Какие свойства чисел бывают

Какие свойства чисел бывают thumbnail

Ниже приведены характеристики чисел с примерами, которые рассматривает сайт aboutnumber.ru

Сумма цифр

Сумма цифр, из которых состоит число.

62316 → 6 + 2 + 3 + 1 = 18

Произведение цифр

Произведение цифр, из которых состоит число.

872 → 8 * 7 * 2 = 112

Количество цифр в числе

Отображение количества цифр в числе (если их больше 4-х). Это удобно, так как не всегда можно на глаз определить
порядок числа.

57348920572348 → 14

Все делители числа

Полный список делителей, на которые делится число без остатка.

2612 → 1, 2, 4, 653, 1306, 2612

Наибольший делитель из ряда степеней двойки

Ряд степеней двойки — это ряд вида 1, 2, 4, 8, 16, 32, 64, 128, 256 и т.д.
Эти числа являются основными числами в бинарной математике (в двоичной записи), так как ими можно охарактеризовать
объем
информации.

832 → 64

Количество делителей

Суммарное число делителей.

3638143886 → всего 32 делителя

Сумма делителей

Сумма всех делителей числа.

77432243032 → сумма делителей 145185455700

Простое число

Проверка на простое число. Простое число — это число, которое делится без остатка только на единицу и само себя.
Таким образом у простого числа может быть всего два делителя.

677 → 1 * 677

Полупростое число

Проверка на полупростое число. Полупростое число — число, которое можно представить в виде произведения двух простых чисел.
У полупростого числа два делителя — оба простые числа.

898 → 2 * 449

Обратное число

Два числа называются обратными если их произведение равно единице. Таким образом обратным к заданному числу N всегда
будет 1/N.

125 → 0.008

Проверка: 0.008 * 125 = 1

Факторизация

Факторизация числа — представление числа в виде произведения простых чисел.

220683351 → 3 * 7 * 953 * 11027

Двоичный вид

Двоичное, оно же бинарное представление числа. Это запись числа в системе счисления с основанием два.

72412810 → 101100001100101000002

Троичный вид

Троичное представление числа. Это запись числа в системе счисления с основанием три.

990418010 → 2001220112221113

Восьмеричный вид

Восьмеричное представление числа. Это запись числа в системе счисления с основанием восемь.

9788143604410 → 13312140276148

Шестнадцатеричный вид (HEX)

Шестнадцатеричное представление числа. Часто его пишут английскими буквами «HEX». Это запись числа в системе
счисления с основанием шестнадцать.

12444510 → 1E61D16

Перевод из байтов

Конвертация из байтов в килобайты, мегабайты, гигабайты и терабайты.

29141537 (байт) → 27 мегабайтов 810 килобайтов 545 байтов

Цвет

В случаем, если число меньше чем 16777216, то его можно представить в виде цвета. Шестнадцать миллионов цветов,
которые можно
закодировать стандартной цветовой схемой компьютера.

8293836 →

RGB(126, 141, 204) или #7E8DCC

Наибольшая цифра в числе (возможное основание)

Наибольшая цифра, встречающаяся в числе. В скобках указана система счисления, с помощью которой, возможно, записано
это число.

347524172 → 7 (8, восьмеричный вид)

Перевод двоичной/троичной/восьмеричной записи в десятичную

Число, записанное с помощью единиц и нолей — имеет бинарный вид, таким образом его можно перевести в
десятичную систему счисления.

Число, записанное с помощью единиц, нолей и двоек — имеет троичный вид.

Если с помощью цифр до семи (включая) — восьмеричный вид числа.

111010010010112 → 1492310

120201001200213 → 278227610

745312768 → 1590547010

Число Фибоначчи

Проверка на число Фибоначчи. Числа Фибоначчи — это последовательно чисел, в которых каждый последующий элемент равен
сумме двух предыдущих.

Ряд Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 и т.д.

Позиция в ряду Фиббоначчи

Характеризует порядковый номер числа в ряду Фибоначчи.

21 → 8-е число в ряду Фибоначчи

Нумерологическое значение

Нумерологическое значение вычисляется путем последовательного сложения всех цифр числа до тех пор, пока не
не получится цифра от 0 до 9. В нумерологии каждой цифре соответствует свой характер.

