Какие свойства лазерного излучения используют на практике

Какие свойства лазерного излучения используют на практике thumbnail

Естествознание, 11 класс

Урок 19. Свойства лазерного излучения. Использование лазеров

Перечень вопросов, рассматриваемых в теме:

  • Какие свойства у лазерного излучения?
  • Какие типы лазеров существуют?
  • Где применяются лазеры?

Глоссарий по теме:

Лазер – оптический квантовый генератор

Спонтанное излучение – самопроизвольное излучение кванта света атомом или молекулой при переходе электрона на более низкий энергетический уровень

Вынужденное излучение – явление испускания фотонов определённой частоты возбужденными атомами, молекулами и другими квантовыми системами под действием фотонов (внешнего излучения) такой же частоты

Метастабильное состояние атома – возбужденное энергетические состояние, которое может существовать достаточно долго ≈ 10-3с

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

  • Естествознание. 11 класс: Учебник для общеобразоват. организаций: базовый уровень под ред. И.Ю. Алексашиной. – 3-е изд. – М.: Просвещение, 2017 – §28, С. 100-103.
  • Физика. 11 класс [Текст]: учебник для общеобразоват. учреждений: базовый уровень; профильный уровень/А.В. Грачев, В.А. Погожев, А.М. Салецкий и др.- М.: Вентана-Граф, 2018. – 464 с.
  • https://fb.ru/article/251655/printsip-deystviya-lazera-osobennosti-lazernogo-izlucheniya

Теоретический материал для самостоятельного изучения

Изучая корпускулярные свойства света, мы уже познакомились с лазером. Процесс излучения обусловлен переходом электрона с более высокого энергетического уровня на более низкий. Излучение кванта света в таком процессе происходит самопроизвольно и называется спонтанным излучением. Лазер усиливает свет за счёт вынужденного излучения.

Рассмотрим устройство лазера на примере рубинового.

В центре находится кристалл рубина, состоящий из атомов алюминия и кислорода с небольшой примесью атомов хрома. Этот кристалл имеет строго параллельные торцы и на него навита спиральная газоразрядная лампа, называемая – лампа накачки. Под действием света лампы атомы хрома переходят на метастабильный уровень. Параллельные торцы кристалла покрывают тонким слоем серебра, делая их зеркальными, при этом один из зеркальных торцов делают частично прозрачным. Выходящее из этого торца излучение и представляет собой луч лазера. Устройство, обеспечивающее многократное отражение фотонов только одного направления, называется резонатором. Резонатор состоит из рабочей зоны с зеркалами с двух сторон. Причём одно из них частично прозрачное.

Рассмотрим свойства лазерного излучения.

Высокая монохроматичность: при разложении лазерного излучения в спектр получается очень узкая линия, намного уже, чем для естественного света. Это свойство оказалось важным для научных исследований в области спектроскопии, молекулярной физики и химии.

Лазерное излучение кроме высокой монохроматичности обладает также очень малым угловым расхождением пучка (в 104 раз меньше, чем у традиционных оптических осветительных систем, например, у прожектора). Малая угловая расходимость позволяет фокусировать излучение линзами и вогнутыми зеркалами вплоть до 1 мкм и создавать значительные плотности мощности на облучённых участках. По этому показателю лазерное излучение превосходит излучение всех других источников света.

Ещё одно свойство – высокая интенсивность и короткая длительность. Она позволяет сконцентрировать в малом объеме значительную энергию. Лазер не требует времени для нагрева, поэтому возможно получать импульсы длительностью 10-15с. Это позволяет рассмотреть даже процесс протекания быстрых химических реакций.

Помимо всех вышеперечисленных свойств также можно выделить когерентность и поляризованность. Эти характеристики важны в диагностических исследованиях. Лазерное излучение обладает высокой когерентностью за счет явления вынужденного излучения. Излучение, создаваемое отдельными точками активной среды, имеет сдвиги фазы, соответствующие распространению одной плоской электромагнитной волны, так что из лазера выходит электромагнитная волна с постоянной фазой и амплитудой.

Конструкции лазеров очень разнообразны. Лазеры различаются: способом накачки (оптическая накачка, возбуждение электронным ударом, химическая накачка и т. п.); рабочей активной средой (газы, жидкости, стекла, кристаллы, полупроводники и т.д.); конструкцией резонатора; режимом работы (импульсный, непрерывный). Эти различия определяются многообразием требований к характеристикам лазера в связи с его практическими применениями.

