторыми Me реакция протекает при обычной температуре, например:

S + Сu = CuS

S + 2Ag = Ag2S

S + Hg = HgS

С железом и многими другими Me сера реагирует при нагревании:

S + Fe = FeS

S + Н2 = H2S сероводород

2S + С = CS2 сероуглерод

3S + 2Р = P2S3 сульфид фосфора (III)

Сера — восстановитель:

S — 4e- = S+4; S — 6e- = S+6

В соединениях с более ЭО элементами атомы серы находятся в положительно заряженном состоянии.

Непосредственно сера не взаимодействует с азотом и йодом.

Практически важными являются реакции соединения серы с кислородом. При обычных условиях сера горит на воздухе, окисляясь кислородом до диоксида серы:

S + O2 = SO2

Высший оксид SO3 образуется при окислении серы или SO2 кислородом в присутствии катализаторов:

2S + 3O2 = 2SO3 триоксид серы (оксид серы (VI)).

Сера непосредственно соединяется с фтором (при обычной температуре) и с хлором (расплавленная сера):

S + 3F2 = SF6 гексафторид серы

2S + Cl2 = S2CI2 дитиодихлорид серы

S2Cl2 + Cl2 = 2SCI2 дихлорид серы

Сильные окислители (HNO3, H2SO4 конц., К2Сr2O7 и др.) окисляют свободную серу до SO2 или H2SO4:

S + 2HNO3(разб.) = H2SO4 + 2NO↑

S + 6HNO3(конц.) = H2SO4 + 6NO2↑ + 2Н2O

S + 2H2SO4(конц.) = 3SO2↑ + 2Н2O

S + К2Сr2O7 = Сr2O3 + K2SO4

Диспропорционирование серы в растворах щелочей

3S+ 6NaOH = 2Na2S + Na2SO3 + 3Н2O

Источник

Сера принадлежит к числу веществ, известных человечеству испокон веков. Ещё древние греки и римляне нашли ей разнообразное применение. Куски самородной серы использовались для совершения обряда изгнания злых духов. Так, по легенде, Одиссей, возвратившись в родной дом после долгих странствий, первым делом велел окурить его серой. Много упоминаний об этом веществе встречается в Библии.

В Средние века сера занимала важное место в арсенале алхимиков. Как они считали, все металлы состоят из ртути и серы: чем меньше серы, тем благороднее металл. Практический интерес к этому веществу в Европе возрос в XIII – XIV вв., после появления пороха и огнестрельного оружия. Главным поставщиком серы была Италия.

Кристаллы природной серыКристаллы природной серы

В наши дни сера используется как сырьё для производства серной кислоты, пороха, при вулканизации каучука, в органическом синтезе, а также для борьбы с вредителями сельского хозяйства. Порошок серы применяют в медицине в качестве наружного дезинфицирующего средства.

Читайте также:  Какими свойствами обладает вода находясь в жидком состоянии

Сера образует несколько аллотропных модификаций. Устойчивая при комнатной температуре ромбическая сера представляет собой жёлтый порошок, нерастворимый в воде. При кристаллизации из хлороформа CHCl3 или из сероуглерода CS2 она выделяется в виде прозрачных кристаллов октаэдрической формы. ромбическая сера состоит из циклических молекул S8, имеющих форму короны. При 113 оС она плавится, превращаясь в жёлтую легкоподвижную жидкость. При дальнейшем нагревании расплав загустевает, так как в нем образуются цепочки. А если нагреть серу до 445 оС, она закипает. Выливая кипящую серу  струйкой в холодную воду, можно получить пластическую серу – резиноподобную модификацию, состоящую из полимерных цепочек. При медленном охлаждении расплава образуются игольчатые кристаллы моноклинной серы (tпл = 119 оС). Подобно ромбической сере, эта модификация  состоит из молекул S8. При комнатной температуре пластическая и моноклинная сера неустойчивы и самопроизвольно превращаются в порошок ромбической серы.

Нахождение в природе

Минерал пиритМинерал пирит

В природе сера находится как в свободном состоянии, так и в виде соединений. Важнейшие из них следующие: FeS2 – пирит; или железный (серный) колчедан, CuS – медный блеск, Ag2S – серебряный блеск, PbS – свинцовый блеск. Сера часто встречается в виде сульфатов: гипса – CaSO4 ∙2H2O; мирабилита, или глауберовой соли Na2SO4∙10H2O; горькой (английской) соли MgSO4 ∙ 7H2O и др. Сера входит в состав нефти, каменного угля, содержится в растительных и животных организмах (в составе белков).

Получение 

Кристаллизация серы в вулканическом озереКристаллизация серы в вулканическом озере

Серу, содержащуюся в свободном состоянии (в виде включений) в горных породах, выплавляют из них в специальных аппаратах – автоклавах.