8372890 → 8 + 3 + 7 + 2 + 8 + 9 + 0 = 37 → 3 + 7 = 10 → 1 + 0 = 1
мужество, логика, независимость, самостоятельность, индивидуализм, смелость, решительность, изобретательность

Синус числа

Расчет тригонометрической функции синуса числа в радианах.

Sin(18228730686) = -0.20084127807633853

Косинус числа

Расчет тригонометрической функции косинуса числа в радианах.

Cos(792834113) = 0.6573990013186783

Тангенс числа

Расчет тригонометрической функции тангенса числа в радианах. Чтобы получить котангенс числа, надо единицу поделить на
величину тангенса.

Tan(651946045) = 2.5709703278560982

Натуральный логарифм

Это логарифм числа по основанию константы e ≅ 2,718281828459.

Ln(7788338399) = 22.77589337484777

Десятичный логарифм

Это логарифм числа по основания десять.

LOG(1010432) = 6.004507091707365

Квадратный корень

Квадратный корень из введенного числа.

8512326 → 2917.589073190397

Кубический корень

Кубический корень из введенного числа.

5834788 → 180.02867855810877

Квадрат числа

Число, возведенное в квадрат, то есть умноженное само на себя.

31203^2 = 973627209

Перевод из секунд

Конвертация числа секунд в дни, часы, минуты и секунды.

1805506 (секунд) → 2 недели 6 дней 21 час 31 минута 46 секунд

Дата по UNIX-времени

UNIX-время или UNIX-дата — количество секунд, прошедших с полуночи 1 января 1970 года (по UTC).
Таким образом введенное число можно преобразовать в дату.

5265079917115 → Sun, 04 Nov 2136 10:11:57 GMT

Римская запись

Римская запись числа, в том случае, если оно меньше чем максимальное для римской записи 3999.

2014 → MMXIV

Индо-арабское написание

Запись числа с помощью индо-арабских цифр. Они используются в арабских странах Азии и в Египте.

24579540882896 → ٢٤٥٧٩٥٤٠٨٨٢٨٩٦

Азбука морзе

Число, закодированное с помощью азбуки морзе, каждый символ которой представляется в виде последовательсти
коротких (точка) и длинных (тире) сигналов.

7282077 → —… ..— —.. ..— —— —… —…

MD5

Хэш-сумма числа, рассчитанная по алгоритму MD5.

4706204202547 → db2766a5747fd3f8c8c77a1ddd2e24d0

SHA1

Хэш-сумма числа, рассчитанная по алгоритму SHA-1.

345297 → 3855120d2f9d556544bbd24746d0877b79a023df

Base64

Представление числа в системе Base64, то есть в системе счисления с основанием 64.

78868 → SmF2YVNjcmlwdA==

QR-код числа

Двумерный штрих-код-картинка. В ней зашифровано введенное число.

969393779 →

Источник

Свойства чисел в духовной нумерологии — особая тема, пожалуй даже одна из ключевых! Досконально знать смысл того или иного числа, не принимая в расчёт общих свойств чисел, это то же самое, что догадываться о существовании солнца, но не видеть его света и не чувствовать его тепла.

Свойства чисел в нумерологии

Итак, свойства чисел в духовной нумерологии. Существуют общие свойства чисел (такие свойства в равной мере присущи абсолютно всем числам). А есть уникальные свойства отдельно взятых, конкретных чисел — свойства, применимые исключительно(!) для них.

Знание свойств чисел в нумерологии судьбы человека помогает расставить правильные акценты. Причём не только для решения жизненных проблем, но и для их предотвращения в зародыше.

Духовная нумерология различает следующие свойства чисел:

  1. постоянные свойства;
  2. переменные свойства;

В нашей жизни настолько же всё меняется, насколько постоянно. Так, например, мы рождаем детей с разными характерами, внешностью, именами и судьбами. А суть остаётся неизменной — продолжение рода. Мы строим разные машины, велосипеды, поезда, самолёты, корабли. И снова суть та же — средство передвижения.

Читайте также:  Камень алмаз фото свойства и значение какому знаку зодиака

Это касается вообще всех сфер Мироздания: всё меняется и всё остаётся неизменным. Причём изменения не противоречат постоянству! Без ясного осознания данного факта немыслимо применение духовной нумерологии к анализу человеческой судьбы (в том числе анализу даты рождения человека).

