Какие свойства чисел распространяются на матрицы

ОПРЕДЕЛЕНИЕ
Матрица
(
A=left(begin{array}{cccc}{a_{11}} & {a_{12}} & {dots} & {a_{1 n}} \ {a_{21}} & {a_{22}} & {ldots} & {a_{2 n}} \ {ldots} & {ldots} & {ldots} & {ldots} \ {a_{m 1}} & {a_{m 2}} & {dots} & {a_{m n}}end{array}right)
) представляет собой прямоугольную таблицу чисел, состоящую из (
mathrm{m}
) строк и (
mathrm{n}
) столбцов.
Он имеет размер (
m times n
) и обозначается (
A_{m times n}
) .
Элементы матрицы (
A
) обозначаются буквами с двумя индексами, первый из которых указывает номер строки, в которой находится элемент, а второй — номер столбца.
Две матрицы (
A
) и (
B
) называются равными, если они имеют одинаковый размер и соответствующие им элементы равны, т.е.
(
A_{m times n}=B_{k times p} Leftrightarrowleft{begin{array}{l}{m=k} \ {n=p} \ {a_{i j}=b_{i j}, i=overline{1, m}, j=overline{1, n}}end{array}right.
)
ОПРЕДЕЛЕНИЕ
Если (
m=n
), то матрица называется квадратной.
ОПРЕДЕЛЕНИЕ
Квадратная матрица называется диагональной, если все ее элементы равны нулю, кроме тех, которые расположены на главной диагонали.
ОПРЕДЕЛЕНИЕ
Единичные матрицы являются диагональной матрицей, в которой все элементы на главной диагонали равны 1.
ОПРЕДЕЛЕНИЕ
Матрица, все элементы которой равны нулю, называется нулевой матрицей.
Сумма двух матриц (
A
) и (
B
) того же размера (
m times n
) является матрицей (
C
) того же размера, элементы которой равны сумме соответствующих элементов слагаемых матрицы, т. е. Если (
A_{m times n}=left(a_{i j}right)
) и (
B_{m times n}=left(b_{i j}right)
),
то
(
C_{m times n}=A_{m times n}+B_{m times n}=left(a_{i j}+b_{i j}right)
)
где (
i=overline{1, m}, quad j=overline{1, n}
)
Произведением матрицы (
A_{m times n}=left(a_{i j}right)
) числом (
k in R
) является матрица того же размера (
B_{m times n}=left(b_{i j}right)
)в ,каждый элемент которой получается путем умножения соответствующего элемента матрицы A на число k, т.е.
(
b_{i j}=k cdot a_{i j}
)
где (
i=overline{1, m}
), (
j=overline{1, n}
)
Свойства линейных матричных операций
1. (
A+B=B+A
) — коммутативность (взаимозаменяемый закон) сложения;
2. (
A+(B+C)=(A+B)+C
) — ассоциативность (объединение закона) сложения;
3. для любой матрицы (
A
) существует единственная нулевая матрица (
theta
) такая, что (
A+theta=A
) ;
4. для любой матрицы (
A
) существует единственная матрица (
(-A)=-1 cdot A
) , называемая противоположной, такая, что (
A+(-A)=theta
) где (
theta
) — нулевая матрица;
5.(
1 cdot A=A
)
6.(
alpha cdot(beta A)=(alpha beta) cdot A
)
7.(
(alpha+beta) cdot A=alpha A+beta A
)
8.(
alpha cdot(A+B)=alpha A+alpha B
)
ПРИМЕР
Для матриц (
Delta
) и (
B
) найдите (
2 A+3 B
).
