Какие свойства есть у квадрата но нет у прямоугольника
- Главная
- Вопросы & Ответы
- Вопрос 2539941
Гость:
1 год назад
14
1
Лучший ответ:
Гость:
У квадрата все стороны равны. А у прямоугольника они разные.
1 год назад
Ваш ответ (не менее 20 символов):
Ваше имя (не менее 2 символов):
Лучшее из галереи:
Другие вопросы:
Гость:
Провод длиной 42 м разрезали на части по 7 м. Верно ли, что получилось больше семи кусков провода ?
1 год назад
Смотреть ответ
10
1
Гость:
Объясниет, почему данные примеры разделены на пары. При списывании выделяйте морфемы,в которых пропущены буквы.1)П_родить ложь-п_родия на роман2)об_грить кровью-об_греть помещение 3)п_дение с дерева-искусная поделка 6)роскошный п_вильон -отбывать п_винностьПоведите синтаксический разбор двух именны…
1 год назад
Смотреть ответ
4
1
Гость:
Придумать рассказ на тему » Если бы я был Робинзон Крузо »
1 год назад
Смотреть ответ
3
1
Гость:
Помогите по биологии плиз очень надо задача: отец и мать больны гемофилией . какова вероятность рождения больных детей?
1 год назад
Смотреть ответ
19
1
Гость:
Предложение со словом накормить досыта
1 год назад
Смотреть ответ
3
1
1
2 ответа:
1
0
Главным свойством любого прямоугольника является наличие прямых углов. При этом противоположные стороны прямоугольника оказываются параллельными. Квадрат является частным случаем прямоугольника, как сам прямоугольник является частным случаем четырехугольника или параллелограмма.
Какие же свойства квадрата оказываются уникальными, отличающими его от остальных прямоугольников?
- Все стороны квадрата равны между собой. Равными могут быть стороны ромба, но он не является прямоугольником.
- Диагонали квадрата пересекаются под прямым углом и при этом равны между собой и делятся пополам точкой пересечения. Под прямым углом опять же пересекаются диагонали ромба, но они имеют разную длину.
- Квадрат имеет четыре оси симметрии второго порядка и одну ось симметрии четвертого порядка, чего также не наблюдается у других прямоугольников.
0
0
Квадрат — это сама по себе разновидность прямоугольников, поэтому у них есть общие признаки, такие как прямые углы, в точке пересечения диагоналей они делятся пополам и тому подобное. Но есть у него множество различий от прямоугольников, такие как:
1) все стороны квадрата равны между собой;
2) диагонали квадрата пересекаются под прямым углом;
3) диагональ квадрата всегда равна корень из 2, умноженный на сторону квадрата, и делит угол между двумя сторонами пополам, являясь при этом биссектрисой;
4) в квадрат можно вписать окружность, в отличие от прямоугольника, и радиус этой окружности будет равен половине от длины стороны квадрата.
Читайте также
Считать квадрат частным случаем трапеции нельзя по определению:
Поскольку у квадрата противоположные стороны попарно-параллельны, то эта фигура не подходит под определение трапеции, у которой только две стороны параллельны, а две другие — нет. Эта не параллельность боковых сторон для трапеции является обязательной!
Также трапецию нельзя считать ни частным случаем ромба, ни параллелограмма, ни прямоугольника.
Если окружность вписана в квадрат, то диаметр этой окружности будет равен стороне квадрата, следовательно, длина окружности равна:
L=Пи*D
, где L — длина окружности, а D — размер стороны описанного квадрата (равный диаметру окружности)
Круг — это такая геометрическая фигура, которая совершенна со всех сторон. То есть синоном круга или круглого — это совершенство. То есть говорят совершенный дурак или совершенны идиот, или полный дурак, или полный идиот. То есть круглый идиот.
Магию геометрии вы можете познать если занимаетесь проектированием или ходя бы моделированием конструкций, элементов, деталей или проектированием. Вот там это четко видно: их свойства, качества, результативные навыки. Я работаю преподавателем строительных дисциплин сравнительно не давно, но узнавая данные характеристики и привнося их в примеры быта и окружающих конструкции студентам становится очень интересно.