Естественно, что свойства чисел, зеркально отражающие нашу с вами действительность, выражают ту же незыблемую эзотерическую истину: постоянство внутри перемен и перемены внутри постоянства. Всё очень просто.
Язык чисел испокон веков воплощал в себе основополагающие законы Жизни.
 

Общие свойства чисел в нумерологии

К общим свойствам чисел относится то, что все они обладают сознанием. Да-да, не удивляйтесь, именно сознанием! Только в отличие от человеческого сознания, сознание чисел неизменно и постоянно.

Возьмите любое случайное число: 9, 7, 10, 23, 40 или 100 — любое! Каждое из них на протяжении всей истории человечества влияло на людей совершенно одинаково. Сознанию чисел абсолютно всё равно кто перед ним: необузданный дикарь, йог, в совершенстве владеющий своими страстями, или учёный разработчик сверхсложных космических технологий. 

И йога и учёного, и дикаря сознание чисел цинично и бесцеремонно приводит к «общему знаменателю», заставляя их делать одни и те же вещи: врать, бояться, любить, надеяться, верить… И хотя каждый из них будет делать это по-своему, суть останется неизменной — враньё, страх, любовь, надежда, вера.

Это я к тому, что сколь бы мы ни отличались друг от друга — полом, внешностью, умом, судьбой, характером, здоровьем, — числа могут вызывать в нас одни и те же реакции на вызовы Жизни. Эти реакции безусловно будут отличаться друг от друга, но только на физическом, внешнем уровне человеческого бытия. А по сути останутся теми же: враньём, страхом, ненавистью, жаждой наживы и так далее.

Как видите, духовная нумерология, анализируя свойства чисел, учит смотреть в корень, выхватывая самую суть происходящего, а не акцентировать внимание на условных внешних различиях между нами. Таковые различия кажутся очень важными нам! Но для сознания чисел они (различия) — не более чем шелуха, которую необходимо отбросить, чтобы добраться до плода «познания добра и зла»…
 

Уникальные свойства чисел в нумерологии

Когда ко мне обращаются люди с просьбой сделать подробный анализ их дат рождения, я обязан учитывать особенные и уникальные свойства каждого числа. Ведь любое число в духовной нумерологии обладает своим, если так можно выразиться, характером, своими уникальными, неповторимыми качествами. Что я имею в виду?

Допустим человек родился 19-го числа (не буду сейчас упоминать какого месяца и года, чтобы вас не путать). 19 с языка чисел переводится как «стремление к духовному совершенству». Но поскольку к духовному совершенству могут вести миллионы путей (зачастую неведомых нам), это число даёт человеку беспрецедентную свободу выбора.

Даже если этот выбор — кажущийся, иллюзорный, мнимый, тем не менее он есть! И он дарит иллюзию свободы, а значит надежду на благополучный исход из  даже самой безвыходной ситуации! То есть, число 19 не запирает человека в какие-то жёсткие рамки поведения, а даёт беспрецедентную «свободу выбора».

Конечно, с точки зрения духовной нумерологии любая свобода выбора — не более, чем сладкая иллюзия. Но согласитесь, лучше съесть во сне сладкую булочку, чем вскочить посреди ночи с криком ужаса от только что привидевшегося кошмара!

Чтобы научиться понимать язык чисел, мало знать их смысл. Необходимо усвоить, как определённое число будет себя с вами вести: станет ли жёстко требовать линии поведения, соответствующей его смыслу, или примется мягко настаивать на соблюдении определённых моральных норм. Иные числа мудро и незаметно направляют человека в желаемое русло.

У каждого числа свой неповторимый характер. Двойка, например, на редкость твердолоба. Смысл числа 2 — принципиальность, ограниченность суждений. Для двойки Бога нет. Её бог — какой-нибудь громогласный девиз типа «Да здравствует победа над тунеядством и попустительством!».

И свойство (характер) числа 2 таково, что оно будет жёстко настаивать и требовать от человека незамедлительного выбора: «да или нет»! Никаких колебаний! Никакого времени на раздумье! Зачем думать? О чём? Для чего? Сомнения для слабаков. Сделай выбор и нечего рассусоливать канитель!