(
A=left(begin{array}{cc}{1} & {2} \ {-1} & {7}end{array}right), quad B=left(begin{array}{cc}{0} & {4} \ {3} & {-2}end{array}right)
)
Найти матрицы (
2 A
) и (
3 mathrm{B}
):
(
2 A=2 cdotleft(begin{array}{cc}{1} & {2} \ {-1} & {7}end{array}right)=left(begin{array}{cc}{2} & {4} \ {-2} & {14}end{array}right)
)
(
3 B=3 cdotleft(begin{array}{cc}{0} & {4} \ {3} & {-2}end{array}right)=left(begin{array}{cc}{0} & {12} \ {9} & {-6}end{array}right)
)
Затем мы найдем их сумму
(
2 A+3 B=left(begin{array}{cc}{2} & {4} \ {-2} & {14}end{array}right)+left(begin{array}{cc}{0} & {12} \ {9} & {-6}end{array}right)=left(begin{array}{cc}{2} & {16} \ {7} & {8}end{array}right)
)
(
2 A+3 B=left(begin{array}{ll}{2} & {16} \ {7} & {8}end{array}right)
)
Произведение матрицы (
A
) размера (
m times n
) и матрицы (
mathrm{B}
) размера (
n times k
) называется матрицей (
C=A B
) размера (
m times k
) , элемент (
c_{i j}
) в i-й строке и j-столбце равен к сумме произведений соответствующих элементов -ой строки матрицы A и j-го столбца матрицы (
B
):
(
c_{i j}=a_{i 1} cdot b_{1 j}+a_{i 2} cdot b_{2 j}+ldots+a_{i n} cdot b_{n k}=sum_{p=1}^{n} a_{i p} b_{p k}
)
Комментарий. Для матриц (
A
) и (
B
) произведение определено, если число столбцов матрицы (
A
) равно числу строк матрицы (
B
).
Свойства операции умножения матрицы
(
A,B,C
) — матрицы, (
alpha, beta in R
)
1.(
A cdot(B cdot C)=(A cdot B) cdot C
) — ассоциативность умножения;
2.(
alpha cdot(A cdot B)=(alpha A) B
)
3.(
(A+B) cdot C=A cdot C+B cdot C
)
4.(
A cdot(B+C)=A cdot B+A cdot C
)
Если матрица (
A
) имеет размер (
m times n
) , то равенство (
E_{m} A=A E_{n}=A
) справедливо только в том случае, если (
E_{m}, E_{n}
) является единичной матрицей m-го и n-го порядка.
ПРИМЕР 2
Найти работу с матрицей
(
A=left(begin{array}{cc}{-1} & {2} \ {0} & {4}end{array}right), quad B=left(begin{array}{ccc}{1} & {2} & {-1} \ {0} & {2} & {-3}end{array}right)
)
Матрица A имеет размеры 2 x 2, а матрица B имеет размеры 2 x 3, то есть число столбцов первой матрицы совпадает с числом столбцов второй матрицы, что означает, что их можно умножить. В результате умножения получаем матрицу C с размерами 2 x 3:
(
A_{2 times 2} B_{2 times 3}=C_{2 times 3}
)
(
C_{2 times 3}=left(begin{array}{cc}{-1} & {2} \ {0} & {4}end{array}right) cdotleft(begin{array}{ccc}{1} & {2} & {-1} \ {0} & {2} & {-3}end{array}right)= left(begin{array}{ccc}{-1 cdot 1+2 cdot 0} & {-1 cdot 2+2 cdot 2} & {-1 cdot(-1)+2 cdot(-3)} \ {0 cdot 1+4 cdot 0} & {0 cdot 2+4 cdot 2} & {0 cdot(-1)+4 cdot(-3)}end{array}right) =left(begin{array}{ccc}{-1} & {2} & {-5} \ {0} & {8} & {-12}end{array}right)
)
(
C=left(begin{array}{ccc}{-1} & {2} & {-5} \ {0} & {8} & {-12}end{array}right)
)
Матрица (
A^{t}
) размера (
n times m
) называется транспонированной в матрицу (
A
) размера (
m times n
) , если элемент (
a_{j i}
)матрицы (
A
) вместо (
(i, j)
) , или, в противном случае, матрица, полученная из этой замены каждого из ее строки с столбцом с тем же номером. Так что если
(
A=left(begin{array}{cccc}{a_{11}} & {a_{12}} & {dots} & {a_{1 n}} \ {a_{21}} & {a_{22}} & {dots} & {a_{2 n}} \ {ldots} & {dots} & {dots} & {ldots} \ {a_{m 1}} & {a_{m 2}} & {dots} & {a_{m n}}end{array}right)
)
тот
(
A^{t}=left(begin{array}{cccc}{a_{11}} & {a_{21}} & {dots} & {a_{m 1}} \ {a_{12}} & {a_{22}} & {dots} & {a_{m 2}} \ {dots} & {dots} & {cdots} & {dots} \ {a_{1 n}} & {a_{2 n}} & {dots} & {a_{m n}}end{array}right)
)
Свойства переноса матрицы
(
A, B
)- матрицы, (
alpha in R
)
1.(
left(A^{t}right)^{t}=A
)
2.(
(A+B)^{t}=A^{t}+B^{t}
)
3.(
(A B)^{t}=B^{t} A^{t}
)
4. (
(alpha A)^{t}=alpha A^{t}
)
- Виды матриц.