Есть такой инструмент «прямоугольник со скругленными краями». Выбрав радиус скругления у этого инструмента, выделите область, края которой должны попасть в прямоугольник. Нажмите CtrlEnter, потом инвертируйте выделение по CtrlShiftI. И удалите ненужное. Остается прямоугольник со скругленными краями.
Квадрат, его свойства и признаки.
Определение. Квадратом называется прямоугольник, у которого все стороны равны.
Для квадрата можно ввести несколько определений. Самое ёмкое мы уже привели. Но можно определить квадрат следующим образом:
Квадратом называется четырёхугольник, у которого все стороны равны, а углы прямые.
Квадратом называется параллелограмм, у которого все стороны и углы равны.
Квадратом называется ромб, у которого все углы прямые.
Поскольку квадрат является и параллелограммом, и прямоугольником, и ромбом, то он обладает теми же свойствами, что и все перечисленные четырёхугольники.
У квадрата диагонали пересекаются и точкой пересечения делятся пополам.
У квадрата диагонали взаимно перпендикулярны.
У квадрата диагонали являются биссектрисами его углов.
У квадрата диагонали равны.
У квадрата стороны являются высотами.
Каждая диагональ квадрата делит его на равные прямоугольные треугольники.
Теперь определим признаки квадрата.
ТЕОРЕМА (I признак). Если в прямоугольнике две его смежные стороны равны, то он является квадратом.
Дано: – прямоугольник
Доказать: – квадрат.
Доказательство.
Так как – прямоугольник, то у него противолежащие стороны равны.
– квадрат (по определению), ч.т.д.
ТЕОРЕМА (II признак). Если в прямоугольнике диагонали перпендикулярны, то этот прямоугольник является квадратом.
Дано: – прямоугольник
Доказать: – квадрат.
Доказательство.
Рассмотрим .
по свойству диагоналей прямоугольника, значит, – медиана (по опред-нию).
– высота , т.к. . Значит, в является и медианой и высотой, поэтому этот треугольник является равнобедренным (по признаку равнобедренного треугольника), т.е. . Согласно I признаку квадрата, прямоугольник является квадратом, ч.т.д.
ТЕОРЕМА (III признак). Если в прямоугольнике одна из диагоналей является биссектрисой его угла, то такой прямоугольник является квадратом.
Дано: – прямоугольник
– диагональ
– биссектриса
Доказать: – квадрат.
Доказательство.
Так как – биссектриса , то .
по свойству внутренних накрест лежащих углов при параллельных прямых. Значит, , следовательно – равнобедренный, и . По I признаку квадрата, прямоугольник является квадратом, ч.т.д.
ТЕОРЕМА (IV признак). Если в ромбе диагонали равны, то этот ромб является квадратом.
Дано: – ромб
— диагонали
Доказать: – квадрат.
Доказательство.
Рассмотрим и .
по III признаку равенства треугольников. Значит, все соответствующие углы у этих треугольников равны, т.е. . Эти углы являются внутренними односторонними при параллельных прямых и , следовательно, их сумма равна , т.е. , а, значит, и . Так как в ромбе противолежащие углы равны, то и все остальные углы также равны по . Значит, такой ромб является квадратом, ч.т.д.
ТЕОРЕМА (V признак). Если в параллелограмме диагонали перпендикулярны и равны, то такой параллелограмм является квадратом.
Дано: – параллелограмм
Доказать: – квадрат.
Доказательство.
Так как , то по II признаку ромба, параллелограмм является ромбом.
Так как , то по IV признаку квадрата, ромб является квадратом, ч.т.д.
ТЕОРЕМА (VI признак). Если в четырёхугольнике диагонали равны, взаимно перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник является квадратом.
Дано: – четырёхугольник
Доказать: – квадрат.
Доказательство.
1. Так как , то четырёхугольник является параллелограммом (по признаку параллелограмма).
2. Так как , то параллелограмм является квадратом (по V признаку квадрата), ч.т.д.
ТЕОРЕМА (VII признак). Если в четырёхугольнике все стороны равны и среди внутренних углов есть один прямой угол, то такой четырёхугольник является квадратом.