Двойка — это не восьмёрка, сглаживающая острые углы. Характер (свойство) числа 8 — мягкий, обволакивающий. Восьмёрка щадит наши идеалы и чувства, и до бесконечности готова ждать, пока человек что-то наконец осознает и соблаговолит принять к сведению её смысл. А смысл числа 8 — сама Вечность. Забавно, что при всей мудрости этого числа, оно даже понятия не имеет, что такое Время.

Понятно, что невозможно в одной статье охватить характер всех чисел. Цель её написания в том, что я хотел донести до своих читателей очень важную мысль: чтобы овладеть языком чисел, недостаточно знать их смысл. Нужно понимать их характер и уметь настраиваться на его особенности. Только так числа можно превратить в своих самых надёжных союзников в решении жизненных задач!

———————————————————————————————

Какие свойства чисел бывают

Обратите внимание!

В магазины уже поступила моя книга под названием «Духовная нумерология. Язык чисел». На сегодняшний день это самое полное и востребованное из всех существующих эзотерических пособий о смысле чисел. Подробнее об этом, а также для заказа книги пройдите по следующей ссылке: «Духовная нумерология книга«

С теплом, автор книги и этого сайта Иосиф Лазарев

———————————————————————————————

Источник

У этого термина существуют и другие значения, см. Число (значения).

Число́ — одно из основных понятий математики[1], используемое для количественной характеристики, сравнения, нумерации объектов и их частей. Письменными знаками для обозначения чисел служат цифры, а также символы математических операций. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа с развитием науки значительно расширилось.

Основные числовые множества[править | править код]

  • Комплексные числа () — числа, являющиеся расширением множества действительных чисел. Они могут быть записаны в виде , где i — т. н. мнимая единица, для которой выполняется равенство . Комплексные числа используются при решении задач электротехники, гидродинамики, картографии, квантовой механики, теории колебаний, теории хаоса, теории упругости и многих других. Комплексные числа подразделяются на алгебраические и трансцендентные. При этом каждое действительное трансцендентное является иррациональным, а каждое рациональное число — действительным алгебраическим. Более общими (но всё ещё счётными) классами чисел, чем алгебраические, являются периоды, вычислимые и арифметические числа (где каждый последующий класс шире, чем предыдущий).

Для перечисленных множеств чисел справедливо следующее выражение:

Обобщения чисел[править | править код]

Кватернионы, представляющие собой разновидность гиперкомплексных чисел. Множество кватернионов обозначается . Кватернионы в отличие от комплексных чисел не коммутативны относительно умножения.

В свою очередь октавы , являющиеся расширением кватернионов, уже теряют свойство ассоциативности.

В отличие от октав, седенионы не обладают свойством альтернативности, но сохраняют свойство степенной ассоциативности.

Читайте также:  Каким свойством обладает цинка

Для этих множеств обобщённых чисел справедливо следующее выражение:

p-адические числа можно рассматривать как элементы поля, являющегося пополнением поля рациональных чисел при помощи т. н. p-адического нормирования, аналогично тому, как поле действительных чисел определяется как его пополнение при помощи обычной абсолютной величины.

Аде́ли определяются как бесконечные последовательности {a∞,a2,a3,…ap…}, где a∞ — любое действительное число, а ap — p-адическое, причём все ap, кроме, может быть, конечного их числа, являются целыми p-адическими. Складываются и умножаются адели покомпонентно и образуют кольцо. Поле рациональных чисел вкладывается в это кольцо обычным образом r→{r, r,…r,…}. Обратимые элементы этого кольца образуют группу и называются иде́лями.

Практически важным обобщением числовой системы является интервальная арифметика.

Иерархия чисел[править | править код]

Ниже представлена иерархия чисел, для множеств которых справедливо выражение , с примерами:

Представление чисел в памяти компьютера[править | править код]

подробнее см. Прямой код, Дополнительный код (представление числа), Число с плавающей запятой

Для представления натурального числа в памяти компьютера, оно обычно переводится в двоичную систему счисления. Для представления отрицательных чисел часто используется дополнительный код числа, который получается путём прибавления единицы к инвертированному представлению модуля данного отрицательного числа в двоичной системе счисления.