Благодаря своим особым свойствам по сравнению с другими источниками света лазеры широко применяются во многих областях деятельности человека.

Узкий нерасходящийся луч применяется при строительстве туннелей, метрополитенов, когда необходимо провести прямую линию на большое расстояние. При помощи специальной установки создается лазерный луч, определяющий трассу. Ориентируясь на него, управляющий экскаватором человек может стабильно трудиться. Также это свойство лазеров применимо для создания оружия с оптическим прицелом. Используя хорошо отлаженное оружие, пуля попадает точно в пятно, образованное лазером на мишени

Точная фокусировка лазерного луча позволяет использовать его для записи информации на оптические диски.

Высокая интенсивность излучения используется в медицине, в частности в микрохирургии. Лазер представляет собой тончайший скальпель, с помощью которого можно вырезать мельчайшие участки ткани.

Это же свойство применяется и других устройствах для разрезания различных материалов, проделывания отверстий. При воздействии лазерного излучения на материалы облучаемый участок сначала нагревается, затем плавится и испаряется. Дозируя тепловые нагрузки, можно обеспечить практически любой тепловой режим нагреваемого участка, который в результате и определяет вид технологической обработки.

Использование лазеров привело к открытию совершенно новых областей исследования. Особенно ярким примером новой области исследования является нелинейная оптика. Высокая интенсивность лазерного излучения позволяет наблюдать явления, обусловленные нелинейным откликом среды: генерация гармоник, вынужденное рассеяние и др.

С появлением лазеров спектроскопия не только расширила свои прежние возможности, но и получила совершенно новые идеи. Использование одночастотных лазеров позволило проводить спектроскопические измерения с разрешающей способностью, которая на много порядков превышает разрешение, достигаемое с помощью обычных спектроскопических методов. Это открыло путь к новому и более детальному изучению структуры вещества.

Осуществление термоядерного синтеза и использование его в мирных целях позволит человечеству получить неограниченный источник энергии. Предполагают, что лазеры позволят создать высокую температуру для дейтериево-тритиевой плазмы и удержания этой плазмы.

Лазеры, обладая высокой монохроматичностью, применяются в голографии.

Полупроводниковые лазеры применяются для передачи информации в быту и системе космической связи

Всё большее применение лазеры находят в искусстве. С их помощью создаются феерические быстроизменяющиеся живописные картины на сцене.

Таким образом благодаря уникальным свойствам лазеры находят применение в различных областях промышленности, в медицине, искусстве, военном деле.

Примеры и разбор решения заданий тренировочного модуля:

Текст задания 1.:

Попарно соединяя овалы, решите ребус-соответствие:

Фразы:

  • Прибор, в котором используют лазерный луч
  • Оптический квантовый генератор
  • Оптический прибор для просмотра стерео-слайдов
  • Стереоскоп
  • Дисковод
  • Лазер

Правильный вариант: надписи в соединённых фигурах должны составить следующие фразы:

  1. Прибор, в котором используют лазерный луч – дисковод
  2. Оптический квантовый генератор – лазер.
  3. Оптический прибор для просмотра стереослайдов – стереоскоп.

Текст задания 2.:

Разместите предложенные варианты ответов в две колонки по указанному критерию

Читайте также:  Какими полезными свойствами обладает хурма

Типы лазеров по способу накачки

Типы лазеров по виду активной среды

Свойства лазерного излучения

Монохроматичность, твёрдотельные, интенсивность, полупроводниковые, жидкостные, когерентность, химические, газовые, оптические, электрические, направленность

Правильные варианты

Типы лазеров по способу накачки

Типы лазеров по виду активной среды

Свойства лазерного излучения

Оптические, электрические, полупроводниковые, химические

Твердотельные, жидкостные, газовые

Монохроматичность, интенсивность, когерентность, направленность

Источник

1. Лазерное излучение обладает высокой временной и пространственнойкогерентностью. Время когерентности τ ~ 10-3 с, что соответствует длине когерентности l = cτ ~105 м, т.е. на семь порядков выше, чем для обычных источников света.

2.Монохроматичность лазерного излучения. Как уже отмечалось, энергетические уровни атомов обладают определенной шириной, причем в кристалле из-за взаимного влияния атомов происходит более значительное уширение уровней, чем в газе. Вследствие этого вынужденное излуче­ние будет происходит не при одной строго опре­деленной частоте, а в некотором интервале частот. Правда, увеличение ширины энергетического уровня позволяет использовать боль­шую часть излучения лампы накачки для создания инверсной насе­ленности, т. е. увеличить коэффициент полезного действия лампы накачки.

При использовании резонатора ширина спектральных линий для оптиче­ских квантовых генераторов становится более узкой по сравнению с естественной шириной спектральной линии.

В этой связи следует обратить внимание на то, что до появле­ния оптических квантовых генераторов считалось принципиально невозможным преодоление предела существующей до тех пор моно­хроматичности, определяемой естественной шириной спектральной линии, обусловленной, в свою очередь, конечностью времени излучения отдельного атома.

3. Направленность лазерного излучения. Лазерное излучение кроме высокой монохроматичности обладает также очень малым угловым расхождением пучка (в 104 раз меньше, чем у традиционных оптических осветительных систем, например у прожектора). Это объясняется как свойством индуцированного излу­чения, так и воздействием резонатора. Однако, несмотря на это, из-за явления дифракции строго параллельный пучок света полу­чить принципиально невозможно. Как известно, при любом ограни­чении фронта волны имеет место дифракция. Так как при генерации света в лазере фронт световой волны ограничивается окружностью основания кристалла рубина или же зеркала диаметром D, то, согласно теории дифракции, угол минимального расхождения лучей определяется из следующего условия:

θмин ≥ 1,22λ/D.

Углы расхождения составляют соответственно для газовых лазеров

1’—2′, для рубиновых 7’—9′, для полупроводниковых 1°—2°. Диаметр расхождения таких лучей у поверхности Луны при ее локации с поверхности Земли составляет всего 3 км.

4. Интенсивность лазерного излучения. При увеличении мощности накачки увеличивается интенсивность лазерного излучения. Однако такое увеличение имеет предел. Это обусловлено тем, что по мере увеличения числа атомов в метастабильном состоянии возрастают процессы спонтанного излучения, в результате чего уменьшается инверсия населенности, приводящая к уменьшению интенсивности излучения. Энергия излучения рубиновых лазеров по сравнению с газовыми больше и может достигнуть 10 Дж и более, что связано с большей концентрацией активных атомов в рубине, чем в газе. Из-за очень малой длительности излучения в рубиновых лазерах такая энергия создает мощность порядка 1010 Вт/м2.

С помощью специальных усовершенствований можно увеличить мощность лазеров до 1012Вт.

Применения лазеров.Применения лазеров чрезвычайно разнообразны. Это − лазерная технология (сварка, резка и др.), технология электронных приборов, медицина, лазерная локация, системы контроля состава атмосферы, оптическая обработка информации, интегральная и волоконная оптика, волоконно-оптические линии связи, лазерная спектроскопия, лазерная диагностика плазмы и управляемый термоядерный синтез, лазерная химия и лазерное разделение изотопов, нелинейная оптика, сверхскоростная фотография, лазерные гироскопы, сейсмографы и другие точные физические приборы.

Как уже отмечалось, мощные импульсные лазеры видимого и ИК-диапапазонов используются для создания активной среды рентгеновского лазера.

Другим перспективным направлением применения лазеров является

управляемый термоядерный синтез.

В США ведутся работы по программе управляемого термоядерного синтеза с инерциальным удержанием плазмы (Inertial Сonfinement Fusion — ICF). Данная программа − альтернатива работам по созданию систем с магнитным удержанием плазмы (это токамаки и стеллараторы). Для этих целей создана установка NIF (National Ignition Facility — «Национальная установка зажигания»), в которой для обстрела мишени используется 192 ультрафиолетовых лазера.

Мощный сфокусированный лазерный импульс, направленный на мишень из смеси дейтерия и трития в виде сферы диаметром около 2 мм, превратит ее в плазму с температурой около 100 миллионов градусов. При такой температуре произойдет термоядерная реакция синтеза. Запуск установки на полную мощность запланирован на 2013 г.

Источник

Устройство лазера и свойства вынужденного излучения обуславливают отличие лазерного излучения от излучения обычных источников света. Лазерное излучение (ЛИ) характеризуется следующими важнейшими свойствами.

1. Высококогерентностъ. Излучение является высококогерентным, что обусловлено свойствами вынужденного индуцированного излучения. При этом имеет место не только временная, но и пространственная когерентность: разность фаз в двух точках плоскости, перпендикулярной направлению распространения, сохраняется постоянной (рис. а) (в следствии пространственной когерентности излучение может быть сфокусировано в очень малом объеме).

2. Монохроматичность. Лазерное излучение является в высокой степени монохроматическим, то есть содержит волны практически одинаковой частоты (фотоны имеют одинаковую энергию). Это обусловлено тем, что вынужденное излучение связано с дублированием фотонов (каждый индуцированный фотон полностью подобен первоначальному). При этом формируется электромагнитная волна постоянной частоты. Ширина спектральной линии составляет 0,01 нм. На рис. в приведено схематическое сравнение ширины линии лазерного луча и луча обычного света.

До появления лазеров излучение с некоторой степенью монохроматичности удавалось получить с помощью приборов – монохроматоров, выделяющих из сплошного спектра узкие спектральные интервалы (узкие полосы длин волн), однако мощность света в таких полосах мала.

3. Высокая мощность. С помощью лазера можно обеспечить очень высокую мощность монохроматического излучения до 105Вт в непрерывном режиме. Мощность импульсных лазеров на несколько порядков выше. Так неодимовый лазер генерирует импульс с энергией Е = 75 Дж, длительность которого t = 3·10–12с. Мощность в импульсе равна Р = E/t = 2,5·1013Вт (для сравнения: мощность ГЭС Р ~ 109Вт).

4. Высокая интенсивность. В импульсных лазерах интенсивность лазерного излучения очень высока и может достигать I = 1014-1016Вт/см2 (ср. интенсивность солнечного света вблизи земной поверхности I = 0,1 Вт/см2).

5. Высокая яркость. У лазеров, работающих в видимом диапазоне, яркость лазерного излучения (сила света с единицы поверхности) очень велика. Даже самые слабые лазеры имеют яркость 1015кд/м2 (для сравнения: яркость Солнца L ~ 109 кд/м2).

6. Давление. Лазерный луч при падении на поверхность оказывает давление (р). При полном поглощении лазерного излучения, падающего перпендикулярно поверхности, величина создается давление р = I/с, где I– интенсивность излучения, с – скорость света в вакууме. При полном отражении величина давления в два раза больше. При интенсивности I = 1014Вт/см2= 1018 Вт/м2, р = 3,3·109Па = 33000 атм.

Читайте также:  Воздух и его свойства какой он

7. Малый угол расходимости в пучке. Коллимированностъ. Излучение является коллимированным, то есть все лучи в пучке почти параллельны друг другу (рис.6). На большом расстоянии лазерный пучок лишь незначительно увеличивается в диаметре (для большинства лазеров угол расходимости составляет 1 угловую минуту или меньше). Так как угол расходимости мал, то интенсивность лазерного пучка слабо убывает с расстоянием. Остронаправленность позволяет передавать сигналы на огромные расстояния при малом ослаблении их интенсивности.

8. Поляризованностъ. Лазерное излучение полностью поляризовано.

Источник

lazer-izl1 Свойства лазерного излучения

Лазер

— квантовый усилитель или генератор когерентного электромагнит­ного излучения оптического диапазона (света).

Лазерное излучение — электромагнитное излучение оптического диапазо­на, обладающее такими свойствами, как когерентность, монохроматичность, поляризованность, направленность, что позволяет создать большую локаль­ную концентрацию энергии.

Когерентность (от латинского cohaerens — находящийся в связи, связан­ный) — согласованное протекание во времени нескольких колебательных волновых процессов одной частоты и поляризации, свойство двух или более колебательных волновых процессов, определяющее их способность при сло­жении взаимно усиливать или ослаблять друг друга. Тогда при их сложении в пространстве возникает интерференционная картина. Различают пространс­твенную и временную когерентности.

Другими словами, когерентность — это распространение фотонов в од­ном направлении, имеющих одну частоту колебаний, т. е. энергию. Излуче­ние, состоящее из таких фотонов, называют когерентным.

Пространственная когерентность относится к волновым полям, изме­ряемым в один и тот же момент времени в двух разных точках пространства. Если за время наблюдения, равное двум периодам колебаний, фаза изменится не более чем на п, то поля называют когерентными. Расстояние, на котором сохраняется когерентность, называют длиной когерентности, т. е. на этом расстоянии наблюдаются интерференционные эффекты.

Временная когерентность описывает поведение волн в течение времени, относится к одной точке поля, но в различные моменты времени и тесно свя­зана с понятием монохроматичности. Характеризуется таким параметром, как время когерентности.

Пространственная когерентность определяется геометрическими разме­рами источника излучения, временная — спектральным составом излучения, т. е. зависимостью энергии излучения от длины волны (спектра).

Большинство лазеров, применяемых в современной лазерной терапии — диодные и имеют чрезвычайно малую длину когерентности. Для импуль­сных полупроводниковых лазеров /. составляет доли миллиметра. Другими словами, на небольшом расстоянии от биологического объекта излучаемое поле ведет себя как некогерентный источник (подразумевается пространс­твенная когерентность).

Интерференция света — явление, возникающее при наложении двух или нескольких когерентных световых волн, линейно поляризованных в одной плоскости, состоящее в устойчивом во времени усилении или ослаблении интенсивности результирующей световой волны в зависимости от соотноше­ния между фазами этих волн.

Монохроматичность (дословно — одноцветность) — излучение одной определенной частоты или длины волны. Более корректно — излучение с достаточно малой шириной спектра. Условно за монохроматичное можно принимать излучение с шириной спектра менее 5 нм. Именно такую ши­рину спектральной линии имеют импульсные полупроводниковые лазеры. У одномодовых непрерывных лазеров ширина спектра излучения не более 0,3 нм.

Поляризация — симметрия (или нарушение симметрии) в распределении ориентации вектора напряженности электрического и магнитного полей в электромагнитной волне относительно направления ее распространения. Если две взаимно перпендикулярные составляющие вектора напряженности электрического поля (Е) совершают колебания с постоянной во времени раз­ностью фаз, то волна называется поляризованной. Если изменения происхо­дят хаотично (при распространении электромагнитных волн в анизотропных средах, отражении, преломлении, рассеянии и др.), то волна является неполяризованной.

Постараемся проще сформулировать понятие поляризации. Если мы пос­мотрим вдоль оси распространения на убегающую от нас волну (рис. 25), то тогда увидим несколько вариантов ее движения или колебаний (волна все- таки). В первом случае (рис. 26, а) волна будет совершать колебания стро­го вдоль плоскости распространения, и мы ее просто не увидим, как лист бумаги, который повернули к нам параллельно поверхности. Такую волну называют линейно поляризованной. Во втором случае волне задан начальный импульс, отклоняющий ее колебания от заданного направления, и мы видим, что она как бы вращается вдоль оси распространения, «ввинчивается» в про­странство. Тогда говорят о круговой поляризации. В общем случае в излучении (волновом поле) можно найти все типы волн, и такой, самый распространенный вариант называют эллиптической (частичной) поляриза­цией(рис. 26, в).

Состояние поляризации описывают параметром, называемым степенью поляризации (Сп), равным отношению разности интенсивности двух выде­ленных ортогональных составляющих к сумме их интенсивностей:

ТЕ-ТМ ~ ТЕ + ТМ

где ТЕ — интенсивность в плоскости распространения электрической составляющей электромагнитной волны; ТМ-интенсивность в плоскости рас­пространения магнитной составляющей электромагнитной волны.

На практике чаще используют коэффициент поляризации Кп- Сп- 100%.

Направленность — следствие когерентности лазерного излучения, когда фотоны обладают одним направлением распространения. У полупроводни­ковых инжекционных лазеров излучение расходящееся (и достаточно силь­но!), что, однако, не мешает называть их лазерами. Параллельный световой луч называют коллимированным.

Мощность излучения — энергетическая характеристика электромагнитно­го излучения. Единица измерения в СИ — ватт [Вт].

Энергия (доза) — мощность электромагнитной волны, излучаемая в едини­цу времени. Единица измерения в СИ — джоуль [Дж], или [Вт • с]. Использу­емый на практике термин «доза» — мера действующей на организм энергии. Физический смысл и размерность совпадают.

Плотность мощности — отношение мощности излучения к площади по­верхности, перпендикулярной к направлению распространения излучения. Единица измерения в СИ — ватт/м2 [Вт/м2].

Плотность дозы — энергия излучения, распределенная по площади по­верхности воздействия (когда слово «плотность» исчезает и остается толь­ко «доза», это не совсем корректно). Единица измерения в СИ — джоуль/м2 [Дж/м2]. На практике более удобным представляется использование единицы Дж/см2, так как площади, на которые реально происходит воздействие ла­зерным излучением, исчисляются несколькими квадратными сантиметрами. Этот параметр определяющий, можно даже сказать основной, в биологиче­ских эффектах низкоинтенсивного лазерного излучения.

Плотность дозы вычисляется по формуле:

D = (Рср.х T)/S,

где D — доза лазерного воздействия; РСр — средняя мощность излучения; Т — время воздействия; S- площадь воздействия

Очень важно понимать, что для достижения наилучшего результата (или эффекта вообще) необходимо задать оптимальную плотность дозы.

Другими словами, нельзя меньше или больше — нужно обеспечить именно и только оптимальное значение. Все три параметра — средняя мощность из­лучения, время воздействия и площадь воздействия — взаимозависимы, т. е. подбор оптимальной дозы может быть изменен вариацией одного из пара­метров. Мы можем увеличить мощность или время для увеличения плотнос­ти дозы, а также уменьшить площадь воздействия.

Читайте также:  Какие качества личности следует отнести к свойствам темперамента

В литературе практически всегда упоминается не «плотность дозы», а только термин «доза». Это связано с тем, что площадь чаще всего автоматически зада­ется методикой воздействия. Например, при использовании зеркальной насадки площадь принимается равной 1 см2 и не меняется в процессе проведения проце­дуры. То есть происходит нормирование параметров воздействия для облегче­ния работы. К сожалению, не всегда удается применять контактно-зеркальный метод, когда табличное значение нормированной дозы используется без всяких корректировок. В реальной жизни необходимо учитывать и площадь воздейс­твия. В табл. 3-5 представлены приблизительные значения площадей облучения в наиболее распространенных случаях при дистантной методике воздействия в зависимости от диаметра светового пятна или расстояния до объекта.

lazer-izl2 Свойства лазерного излучения

В табл. 7 представлены относительные (нормированные на площадь, рав­ную 1 см2) значения доз излучения для наиболее распространенных значе­ний мощности и времени воздействия непрерывного лазерного излучения. Мощность дана в мВт (1 (Р Вт), что более удобно. Необходимо внимательно следить за размерностью всех величин, используемых в расчетах.

lazer-izl3 Свойства лазерного излучения

Модуляция излучения — процесс изменения во времени мощности излу­чения (амплитудная), частоты (частотная), фазы {фазовая). На практике в лазерной терапии используется только амплитудная модуляция, которая описывается следующими параметрами (рис. 28): длительность импульса (гм) — время, когда происходит излучение (определяют на уровне половины максимальной амплитуды); темновой период (Ттемн) — время отсутствия излучения; период и частота (см. выше); а также скважность (Q) — отноше­ние периода к длительности импульса излучения.

Различают три основных режи­ма излучения:

—     непрерывный (немодулиро- ванный) — когда мощность не меняется во все время воз­действия и средняя мощность равна максимальной;

—     модулированный — когда ме­няется амплитуда излучения (мощность) по некоторому закону, при этом средняя мощ­ность (РСр) в Q раз меньше максимальной (Рмакс.) или Рср. = Рмакс J Q

—     импульсный — когда излуче­ние происходит за очень ко­роткий промежуток времени в виде редко повторяющихся импульсов.

Мощность излучения

В отношении режимов излучения необходимо сделать несколько заме­чаний:

1. Излучение непрерывных лазеров можно модулировать в пределах мощ­ности, которую они обеспечивают в непрерывном режиме (или с незначи­тельным превышением).

2.  Модуляция может иметь различную форму (прямоугольник, треуголь­ник и др.) и быть многочастотной — как это делается при помощи блока «Матрикс-БИО».

3.  Непрерывные лазеры могут иметь среднюю мощность в десятки ватт и при соответствующей модуляции обеспечивать импульсный режим, но им­пульсные лазеры не могут работать в непрерывном режиме Сам механизм работы импульсных лазеров предполагает накопление энергии в течение относительно длительного промежутка времени, чтобы «выплеснуть» ее в одно мгновенье.

4.  Условно импульсным можно считать такое модулированное излучение, длительность импульса которого не превышает 1 мкс при скважности бо­лее 100. Именно эти граничные условия различают импульсные и непрерыв­ные лазеры (как переходные — квазинепрерывные). У импульсных лазерных диодов превышение этих границ приводит к их резкой деградации за счет теплового разрушения.

При модулированном режиме работы непрерывных лазеров средняя мощность уменьшается в 2 раза, так как чаще всего излучение модулирует­ся прямоугольными импульсами со скважностью Q, равной 2. Измерители мощности при этом автоматически показывают реальное значение средней мощности, которое и принимается в расчетах.

Для импульсных лазеров расчет дозы усложняется промежуточным оп­ределением средней мощности (РСр ), так как измерители в этих аппаратах показывают импульсную мощность:

Pep. = Ри х tи х Fu,

где Ри — импульсная мощность излучения по показанию измерителя, Вт; и — длительность импульса излучения, с; Fu — частота повторения импуль­сов, Гц.

Обратите внимание на то, что для импульсных лазеров дозу можно ре­гулировать изменением частоты!

В табл. 8 даны расчетные величины средней мощности излучения для различных значений импульсной мощности и частоты повторения импуль­сов. С целью упрощения длительность импульсов принимали неизменной и равной 100 не (Ю-7 с) — типичное значение для наиболее распространенных лазеров. Длительность импульсов — величина постоянная, задается генерато­ром накачки лазера.

lazer-izl4 Свойства лазерного излучения

Часто в методических рекомендациях и литературе приводится непос­редственно доза воздействия без указания других характеристик (частота, время воздействия, мощность). Табл. 9 помогает решить для таких случаев как бы обратную задачу: для данной дозы (D) и времени (7) воздействия оп­ределить плотность мощности излучения (Е) по формуле: Pcp.=ExS и среднюю мощность для известной площади воздействия (S) по формуле:

lazer-izl5 Свойства лазерного излучения

Обращает на себя внимание широкая вариабельность исходных пара­метров при неизменной дозе: можно большой мощностью воздействовать на короткий промежуток времени и, наоборот, длительное время облучать малой мощностью. Выбор, как всегда, остается за специалистом. Исходя из возможностей аппаратуры, остроты заболевания, состояния пациента, дан­ных литературы, собственного опыта и т. д. принимается решение в пользу конкретных характеристик пространственно-временных параметров воздействия.

При расчете дозы необходимо учитывать, что при дистантном мето­де воздействия приблизительно 50% энергии отразится от поверхности кожи. Коэффициент отражения кожей электромагнитных волн оптическо­го диапазона достигает 43-55% и зависит от различных причин: охлаж­дение участка воздействия снижает значение коэффициента отражения на 10-15%; у женщин он на 5-7% выше, чем у мужчин; у лиц старше 60 лет ниже, чем у молодых; увеличение угла падения луча ведет к возрастанию коэффициента отражения во много раз. Существенное влияние на коэф­фициент отражения оказывает цвет кожных покровов: чем темнее кожа, тем этот параметр ниже. Так, для пигментированных участков он меньше на 6-8%. При внутриполостной и контактно-зеркальной методиках прак­тически вся подводимая мощность поглощается в объеме ткани в зоне воздействия.

Различна и глубина поглощения (чаще говорят глубина проникновения) ла­зерного излучения, которая зависит как от длины волны падающего света, так и от состава ткани (рис. 30). Экспериментальными исследованиями ус­тановлено, что проникающая способность излучения от ультрафиолетового до оранжевого диапазона постепенно увеличивается от 20 мкм до 2,5 мм с резким увеличением глубины проникновения в красном диапазоне (до 20- 30 мм), с пиком проникающей способности в ближнем инфракрасном (при X = 0,95 мкм — до 50 мм) и резким снижением до долей миллиметра далее. Максимум пропускания кожей электромагнитного излучения находится в диапазоне длин волн от 0,8 до 1,2 мкм.

Строго говоря, термин «глубина проникновения» с позиций лазерной те­рапии не совсем корректен и не имеет количественной оценки, так как под этим понимают проникновение некоторого количества фотонов, достаточно­го для измерения, а не об энергии, необходимой для «включения» вызванных лазерным излучением процессов. Другими словами, мы не знаем, сколько фотонов «пошли на пользу», вызвав фотобиологический отклик, а какая их часть поглотилась без эффекта.

Источник