Дано: – четырёхугольник
Доказать: – квадрат.
Доказательство.
1. Так как , то четырёхугольник является ромбом (по V признаку ромба).
2. Так как , то ромб, который по определению является параллелограммом, является прямоугольником (по III признаку прямоугольника), значит, все углы в этом четырёхугольнике прямые.
3. Итак, прямоугольник , у которого все стороны равны, является квадратом (по определению), ч.т.д.
Итак, признаки квадрата:
Если в прямоугольнике две его смежные стороны равны, то он является квадратом.
Если в прямоугольнике диагонали перпендикулярны, то этот прямоугольник является квадратом.
Если в прямоугольнике одна из диагоналей является биссектрисой его угла, то такой прямоугольник является квадратом.
Если в ромбе диагонали равны, то этот ромб является квадратом.
Если в параллелограмме диагонали перпендикулярны и равны, то такой параллелограмм является квадратом.
Если в четырёхугольнике диагонали равны, взаимно перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник является квадратом.
Если в четырёхугольнике все стороны равны и среди внутренних углов есть один прямой угол, то такой четырёхугольник является квадратом.
Периметр квадрата равен см. Найдите сторону квадрата .
На рисунке четырёхугольник – квадрат, . Докажите, что выпуклый четырёхугольник также является квадратом.
На рисунке четырёхугольник – прямоугольник, . Докажите, что выпуклый четырёхугольник является квадратом.
В треугольнике . На сторонах и взяты точки и , а на стороне – точки и так, что четырёхугольник является квадратом, . Найдите .
В треугольнике . На сторонах отмечены точки соответственно так, что четырёхугольник является квадратом, . Найдите .
На сторонах и квадрата отмечены точки и соответственно, . Отрезки и пересекаются в точке . Найдите .
На сторонах квадрата отмечены соответственно точки . Сравните отрезки и .
На катетах и прямоугольного треугольника построены квадраты и . Докажите, что сумма расстояний от точек и до прямой равна .
На катетах и прямоугольного треугольника построены квадраты и . Прямые и пересекаются в точке . Докажите, что .
Длина проекции одной из сторон квадрата на его диагональ равна . Найдите длину диагонали.
В четырёхугольнике диагонали взаимно перпендикулярны. Докажите, что отрезки, соединяющие середины противоположных сторон, равны.
Дан квадрат . Докажите, что – квадрат.
Дан квадрат . Докажите, что – ромб.
Дан квадрат . На стороне взята точка такая, что . Докажите, что точки – вершины равнобедренного треугольника.
Дан квадрат . Точки – середины его сторон соответственно. Докажите, что .
Дан квадрат . Точки и делят его стороны и так, что . Докажите, что .
Квадраты и имеют общую вершину . Докажите, что медиана треугольника перпендикулярна отрезку .
Внутри квадрата взята точка так, что . Докажите, что треугольник равносторонний.
На рисунке – квадрат, точка принадлежит , точка принадлежит , точка принадлежит , прямые и пересекаются в точке . Докажите, что .
В равнобедренный прямоугольный треугольник, каждый катет которого равен см, вписан квадрат, имеющий с ним один общий угол. Найдите периметр квадрата.
В равнобедренный прямоугольный треугольник вписан квадрат так, что две его вершины находятся на гипотенузе, а две другие – на катетах. Определите сторону квадрата, если известно, что гипотенуза равна 30 дм.
В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Определите стороны этого прямоугольника, зная, что одна из них втрое больше другой и что диагональ квадрата равна дм.
В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Определите стороны этого прямоугольника, зная, что одна из них вдвое больше другой и что диагональ квадрата равна см.
Точка расположена во внутренней области квадрата так, что расстояния от неё до сторон и пропорциональны соответственно числам и , а расстояние от до прямой равно см. Найдите периметр этого квадрата.
Точка расположена во внутренней области квадрата так, что расстояния от неё до сторон и пропорциональны соответственно числам и , а расстояние от до прямой равно м. Найдите периметр этого квадрата.
Точка лежит на стороне квадрата . Высоты треугольников и , проведённые из точки , равны соответственно и . Найдите произведение длин диагоналей этого квадрата.