Представление чисел в памяти компьютера имеет ограничения, связанные с ограниченностью объёма памяти, выделяемого под числа. Даже натуральные числа представляют собой математическую идеализацию, ряд натуральных чисел бесконечен. На объём же памяти ЭВМ накладываются физические ограничения. В связи с этим в ЭВМ мы имеем дело не с числами в математическом смысле, а с некоторыми их представлениями, или приближениями. Для представления чисел отводится некоторое определённое число ячеек (обычно двоичных, бит — от BInary digiT) памяти. В случае, если в результате выполнения операции полученное число должно занять больше разрядов, чем отводится в ЭВМ, результат вычислений становится неверным — происходит так называемое арифметическое переполнение. Действительные числа обычно представляются в виде чисел с плавающей запятой. При этом лишь некоторые из действительных чисел могут быть представлены в памяти компьютера точным значением, в то время как остальные числа представляются приближёнными значениями. В наиболее распространённом формате число с плавающей запятой представляется в виде последовательности битов, часть из которых кодирует собой мантиссу числа, другая часть — показатель степени, и ещё один бит используется для указания знака числа.

История развития понятия[править | править код]

Понятие числа возникло в глубокой древности из практической потребности людей и усложнялось в процессе развития человечества. Область человеческой деятельности расширялась и соответственно, возрастала потребность в количественном описании и исследовании. Сначала понятие числа определялось теми потребностями счёта и измерения, которые возникали в практической деятельности человека, всё более впоследствии усложняясь. Позже число становится основным понятием математики, и потребности этой науки определяют дальнейшее развитие этого понятия.

Доисторические времена[править | править код]

Считать предметы человек умел ещё в глубокой древности, тогда и возникло понятие натурального числа. На первых ступенях развития понятие отвлечённого числа отсутствовало. В те времена человек мог оценивать количества однородных предметов, называемых одним словом, например «три человека», «три топора». При этом использовались разные слова «один» «два», «три» для понятий «один человек», «два человека», «три человека» и «один топор», «два топора», «три топора». Это показывает анализ языков первобытных народностей. Такие именованные числовые ряды были очень короткими и завершались неиндивидуализированным понятием «много». Разные слова для большого количества предметов разного рода существуют и сейчас, такие, как «толпа», «стадо», «куча». Примитивный счёт предметов заключался «в сопоставлении предметов данной конкретной совокупности с предметами некоторой определённой совокупности, играющей как бы роль эталона»[2], которым у большинства народов являлись пальцы («счёт на пальцах»). Это подтверждается лингвистическим анализом названий первых чисел. На этой ступени понятие числа становится не зависящим от качества считаемых объектов.

Появление письменности[править | править код]

Возможности воспроизведения чисел значительно увеличились с появлением письменности. Первое время числа обозначались чёрточками на материале, служащем для записи, например папирус, глиняные таблички, позже стали применяться специальные знаки для некоторых чисел (сохранившиеся до наших дней «римские цифры») и знаки для больших чисел. О последних свидетельствуют вавилонские клинописные обозначения или знаки для записи чисел в кириллической системе счисления. Когда в Индии появилась позиционная система счисления, позволяющая записать любое натуральное число при помощи десяти знаков (цифр), это стало большим достижением человека.

Осознание бесконечности натурального ряда явилось следующим важным шагом в развитии понятия натурального числа. Об этом есть упоминания в трудах Евклида и Архимеда и других памятниках античной математики III века до н. э. В «Началах» Евклид устанавливает безграничную продолжаемость ряда простых чисел. Здесь же Евклид определяет число как «множество, составленное из единиц»[3]. Архимед в книге «Псаммит» описывает принципы для обозначения сколь угодно больших чисел.

Появление арифметики[править | править код]

Со временем начинают применяться действия над числами, сначала сложение и вычитание, позже умножение и деление. В результате длительного развития сложилось представление об отвлечённом характере этих действий, о независимости количественного результата действия от рассматриваемых предметов, о том, что, например, два предмета и три предмета составляют пять предметов независимо от характера этих предметов. Когда стали разрабатывать правила действий, изучать их свойства и создавать методы решения задач, тогда начинает развиваться арифметика — наука о числах. Потребность в изучении свойств чисел как таковых проявляется в самом процессе развития арифметики, становятся понятными сложные закономерности и их взаимосвязи, обусловленные наличием действий, выделяются классы чётных и нечётных чисел, простых и составных чисел и так далее. Тогда появляется раздел математики, который сейчас называется теория чисел. Когда было замечено, что натуральные числа могут характеризовать не только количество предметов, но и ещё могут характеризовать порядок предметов, расположенных в ряд, возникает понятие порядкового числа.
Вопрос об обосновании понятия натурального числа, столь привычного и простого, долгое время в науке не ставился. Только к середине XIX века под влиянием развития математического анализа и аксиоматического метода в математике, назрела необходимость обоснования понятия количественного натурального числа. Введение в употребление дробных чисел было вызвано потребностью производить измерения и стало исторически первым расширением понятия числа.