В лабораторных условиях свободную серу можно получить, например, при сливании растворов сероводородной и сернистой кислот, при неполном сгорании сероводорода:

H2SO3 + 2H2S = 3S + 3H2O

2H2S + O2 = 2H2O + 2S

Химические свойства серы

Сера – типичный активный неметалл. Она реагирует с простыми и сложными веществами. В химических реакциях сера может быть как окислителем, так и восстановителем. Это зависит от окислительно-восстановительных свойств веществ, с которыми она реагирует. Сера проявляет свойства окислителя при взаимодействии с простыми веществами – восстановителями (металлами, водородом, некоторыми неметаллами имеющими меньшую ЭО). Восстановителем сера является по отношению к более сильным окислителям (кислороду, галогенам и кислотам – окислителям).

Взаимодействие серы с простыми веществами

Взаимодействие серы с цинкомВзаимодействие серы с цинком

Сера реагирует как окислитель:

а) с металлами:

2Na + S = Na2S

Mg + S = MgS

2Al + 3S = Al2S3

б) с углеродом:

C + 2S = CS2

в) с фосфором:

2P + 3S = P2S3

г) с водородом:

H2 + S = H2S

как восстановитель:

а) с кислородом:

S + O2 = SO2

б) с хлором:

S + Cl2 = SCl2

в) с фтором:

S + 3F2 = SF6

Взаимодействие серы со сложными веществами

Реакция серы с хлоратом натрия и хлоридом меди (II)Реакция серы с хлоратом натрия и хлоридом меди (II)

а) в воде сера не растворяется и даже не смачивается водой;

б) как восстановитель сера взаимодействует с кислотами-окислителями (HNO3, H2SO4) при нагревании:

S + 2H2SO4 = 3SO2↑ + 2H2O

S + 2HNO3 = H2SO4 + 2NO↑

S + 6HNO3 = H2SO4 + 6NO2↑ + 2H2O

в) проявляя свойства и окислителя, и восстановителя, сера вступает в реакции диспропорционирования (самоокисления-самовосстановления) с растворами щелочей при нагревании:

3S + 6NaOH = 2Na2S + Na2SO3 + 3H2O

              Сероводород и сероводородная кислота

Сера с водородом образует летучее соединение – сероводород H2S. Сероводород – это бесцветный газ с неприятным запахом тухлых яиц, ядовит. В природе сероводород образуется при гниении белковых веществ, содержится в воде минеральных источников. При комнатной температуре в одном объеме воды растворяется 2,5 объёма сероводорода.

Кислотно – основные свойства

Раствор сероводорода в воде – сероводородная вода – является слабой двухосновной кислотой. Сероводородная вода имеет все общие свойства кислот. Она реагирует с: а) основными оксидами, б) основаниями, в) солями, г) металлами:

а) H2S + CaO = CaS + H2O

б) H2S + NaOH = NaHS + H2O

в) CuSO4 + H2S = CuS↓ + H2SO4

г) Ca + H2S = CaS + H2↑

Качественной реакцией на сероводородную кислоту и ее растворимые соли (т.е. на сульфид-ион S2-) является взаимодействие их с растворимыми солями свинца. При этом выделяется осадок сульфида свинца (II) PbS черного цвета:

Na2S + Pb(NO3)2 = PbS↓ + 2NaNO3

Окислительно – восстановительные свойства

В окислительно – восстановительных реакциях как газообразный сероводород, так и сероводородная кислота проявляют сильные восстановительные свойства, так как атом серы в H2S имеет низшую степень окисления – 2, а поэтому может только окисляться. Он легко окисляется:

Горение сероводородаГорение сероводорода

а) кислородом воздуха:

2H2S + O2 = 2H2O + 2S           (при недостатке О2)

2H2S + 3O2 = 2SO2 + 2H2O     ( в избытке О2)

б) бромной водой Br2:

H2S + Br2 = 2HBr + S↓

Бромная вода, имеющая желто-оранжевый цвет, при пропускании через нее сероводорода обесцвечивается;

в) раствором перманганата калия KMnO4:

5H2S + 2KMnO4 + 3H2SO4 = K2SO4 + 2MnSO4 + 5S↓ + 8H2O

При пропускании сероводорода через раствор перманганата калия происходит его обесцвечивание.

Сероводородная кислота окисляется не только сильными окислителями, такими как кислород, галогены, перманганат калия, но и более слабыми, например солями железа (III), сернистой кислотой и т.д.:

2FeCl3 + H2S = 2FeCl2 + S↓ + 2HCl

H2SO3 + 2H2S = 3S↓ + 3H2O

Применение

Сероводородная вода издавна применялся в медицине для лечения ревматизма и кожных заболеваний. Сероводород является одним из компонентов минеральных вод.

Скачать:

Скачать бесплатно реферат на тему: «Сера» 
Сера.docx (52 Загрузки)

Скачать рефераты по другим темам можно здесь

Источник