Точка расположена во внутренней области квадрата так, что расстояния от неё до сторон и пропорциональны соответственно числам и , а расстояние от до прямой равно м. Найдите периметр этого квадрата.
Точка лежит на стороне квадрата . Высоты треугольников и , проведённые из точки , равны соответственно и . Найдите произведение длин диагоналей этого квадрата.
На сторонах и квадрата отмечены точки и соответственно так, что . Определите взаимное расположение прямых и .
В равнобедренный прямоугольный треугольник вписан квадрат , имеющий с ним общий угол . Найдите периметр квадрата, если катет треугольника равен см.
Внутри квадрата отмечена такая точка , что треугольник равносторонний. Найдите угол .
В равнобедренный прямоугольный треугольник вписан квадрат , имеющий с ним общий прямой угол. Найдите катет треугольника, если периметр квадрата равен см.
Внутри квадрата отмечена такая точка , что треугольник равносторонний. Найдите угол .
Через вершины квадрата проведены прямые, параллельные его диагоналям. Определите вид образованного ими четырёхугольника и вычислите его периметр, если диагональ квадрата равна см.
Через точку – точку пересечения диагоналей квадрата проведена прямая, параллельная стороне и пересекающая стороны и в точках и соответственно. Найдите периметр квадрата, если известно, что .
Найдите периметр квадрата по данным на рисунке.
7
Определение.
Прямоугольник — это четырехугольник у которого две противоположные стороны равны и все четыре угла одинаковы.
Прямоугольники отличаются между собой только отношением длинной стороны к короткой, но все четыре угла у них прямые, то есть по 90 градусов.
Длинную сторону прямоугольника называют длиной прямоугольника, а короткую — шириной прямоугольника.
Стороны прямоугольника одновременно является его высотами.
Основные свойства прямоугольника
Прямоугольником могут быть параллелограмм, квадрат или ромб.
1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны:
AB = CD, BC = AD
2. Противоположные стороны прямоугольника параллельны:
AB||CD, BC||AD
3. Прилегающие стороны прямоугольника всегда перпендикулярны:
AB ┴ BC, BC ┴ CD, CD ┴ AD, AD ┴ AB
4. Все четыре угла прямоугольника прямые:
∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°
5. Сумма углов прямоугольника равна 360 градусов:
∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°
6. Диагонали прямоугольника имеют одинаковой длины:
AC = BD
7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон:
2d2 = 2a2 + 2b2
8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.
9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам:
AO = BO = CO = DO = | d | ||
2 |
10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности
11. Диагональ прямоугольника является диаметром описанной окружности
12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:
∠ABC + ∠CDA = 180° ∠BCD + ∠DAB = 180°
13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника — квадрат).
Стороны прямоугольника
Определение.
Длиной прямоугольника называют длину более длинной пары его сторон. Шириной прямоугольника называют длину более короткой пары его сторон.
Формулы определения длин сторон прямоугольника
1. Формула стороны прямоугольника (длины и ширины прямоугольника) через диагональ и другую сторону:
a = √d2 — b2
b = √d2 — a2
2. Формула стороны прямоугольника (длины и ширины прямоугольника) через площадь и другую сторону:
3. Формула стороны прямоугольника (длины и ширины прямоугольника) через периметр и другую сторону:
4. Формула стороны прямоугольника (длины и ширины прямоугольника) через диаметр и угол α:
a = d sinα
b = d cosα
5. Формула стороны прямоугольника (длины и ширины прямоугольника) через диаметр и угол β:
Диагональ прямоугольника
Определение.
Диагональю прямоугольника называется любой отрезок соединяющий две вершины противоположных углов прямоугольника.
Формулы определения длины диагонали прямоугольника
1. Формула диагонали прямоугольника через две стороны прямоугольника (через теорему Пифагора):
d = √a2 + b2
2. Формула диагонали прямоугольника через площадь и любую сторону:
d = | √S2 + a4 | = | √S2 + b4 |
a | b |
3. Формула диагонали прямоугольника через периметр и любую сторону:
d = | √P2 — 4Pa + 8a2 | = | √P2 — 4Pb + 8b2 |
2 | 2 |
4. Формула диагонали прямоугольника через радиус описанной окружности:
d = 2R
5. Формула диагонали прямоугольника через диаметр описанной окружности:
d = Dо
6. Формула диагонали прямоугольника через синус угла, прилегающего к диагонали, и длину стороны противоположной этому углу:
7. Формула диагонали прямоугольника через косинус угла, прилегающего к диагонали, и длину стороны прилегающей к этому углу:
8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника
d = √2S : sin β
Периметр прямоугольника
Определение.