Введение отрицательных чисел[править | править код]

В Средние века были введены отрицательные числа, с помощью которых стало легче учитывать долг или убыток.
Необходимость введения отрицательных чисел была связана с развитием алгебры как науки, дающей общие способы решения арифметических задач, независимо от их конкретного содержания и исходных числовых данных. Необходимость введения в алгебру отрицательного числа возникает уже при решении задач, сводящихся к линейным уравнениям с одним неизвестным. Отрицательные числа систематически применялись при решении задач ещё в VI—XI веках в Индии и истолковывались примерно так же, как это делается в настоящее время.

Читайте также:  Как определить какой оксид обладает высшими свойствами

После того, как Декарт разработал аналитическую геометрию, позволившую рассматривать корни уравнения как координаты точек пересечения некоторой кривой с осью абсцисс, что окончательно стёрло принципиальное различие между положительными и отрицательными корнями уравнения, отрицательные числа окончательно вошли в употребление в европейской науке.

Введение действительных чисел[править | править код]

Ещё в Древней Греции в геометрии было совершено принципиально важное открытие: не всякие точно заданные отрезки соизмеримы, другими словами, не у каждого отрезка длина может быть выражена рациональным числом, например сторона квадрата и его диагональ. В «Началах» Евклида была изложена теория отношений отрезков, учитывающая возможность их несоизмеримости. В Древней Греции умели сравнивать такие отношения по величине, производить над ними арифметические действия в геометрической форме. Хотя греки обращались с такими отношениями, как с числами, они не осознали, что отношение длин несоизмеримых отрезков может рассматриваться как число. Это было сделано в период зарождения современной математики в XVII веке при разработке методов изучения непрерывных процессов и методов приближённых вычислений. И. Ньютон во «Всеобщей арифметике» даёт определение понятия действительного числа: «Под числом мы понимаем не столько множество единиц, сколько отвлечённое отношение какой-нибудь величины к другой величине того же рода, принятой нами за единицу». Позже, в 1870-х годах, понятие действительного числа было уточнено на основе анализа понятия непрерывности Р. Дедекиндом, Г. Кантором и К. Вейерштрассом.

Введение комплексных чисел[править | править код]

С развитием алгебры возникла необходимость введения комплексных чисел, хотя недоверие к закономерности пользования ими долго сохранялось и отразилось в сохранившемся до сих пор термине «мнимое». Уже у итальянских математиков XVI века (Дж. Кардано, Р. Бомбелли), в связи с открытием алгебраического решения уравнений третьей и четвёртой степеней, возникла идея комплексного числа. Дело в том, что даже решение квадратного уравнения, в том случае, если уравнение не имеет действительных корней, приводит к действию извлечения квадратного корня из отрицательного числа. Казалось, что задача, приводящаяся к решению такого квадратного уравнения, не имеет решения. С открытием алгебраического решения уравнений третьей степени обнаружилось, что в том случае, когда все три корня уравнения являются действительными, по ходу вычисления оказывается необходимо выполнить действие извлечения квадратного корня из отрицательных чисел.

После установления в конце XVIII века геометрического истолкования комплексных чисел в виде точек на плоскости и установления несомненной пользы от введения комплексных чисел в теории алгебраических уравнений, в особенности после знаменитых работ Л. Эйлера и К. Гаусса, комплексные числа были признаны математиками и начали играть существенную роль не только в алгебре, но и в математическом анализе. Значение комплексных чисел особенно возросло в XIX веке в связи с развитием теории функций комплексного переменного[2].

Число в философии[править | править код]

Философское понимание числа заложили пифагорейцы. Аристотель свидетельствует, что пифагорейцы считали числа «причиной и началом» вещей, а отношения чисел — основой всех отношений в мире. Числа придают миру упорядоченность и делают его космосом. Такое отношение к числу было принято Платоном, а позже неоплатониками. Платон при помощи чисел различает подлинное бытие (то, что существует и мыслится само по себе) и неподлинное бытие (то, что существует лишь благодаря другому и познаётся только в отношении). Срединное положение между ними занимает число. Оно придаёт меру и определённость вещам и делает их причастными бытию. Благодаря числу вещи могут быть подвергнуты пересчёту и поэтому они могут быть мыслимы, а не только ощущаемы. Неоплатоники, особенно Ямвлих и Прокл, почитали числа столь высоко, что даже не считали их сущими — устроение мира исходит от числа, хотя и не непосредственно. Числа сверхсущны, пребывают выше Ума, и недоступны знанию. Неоплатоники различают божественные числа (прямую эманацию Единого) и математические числа (составленные из единиц). Последние являются несовершенными подобиями первых. Аристотель, наоборот, приводит целый ряд аргументов, показывающих, что утверждение о самостоятельном существовании чисел приводит к нелепостям. Арифметика выделяет в этих реально сущих вещах только один аспект и рассматривает их с точки зрения их количества. Числа и их свойства являются результатом такого рассмотрения. Кант считал, что явление познано тогда, когда оно сконструировано в соответствии с априорными понятиями — формальными условиями опыта. Число — одно из таких условий. Число задаёт конкретный принцип или схему конструирования. Любой объект является исчислимым и измеряемым, потому что он сконструирован по схеме числа (или величины). Поэтому всякое явление может рассматриваться математикой. Разум воспринимает природу подчинённой числовым закономерностям именно потому, что сам строит её в соответствии с числовыми закономерностями. Так объясняется возможность применения математики в изучении природы. Математические определения, разработанные в XIX веке, были серьёзно пересмотрены в начале XX века. Это было вызвано не столько математическими, сколько философскими проблемами. Определения, которые были даны Пеано, Дедекиндом или Кантором, и которые используются в математике и в настоящее время, нужно было обосновать с помощью фундаментальных принципов, коренящихся в самой природе знания. Различают три таких философско-математических подхода: логицизм, интуиционизм и формализм. Философскую базу логицизма разработал Рассел. Он полагал, что истинность математических аксиом неочевидна. Истинность обнаруживается сведением к наиболее простым фактам. Отражением таких фактов Рассел считал аксиомы логики, которые он положил в основу определения числа. Важнейшим понятием у него является понятие класса. Натуральное число η есть класс всех классов, содержащих η элементов. Дробь — это уже не класс, а отношение классов. Интуицист Брауэр имел противоположную точку зрения: логику он считал лишь абстракцией от математики, рассматривал натуральный ряд чисел как базовую интуицию, лежащую в основании всякой мыслительной деятельности. Гильберт, главный представитель формальной школы, видел обоснование математики в построении непротиворечивой аксиоматической базы, в пределах которой можно бы было формально обосновать любое математическое понятие. В разработанной им аксиоматической теории действительных чисел представление о числе лишается всякой глубины и сводится лишь к графическому символу, подставляемому по определённым правилам в формулы теории[3].

См. также[править | править код]

  • Системы наименования чисел
  • Обратное число
  • Псевдослучайное число
  • Алгебраические числа
  • Трансфинитное число
  • Нумерология
  • Арифметика

Примечания[править | править код]

Литература[править | править код]

  • Матвиевская Г. П. Учение о числе на средневековом Ближнем и Среднем Востоке. — Ташкент: ФАН, 1967. — 344 с. Вопреки названию, книга прослеживает историю понятия числа с самых древних времён.
  • Меннингер К. История цифр. Числа, символы, слова. — М.: ЗАО Центрполиграф, 2011. — 543 с. — ISBN 9785952449787.
  • Понтрягин Л. С. Обобщения чисел. — М.: Наука, 1986. — 120 с. — (Библиотечка «Квант»).
  • Ifrah G. The Universal History of Numbers. — John Wiley & Sons, 2000. — 635 p. — ISBN 0471393401. (англ.)

Ссылки[править | править код]

  • Вокруг света: Какое число самое большое?
  • Грамота.ру: История происхождения слов «число» и «цифра», статья из журнала «Наука и жизнь»
  • Кириллов А. А. Что такое число?. — М., 1993.

Источник