- Матрица A размера m×n — это прямоугольная таблица чисел, расположенных в m строках и n столбцах
где aij (i =1, …, m; j =1, …, n) — это элементы матрицы A. Первый индекс i — это номер строки, второй индекс j — это номер столбца, на пересечении которых расположен элемент aij.
Сокращённое обозначение матрицы A=(aij)m×n. - Порядок матрицы — это число ее строк или столбцов.
- Главная диагональ квадратной матрицы — это диагональ, идущая из левого верхнего в правый нижний угол.
- Прямоугольная матрица — это матрица, у которой число строк не равно числу столбцов.
- Квадратная матрица — это матрица у которой число строк равно числу столбцов:
- Матрица-столбец — это матрица, у которой всего один столбец:
- Матрица-строка — это матрица, у которой всего одна строка:
- Диагональная матрица — это квадратная матрица, у которой все элементы, кроме, быть может, стоящих на главной диагонали, равны нулю.
- Единичная матрица — это диагональная матрица, у которой все диагональные элементы равны единице:
- Матрица квадратная диагональная:
- Треугольная матрица — это квадратная матрица, у которой все элементы, расположенные по одну сторону главной диагонали, равны нулю.
- Матрица верхняя треугольная:
- Матрица нижняя треугольная:
- Нулевая матрица — это матрица, все элементы которой равны 0:
- Операции над матрицами.
- Равенство матриц.
Две матрицы A (aij), B (bij) совпадают |A=B|, если совпадают их размеры и соответствующие элементы равны,
то есть при всех i, j aij=bij. - Сложение матриц.
Суммой двух матриц A=(aij)m×n и B=(bij) m×n одинаковых размеров называется матрица C=(cij)m×n=A+B тех же размеров, элементы которой определяются равенствами cij=aij+bij. Пример 1. - Умножение матрицы на число.
Произведением матрицы A=(aij)m×n на число λ ∈ R называется матрица B=(bij)m×n=λA, элементы которой определяются равенствами bij=λaij. Пример 2. - Умножение матриц.
Произведением матрицы A=(aij)m×k на матрицу B=(bij)k×n называется матрица C=(cij)m×n=A· B размера m×n, элементы которой cij определяются равенством
cij=ai1b1j+ai2b2j+ … aikbkj.
Таким образом, элемент матрицы C=A·B, расположенный в i-й строке и j-м столбце, равен сумме произведений элементов i-й строки матрицы A на соответствующие элементы j-го столбца матрицы B. Пример 3. - Транспонированные матрицы.
Транспонированием матрицы А называется замена строк этой матрицы ее столбцами с сохранением их номеров.
Полученная матрица обозначается через A’ или AT. Пример 4.
Квадратная матрица называется симметричной, если A=A’, то есть для элементов выполнены равенства aij=aji. - Обратная матрица.
Квадратная матрица n–го порядка называется вырожденной, если определитель этой матрицы равен нулю, |A| = 0, и невырожденной, если |A| ≠ 0.
Матрица А-1 называется обратной матрицей для некоторой квадратной матрицы А, если выполняется соотношение:
Если матрица А-1 не вырождена, то существует, и притом единственная, обратная матрица А-1, равная, где АV = Aij — присоединенная матрица (матрица, составленная из алгебраических дополнений элементов исходной матрицы, стоящих на тех же местах).
1)
2)
3)
4) - Алгоритм нахождения А-1 заключается в следующих пунктах:
1) Находим det A, проверяем det A ≠ 0.
2) Находим Mij — все миноры матрицы A.
3) Определяем
4) Строим матрицу алгебраических дополненийи транспонируем:
5) Делим каждый элемент матрицы на det A:Пример 5.
- Элементарные преобразования строк (столбцов) матрицы:
1) перестановка строк (столбцов);
2) умножение строки (столбца) на число α ≠ 0;
3) прибавление к элементам строки (столбца) матрицы элементов другой строки (столбца), умноженных на некоторое число. - Решение матричных уравнений.
Матричное уравнение — это уравнение, содержащее неизвестную матрицу X и известные матрицы A, B, …, .
Простейшие типы матричных уравнений:
1). Матрица A – квадратная и невырожденная,
|A| ≠ 0, следовательно, существует обратная матрица A-1.