Периметром прямоугольника называется сумма длин всех сторон прямоугольника.
Формулы определения длины периметру прямоугольника
1. Формула периметру прямоугольника через две стороны прямоугольника:
P = 2a + 2b
P = 2(a + b)
2. Формула периметру прямоугольника через площадь и любую сторону:
P = | 2S + 2a2 | = | 2S + 2b2 |
a | b |
3. Формула периметру прямоугольника через диагональ и любую сторону:
P = 2(a + √d2 — a2) = 2(b + √d2 — b2)
4. Формула периметру прямоугольника через радиус описанной окружности и любую сторону:
P = 2(a + √4R2 — a2) = 2(b + √4R2 — b2)
5. Формула периметру прямоугольника через диаметр описанной окружности и любую сторону:
P = 2(a + √Do2 — a2) = 2(b + √Do2 — b2)
Площадь прямоугольника
Определение.
Площадью прямоугольника называется пространство ограниченный сторонами прямоугольника, то есть в пределах периметра прямоугольника.
Формулы определения площади прямоугольника
1. Формула площади прямоугольника через две стороны:
S = a · b
2. Формула площади прямоугольника через периметр и любую сторону:
S = | Pa — 2a2 | = | Pb — 2b2 |
2 | 2 |
3. Формула площади прямоугольника через диагональ и любую сторону:
S = a√d2 — a2 = b√d2 — b2
4. Формула площади прямоугольника через диагональ и синус острого угла между диагоналями:
5. Формула площади прямоугольника через радиус описанной окружности и любую сторону:
S = a√4R2 — a2 = b√4R2 — b2
6. Формула площади прямоугольника через диаметр описанной окружности и любую сторону:
S = a√Do2 — a2 = b√Do2 — b2
Окружность описанная вокруг прямоугольника
Определение.
Окружностью описанной вокруг прямоугольника называется круг проходящий через четыре вершины прямоугольника, центр которого лежит на пересечении диагоналей прямоугольника.
Формулы определения радиуса окружности описанной вокруг прямоугольника
1. Формула радиуса окружности описанной вокруг прямоугольника через две стороны:
2. Формула радиуса окружности описанной вокруг прямоугольника через периметр квадрата и любую сторону:
R = | √P2 — 4Pa + 8a2 | = | √P2 — 4Pb + 8b2 |
4 | 4 |
3. Формула радиуса окружности описанной вокруг прямоугольника через площадь квадрата:
R = | √S2 + a4 | = | √S2 + b4 |
2a | 2b |
4. Формула радиуса окружности описанной вокруг прямоугольника через диагональ квадрата:
5. Формула радиуса окружности описанной вокруг прямоугольника через диаметр описанной окружности:
6. Формула радиуса окружности описанной вокруг прямоугольника через синус угла, прилегающего к диагонали, и длину стороны противоположной этому углу:
7. Формула радиуса окружности описанной вокруг прямоугольника через косинус угла, прилегающего к диагонали, и длину стороны прилегающей к этому углу:
8. Формула радиуса окружности описанной вокруг прямоугольника через синус острого угла между диагоналями и площадью прямоугольника:
Угол между стороной и диагональю прямоугольника
Формулы определения угла между стороной и диагональю
1. Формула определения угла между стороной и диагональю прямоугольника через диагональ и сторону:
2. Формула определения угла между стороной и диагональю прямоугольника через угол между диагоналями:
Угол между диагоналями прямоугольника
Формулы определения угла между диагоналями прямоугольника
1. Формула определения угла между диагоналями прямоугольника через угол между стороной и диагональю:
β = 2α
2. Формула определения угла между диагоналями прямоугольника через площадь и диагональ: