Какие свойства имеет материя

У этого термина существуют и другие значения, см. Материя.

Мате́рия (от лат. māteria «вещество») — одно из основных понятий физики, общий термин, определяющийся множеством всего содержимого пространства-времени и влияющее на его свойства.

Является объектом изучения физики, где рассматривается в качестве не зависящей от разума объективной реальности.

Понятие материи в разных областях физики[править | править код]

Определение материи расширялось с развитием различных областей науки. Раньше это были объекты, которые можно было описать классическими свойствами (масса, температура, делимость и т. п.), и в представлениях Ньютона об абсолютности пространства и времени, рассматриваемые независимо; с развитием оптики, а за ней специальной и общей теории относительности это понятие дополнилось его связями с гравитацией и волнами; а современные квантовая физика, астрофизика и физика высоких энергий установили это понятие в современном [уточнить] смысле и активно занимаются поиском новых видов материи.

Основные виды материи[править | править код]

  • Вещество:

    • Адронное вещество — его структурой является множество составных частиц: адронов.

      • Барионное вещество (барионная материя) — вещество состоящее из барионов.

        • Вещество в классическом понимании. Состоит преимущественно из фермионов. Эта форма материи доминирует в Солнечной системе и в ближайших звёздных системах.
    • Антивещество — состоит из античастиц.
    • Нейтронное вещество — состоит преимущественно из нейтронов и лишено атомного строения. Основной компонент нейтронных звёзд, существенно более плотный, чем обычное вещество, но менее плотный, чем кварк-глюонная плазма.
    • Другие виды веществ, имеющих атомоподобное строение (например, вещество, образованное мезоатомами с мюонами).
    • Кварк-глюонная плазма — сверхплотная форма вещества, существовавшая на ранней стадии эволюции Вселенной до объединения кварков в классические элементарные частицы (до конфайнмента).
    • Гипотетические докварковые сверхплотные материальные образования, составляющие которых — струны и другие объекты, c которыми оперируют теории великого объединения (см. теория струн, теория суперструн). Основные формы материи, предположительно существовавшие на ранней стадии эволюции Вселенной. Струноподобные объекты в современной физической теории претендуют на роль наиболее фундаментальных материальных образований, к которым можно свести все элементарные частицы, то есть в конечном счёте, все известные формы материи. Данный уровень анализа материи, возможно, позволит объяснить с единых позиций свойства различных элементарных частиц. Принадлежность к «веществу» здесь следует понимать условно, поскольку различие между вещественной и полевой формами материи на данном уровне стирается.

Поле, в отличие от вещества, не имеет внутренних пустот, обладает абсолютной плотностью.

  • Поле (в классическом смысле):

    • Электромагнитное поле.
    • Гравитационное поле.
  • Квантовые поля различной природы. Согласно современным представлениям квантовое поле является универсальной формой материи, к которой могут быть сведены как вещества, так и классические поля, при этом существует нечёткое разделение на вещественные поля (лептонные и кварковые поля фермионной природы) и поля взаимодействий (глюонные сильные, промежуточные бозонные слабые и фотонное электромагнитное поля бозонной природы, сюда же относят пока гипотетическое поле гравитонов). Особняком среди них стоит поле Хиггса, которое сложно отнести однозначно к любой из этих категорий.
  • Материальные объекты неясной физической природы:
    • Тёмная материя.
    • Тёмная энергия.

Эти объекты были введены в научный обиход для объяснения ряда астрофизических и космологических явлений.

Вещество[править | править код]

Классическое вещество может находиться в одном из нескольких агрегатных состояний: газообразном, жидком, твёрдом кристаллическом, твердом аморфном или в виде жидкого кристалла. Кроме того, выделяют высокоионизованное состояние вещества (чаще газообразного, но, в широком смысле, любого агрегатного состояния), называемое плазмой. Известны также состояния вещества, называемые конденсат Бозе — Эйнштейна и кварк-глюонная плазма.