Умножим уравнение на A-1 слева:
2). Матрица A – квадратная, |A| ≠ 0.
Умножим уравнение на A-1 справа:.
3). Матрицы A и B – квадратные, |A| ≠ 0, |B| ≠ 0.
Умножим уравнение на A-1 слева:
Умножим уравнение на B-1 справа:.
- Ранг матрицы.
Ранг матрицы A — это число, равное максимальному порядку отличных от нуля миноров.
Mk этой матрицы:
Матрицы называются эквивалентными, что обозначается
A ∼ B, если.
Ранг матрицы A вычисляется методом окаймляющих миноров или методом элементарных преобразований. - Метод окаймляющих миноров.
Пусть в матрице A элемент aij ≠ 0, тогда M1 ≠ 0 и r(A) ≥ 1. Окаймляем этот элемент элементами соседнего столбца и соседней строки (например, (j+1)–го столбца и (i+1)–й строки), получаем минор 2-го порядка:.
Если M2, то присоединяем другие строки и столбцы, перебирая все возможные миноры 2-го порядка.
Если все миноры второго порядка равны нулю, то r(A) = 1; если же существует хотя бы один минор 2-го порядка, отличный от нуля, то r(A) ≥ 1.
Выбираем отличный от нуля минор 2-го порядка M2 и окаймляем его элементами соседних строк и столбцов до минора 3-го порядка и так до тех пор, пока не будет выполнено условие: Mr ≠ 0, но все Mr+1 = 0. Пример 6. - Метод элементарных преобразований.
Элементарные преобразования матрицы не меняют ее ранга.
К элементарным преобразованиям матрицы относятся следующие: транспонирование; перестановка строк (столбцов); умножение строки (столбца) на число α ≠ 0; прибавление к элементам строки (столбца) матрицы элементов другой строки, умноженных на некоторое число; отбрасывание нулевой строки (столбца) матрицы.
Для определения ранга матрицы A методом элементарных преобразований следует:
1) Переставить строки и столбцы так, чтобы в верхнем левом углу матрицы был ненулевой элемент.
2) Все элементы первого столбца, кроме a11, обратить в ноль с помощью элементарных преобразований строк:3) Переставить строки со 2–й по m и столбцы со 2–го по n так, чтобы a22 ≠ 0. Повторить операцию (2) со вторым столбцом: во втором столбце все элементы, кроме a12 и a22, обратить в ноль.
Окончательно после многократного применения указанной процедуры и отбрасывания нулевых строк преобразованная матрица будет иметь вид:Тогда ранг матрицы A равен: rang A = rang Ã.
- Свойства определителей.
- Определитель квадратной матрицы А не меняется при транспонировании: |AT|=|A|.
- При перестановке местами любых двух строк (столбцов) определитель |A| меняет знак:
- Определитель, содержащий две одинаковые строки (столбца), равен нулю.
- Умножение всех элементов некоторой строки (столбца) определителя |A| на число k равносильно умножению определителя на это число:
- Если все элементы некоторой строки (столбца) определителя |A| равны нулю, то и сам определитель равен нулю (вытекает из предыдущего свойства при (k = 0):
- Если все элементы двух строк (столбцов) определителя |A| пропорциональны, то определитель равен нулю.
- Если каждый элемент некоторой строки (столбца) определителя представляет собой сумму двух слагаемых, то такой определитель можно представить в виде суммы двух определителей:
- Если к элементам какой-нибудь строки (столбца) определителя |A| прибавить соответствующие элементы другой строки (столбца), умноженные на произвольный множитель k, то величина определителя не изменится:
- Определитель |A| численно равен сумме произведений элементов любой его строки (столбца) на соответствующие алгебраические дополнения:
- Определитель произведения матриц А и В равен произведению их определителей:
.
- Определители n–го порядка.
- Минор Мij или Δij элемента аij ( иначе – дополнительный минор элемента аij) определителя n-го порядка — это определитель (n–1) порядка, полученный из исходного вычеркиванием i–й строки и j–го столбца, на пересечении которых стоит элемент aij.
- Алгебраическое дополнение Аij элемента аij — это его минор со знаком (-1)i+j, где i – номер строки, а j – номер столбца, на пересечении которых стоит элемент aij, Аij=(-1)i+jMij или Аij=(-1)i+jΔij. Пример 8.
Для определителей n-го порядка имеют место все перечисленные выше свойства определителей. - Правило выбора знака перед минором в алгебраическом дополнении:
- Определитель n-го порядка |A| численно равен сумме произведений элементов любой его строки (столбца) на соответствующие алгебраические дополнения.
- Метод сведения к треугольному виду.
Используя свойства (1–9), определитель преобразуют к виду, когда элементы, лежащие по одну сторону от главной диагонали, становятся равными нулю. Преобразованный таким образом определитель равен произведению элементов, лежащих на главной диагонали.
Формулы, уравнения, теоремы, примеры решения задач
Данное методическое пособие поможет Вам научиться выполнять действия с матрицами: сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами.
Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>>.
Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами.
Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!
Начнем.
Матрица – это прямоугольная таблица каких-либо элементов. В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.
Обозначение: матрицы обычно обозначают прописными латинскими буквами
Пример: рассмотрим матрицу «два на три»:
Данная матрица состоит из шести элементов:
Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:
Это просто таблица (набор) чисел!
Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!
Рассматриваемая матрица имеет две строки:
и три столбца:
СТАНДАРТ: когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».
Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной, например: – матрица «три на три».
Если в матрице один столбец или одна строка , то такие матрицы также называют векторами.
На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.
Теперь переходим непосредственно к изучению действий с матрицами:
1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу).
Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.
Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак:
У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.
Обратный пример: . Выглядит безобразно.
Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак:
Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок.
2) Действие второе. Умножение матрицы на число.
Пример:
Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.
Еще один полезный пример:
– умножение матрицы на дробь
Сначала рассмотрим то, чего делать НЕ НАДО:
Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).
И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:
Из статьи Математика для чайников или с чего начать, мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.
Единственное, что желательно сделать в этом примере – это внести минус в матрицу:
А вот если бы ВСЕ элементы матрицы делились на 7 без остатка, то тогда можно (и нужно!) было бы поделить.
Пример:
В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка.
Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.
3) Действие третье. Транспонирование матрицы.
Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.
Пример:
Транспонировать матрицу
Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:
– транспонированная матрица.
Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.
Пошаговый пример:
Транспонировать матрицу
Сначала переписываем первую строку в первый столбец:
Потом переписываем вторую строку во второй столбец:
И, наконец, переписываем третью строку в третий столбец:
Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.
4) Действие четвертое. Сумма (разность) матриц.
Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.
Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!
Пример:
Сложить матрицы и
Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы:
Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов.
Пример:
Найти разность матриц ,
А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :
Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.
5) Действие пятое. Умножение матриц.
Чем дальше в лес, тем толще партизаны. Скажу сразу, правило умножения матриц выглядит очень странно, и объяснить его не так-то просто, но я все-таки постараюсь это сделать, используя конкретные примеры.
Какие матрицы можно умножать?
Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .
Пример:
Можно ли умножить матрицу на матрицу ?
, значит, умножать данные матрицы можно.
А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!
, следовательно, выполнить умножение невозможно:
Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.
Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение
Как умножить матрицы?
Умножение матриц лучше объяснить на конкретных примерах, так как строгое определение введет в замешательство (или помешательство) большинство читателей.
Начнем с самого простого:
Пример:
Умножить матрицу на матрицу
Я буду сразу приводить формулу для каждого случая:
– попытайтесь сразу уловить закономерность.
Пример сложнее:
Умножить матрицу на матрицу
Формула:
В результате получена так называемая нулевая матрица.
Попробуйте самостоятельно выполнить умножение (правильный ответ ).
Обратите внимание, что ! Это почти всегда так!
Таким образом, при умножении переставлять матрицы нельзя!
Если в задании предложено умножить матрицу на матрицу , то и умножать нужно именно в таком порядке. Ни в коем случае не наоборот.
Переходим к матрицам третьего порядка:
Умножить матрицу на матрицу
Формула очень похожа на предыдущие формулы:
А теперь попробуйте самостоятельно разобраться в умножении следующих матриц:
Умножьте матрицу на матрицу
Вот готовое решение, но постарайтесь сначала в него не заглядывать!
6) Действие шестое. Нахождение обратной матрицы.
Данная тема достаточно обширна, и я вынес этот пункт на отдельную страницу.
А пока спектакль закончен.
После освоения начального уровня рекомендую отработать действия с матрицами на уроке Свойства операций над матрицами. Матричные выражения.
Желаю успехов!
Автор: Емелин Александр
Высшая математика для заочников и не только >>>
(Переход на главную страницу)
Как можно отблагодарить автора?
Профессиональная помощь по любому предмету – Zaochnik.com