Элементарные частицы и поля[править | править код]

Среди элементарных частиц, составляющих вещества и поля, выделяют фермионы и бозоны, а также частицы, обладающие и не обладающие массой покоя (безмассовые частицы), могут различаться электрическим и другими зарядами. Кроме того, отдельно выделяют виртуальные частицы, которые можно рассматривать как частицы, возникающие в промежуточных состояниях взаимодействия «реальных» элементарных частиц, отличающихся тем, что они могут наблюдаться в долгоживущем состоянии в итоге эксперимента (в принципе, частицы одного и того же вида, например, фотоны или электроны, могут в одних ситуациях участвовать как виртуальные, а в других — как реальные). Отличие виртуальных частиц в том, что они рождаются и уничтожаются (поглощаются) в процессе взаимодействия и не присутствуют в эксперименте в начальном и конечном состоянии. Виртуальные частицы определяют свойства физического вакуума, который, таким образом, в современной физике также приобретает атрибуты материальной среды.

Материя в специальной и общей теории относительности[править | править код]

Материя и излучение, согласно специальной теории относительности, являются только особыми формами энергии, распределенной в пространстве; таким образом, весомая масса теряет своё особое положение и является лишь особой формой энергии.

Согласно укоренившейся терминологии материальными полями в общей теории относительности называют все поля, кроме гравитационного.

См. также[править | править код]

  • Материя (философия)
  • Элементарная частица
  • Масса
  • Энергия
  • Антиматерия
  • Фундаментальные взаимодействия

Примечания[править | править код]

Ссылки[править | править код]

Источник

Физическая наука, включающая в себя химию и физику, обычно изучает природу и свойства материи и энергии в неживых системах. Материя — это вещество вселенной. Это атомы, молекулы и ионы, которые составляют все физические вещества. Материя — это все, что имеет массу и занимает пространство.

Энергия — это то, что способно вызвать изменения. Энергию нельзя создать и ее нельзя уничтожить. Она может быть только сохранена и преобразована из одной формы в другую. Потенциальная энергия — это энергия, хранящаяся в объекте из-за его положения. Кинетическая энергия — это энергия, которая находится в движении и вызывает изменения. Любой объект или частица, которая находится в движении, имеет кинетическую энергию, основанную на ее массе и скорости. Кинетическая энергия может быть преобразована в другие виды энергии, такие как электрическая или тепловая.

Существует пять состояний вещества — твердая материя, жидкость, газ, плазма и конденсат Бозе-Эйнштейна. Основное отличие каждого состояния заключается в плотности частиц.

Агрегатные состояния вещества

Твердое вещество

В твердом теле частицы упакованы плотно, поэтому они не способны сильно двигаться. Эти частицы имеют очень низкую кинетическую энергию. Электроны каждого атома находятся в движении, поэтому атомы имеют небольшую вибрацию, но они зафиксированы в своем положении. Твердые тела имеют определенную форму и определенный объем. Частицы упакованы настолько плотно, что увеличивающееся давление не будет сжимать твердое тело до меньшего объема.

Жидкость

В жидком состоянии частицы вещества имеют большую кинетическую энергию, чем частицы твердого тела. Частицы жидкости не удерживаются в регулярном расположении, но все же еще близки друг к другу, поэтому жидкости имеют определенный объем. Жидкость, как и твердые тела, нельзя сжимать. Частицы жидкости имеют достаточно места, чтобы обтекать друг друга, поэтому жидкость имеет неопределенную форму — она способна изменить форму, чтобы соответствовать форме бутылки. Сила распространяется равномерно по всей жидкости, поэтому, когда объект помещается в нее, ее частицы смещаются объектом.

Величина выталкивающей силы равна весу жидкости, вытесненной объектом. Когда выталкивающая сила равна силе тяжести, тянущей вниз по массе объекта, объект будет плавать.

Частицы жидкости, как правило, удерживаются слабым межмолекулярным притяжением, а не перемещаются свободно, как частицы газа. Эта сила соединяет частицы вместе, образуя капли и потоки.

В апреле 2016 года ученые заявили, что было создано необычное состояние материи, которое было предсказано, но его никто и никогда не видел. Хотя этот тип материи можно было держать в руке, как если бы это был твердый объект, увеличение бы показало беспорядочные взаимодействия его электронов, более характерные для жидкости. В новой материи, называемой квантовая спиновая жидкость Китаева, электроны вступают в квантовый танец, в котором они взаимодействуют и разговаривают друг с другом. Обычно, когда вещество остывает, спин его элеронов стремится выровняться. Но в этой квантовой спиновой жидкости электроны взаимодействуют так, что они влияют на то, как вращаются другие, и никогда не выравниваются, независимо от того, насколько сильно вы охладите материал. Он будет вести себя так, как если бы его электроны, считающиеся неделимыми, разорвались на части.

Газ

Частицы газа имеют большое пространство между собой и высокую кинетическую энергию. Если его не ограничивать, то частицы будут бесконечно разбросаны, если ограничить чем-либо — газ начнет расширятся, чтобы заполнить емкость, в которую его поместили. Когда газ оказывается под давлением, за счет уменьшения объема емкости, пространство между частицами начинает сжиматься, а давление, оказываемое их столкновениями, увеличивается. Если объем емкости постоянен, но температура газа увеличивается, то давление также будет увеличиваться. Частицы газа обладают достаточной кинетической энергией для преодоления межмолекулярных сил, которые удерживают твердые частицы и жидкость вместе, поэтому газ не имеет определенного объема и не имеет определенной формы.

Плазма

Плазма не является распространенным состоянием материи на Земле, но может быть очень распространенным состоянием во вселенной. Плазма состоит из сильно заряженных частиц с чрезвычайно высокой кинетической энергией. Благородные газы, такие как гелий, неон, аргон, криптон, ксенон и радон, часто используются для того, чтобы сделать светящиеся вывески с помощь электричества, которое ионизирует их до состояния плазмы. А звезды по существу являются перегретыми шарами плазмы.

Конденсат Бозе-Эйнштейна

В 1995 году технологии позволили ученым создать новое состояние материи — конденсат Бозе-Эйнштейна. Используя комбинацию лазеров и магнитов охладили образец рубидия до абсолютного нуля. При такой чрезвычайно низкой температуре молекулярное движение очень близко к полной остановке. Так как кинетическая энергия почти не передается от одного атома к другому, атомы начинают сжиматься вместе. Больше нет тысяч отдельных атомов, а остается один «супер атом«. Бозе-конденсат используется для изучения квантовой механики на макроскопическом уровне. Свет замедляется, проходя черед него, что позволяет изучать парадокс частицы/волны. Также он обладает многими свойствами сверхтекучей жидкости. Конденсат еще используется для моделирования условий, которые могут быть в черных дырах.

Изменение состояния

Добавление энергии к веществу приводит к физическому изменению — материя переходит из одного состояния в другое. Например, добавление тепла к жидкой воде приводит к тому, что она становится паром, а точнее меняет свое агрегатное состояние на другое — газ. Извлечение энергии также приводит к физическим изменениям, например, когда тепло удаляется, вода становится льдом, то есть твердым телом. Физические изменения также могут быть вызваны движением или давлением.

Плавление и охлаждение

Когда тепло действует на твердое тело, то частицы этого тела начинают быстрее вибрировать и двигаться дальше друг от друга. Когда при стандартном давлении достигается определенная точка — точка плавления — твердое вещество начинает превращаться в жидкость. Точку плавления чистого вещества можно определить с точностью до 0,1°С. Если вы продолжите действовать теплом на тело, то температура не превысит точку плавления, пока все вещество не станет жидким, и только после этого температура снова начнет расти. Разные соединения имеют разную точку плавления — это величина помогает лучше различать их.

Точка замерзания — это температура, при которой жидкое вещество достаточно охлаждено, чтобы стать твердым. По мере охлаждения жидкости движение частиц замедляется. Во многих веществах частицы выравниваются точными геометрическими узорами, образуя кристаллические твердые тела. Большинство жидкостей сжимаются при замерзании. Одной из важных характеристик воды является то, что она расширяется при замерзании, поэтому лед и плавает на воде.

Точка замерзания часто близка к той же температуре, как и у точки плавления, но она не считается характерной для вещества, поскольку несколько факторов могут ее изменить. Например, добавление растворенных веществ в жидкость приведет к понижению точки замерзания. Другие жидкости можно охлаждать до температур, значительно ниже их точки плавления, прежде чем они начнут твердеть. Такие жидкости называются переохлажденными и часто требуют наличие частиц пыли или кристалла для начала процесса кристаллизации.

Сублимация

Когда твердое тело превращается в газ, минуя жидкую фазу, это называется сублимация. Она происходит, когда кинетическая энергия частиц превышает атмосферное давление, окружающее вещество. Это может произойти, когда температура вещества быстро повышается и выходит за пределы точки кипения. Чаще всего вещество может быть сублимировано путем его охлаждения в условиях вакуума, так что вода в нем подвергнется сублимации и удалится. Несколько летучих веществ будут подвергаться сублимации при нормальной температуре и давлении. Наиболее известным из этих веществ является CO2 или «сухой лед».

Испарение

Испарение представляет собой превращение жидкости в газ. Преобразование происходит путем испарения или кипения.

Поскольку частицы жидкости находятся в постоянном движении, они часто сталкиваются друг с другом, передавая при этом энергию. Эта передача энергии имеет небольшое влияние под поверхностью, но, когда достаточная энергия передается частице вблизи поверхности, частица может получить достаточную энергию, чтобы полностью удалится от образца в виде частицы свободного газа. Этот процесс называется испарением, и он продолжается до тех пор, пока не закончится жидкость. Интересно то, что жидкость охлаждается по мере испарения. Энергия, передаваемая поверхностным молекулам, которая вызывает их «вылет», выходит из оставшегося жидкого вещества.

Когда к жидкости добавляется достаточное количество тепла, чтобы пузырьки пара образовались ниже поверхности жидкости, в этот момент мы говорим, что жидкость кипит. Температура, при которой жидкость кипит, является переменной. Точка кипения зависит от давления вещества. Жидкость под высоким давлением потребует больше тепла до того, как в ней образуются пузырьки. На больших высотах давление жидкости ниже, поэтому она будет кипеть при более низкой температуре.

Конденсация и охлаждение

Конденсация — это когда газ превращается в жидкость. Конденсация происходит, когда газ охлаждается или сжимается до такой степени, что кинетическая энергия частиц больше не может преодолевать межмолекулярные силы. Начальная группа частиц инициирует процесс, который имеет тенденцию дополнительно охлаждать газ, так что конденсация продолжается. Когда газ превращается непосредственно в твердое вещество, не проходя через жидкую фазу, это называется осаждением или десублимацией. Например, при пониженных температурах водяной пар в атмосфере преобразуется в иней и лед. Мороз стремится обрисовать стебельки травы и ветки, потому что воздух, который касается этих твердых веществ, охлаждается быстрее, чем воздух, который не касается твердой поверхности.

???? ???? ????

Источник

1. Движение – способ существования материи. Движение есть всякое изменение, поэтому движение является способом существования материи или атрибутом (т.е. неотъемлемым всеобщим свойством материи). Свойства движения: движение охватывает все происходящие в мире изменения и процессы (от простого перемещения до сложных процессов в коре головного мозга и сложных социальных преобразований).

Виды движения:

• механическое движение;

• физическое движение;

• химическое движение;

• биологическое движение;

• социальное движение.

Движение материи:

• возникает из самой материи (из заложенных в ней противоположностей, их единства и борьбы);

• всеобъемлюще (движется все: отталкиваются и притягиваются атомы, микрочастицы; идет постоянная работа живых организмов — работает сердце, система пищеварения, осуществляются физические процессы; движутся химические элементы, движутся живые организмы, движутся реки, осуществляется круговорот веществ в природе, постоянно развивается общество, Земля, другие небесные тела движутся вокруг своей оси и вокруг Солнца (звезд); звездные системы движутся в галактиках, галактики — во Вселенной);

• постоянно (существует всегда; прекращение одних форм движения замещается возникновением новых форм движения). Движение также может быть:

• количественным — перенос материи и энергии в пространстве;

• качественным — изменение самой материи, перестройка внутренней структуры и возникновение новых материальных объектов и их новых качеств.

Пространство и время. Пространственными характеристиками являются положения относительно др. тел (координаты тел), расстояния между ними, углы между различными пространственными направлениями (отдельные объекты характеризуются протяжённостью и формой, которые определяются расстояниями между частями объекта и их ориентацией). Временные характеристики — «моменты», в которые происходят явления, продолжительности (длительности) процессов. Отношения между этими пространственными и временными величинами называются метрическими. С чисто пространственными отношениями имеют дело лишь в том случае, когда можно отвлечься от свойств и движения тел и их частей: с чисто временными — в случае, когда можно отвлечься от многообразия сосуществующих объектов.

Категории пространства и времени

В истории философии существуют две точки зрения об отношении пространства и времени к материи. Первую из них можно условно назвать субстанциальной (от лат. substantia — то, что лежит в основе; сущность) концепцией. В ней пространство и время трактовались как самостоятельные сущности, существующие наряду с материей и независимо от неё. Соответственно отношение между пространством, временем и материей представлялось как отношение между двумя видами самостоятельных субстанций. Это вело к выводу о независимости свойств пространства и времени от характера протекающих в них материальных процессов.

Вторую концепцию именуют реляционной (от лат. relatio — отношение). Её сторонники понимали пространство и время не как самостоятельные сущности, а как системы отношений, образуемых взаимодействующими материальными объектами. Вне этой системы взаимодействий пространство и время считались несуществующими. В этой концепции пространство и время выступали как общие формы координации материальных объектов и их состояний. Соответственно допускалась и зависимость свойств пространства и времени от характера взаимодействия материальных систем.

3.Самоорганизация — процесс, в ходе которого создаётся, воспроизводится или совершенствуется организация сложной динамической системы. Всеобщей формой внутренних изменений, на основе которых происходит самоорганизация, является так называемая флуктуация — постоянно присущие материи случайные колебания и отклонения.

В результате данных спонтанных изменений и отношений (флуктуаций) существующие связи между элементами материи изменяются, а также появляются новые связи — материя приобретает новое состояние, так называемую «диссипативную структуру», которая отличается неустойчивостью. Дальнейшее развитие возможно по двум вариантам:

1) «диссипативная структура» укрепляется и окончательно превращается в новый вид материи, но только при условии энтропии — притока энергии из внешней среды — и затем развивается по динамическому типу;

2) «диссипативная структура» распадается и гибнет — либо в результате внутренней слабости, неестественности, непрочности новых связей, либо из-за отсутствия энтропии — притока энергии из внешней среды.

4.Отражение— категория гносеологии, выступающая в качестве фундаментальной для материалистической традиции когнитивного оптимизма. Отражение характеризует способность материальных объектов в процессе взаимодействия с другими объектами воспроизводить в своих изменениях некоторые особенности и черты воздействующих на них явлений.

Виды Отражения:

• физическое;

• химическое;

• механическое

•биологическое

Биологический вид включает в себя стадии:

• раздражимость — способность живых организмов реагировать на внешние воздействия изменениями, которые могут включать в себя широкий репертуар реакций, начиная с диффузных реакций протоплазмы у простейших и кончая сложных, высокоспециализированных реакций человека.;

• чувствительность — способность объекта реагировать определённым образом на определённое малое воздействие, а также количественная характеристика этой способности:

• психическое отражение — способность организма реагировать не на непосредственно жизненно значимый раздражитель, а на другой, который сам по себе нейтрален, но несет в себе информацию о присутствии жизненно значимого воздействия..

2.4. Основные характеристики материи.

К характеристикам материи относятся, в первую очередь, движение, пространство и время, являющиеся атрибутами материи, т.е. тем, что обеспечивает их бытие. Далее. Материя вечна и бесконечна. Это означает, что она никогда не имела начала во времени и пространстве и не будет иметь конца. Принцип неуничтожимости и несотворимости материи и движения является следующим свойством материи. Этот принцип конкретно реализуется в многочисленных законах сохранения. Важным свойством материи является способность к взаимопревращению различных видов материи друг в друга.
Отсюда следует, что отдельные виды материи могут исчезнуть, но при этом в определенном количественном соотношении появляются другие ее виды. И этот процесс бесконечен. О свойстве неисчерпаемости материи мы уже говорили.

Наконец, материя характеризуется противоречивостью, единством прерывного и непрерывного, единством конечного и бесконечного, абсолютностью и относительностью и т.д

Источник