Какие продукты разделения воздуха

Какие продукты разделения воздуха thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 февраля 2019;
проверки требует 1 правка.

Воздухоразделительные установки (ВРУ) — установки для разделения воздуха на компоненты, а именно на: кислород, азот, аргон, неон, ксенон, криптон. Газовый состав воздуха на земле одинаков, за исключением углекислого газа, углеводородов и аммиака, концентрация которых на несколько (3 и более) порядков меньше, чем содержание кислорода и азота.

Воздухоразделительные установки подразделяются по давлению цикла разделения: P = 15 ÷ 20 МПа — высокое давление, P = 4 ÷ 7 МПа — среднее давление, P = 0,5 ÷ 1,2 МПа — низкое давление.

История[править | править код]

Исторически существовали несколько способов разделения воздуха.

  • Фракционная конденсация паров воздуха
  • Фракционное испарение жидкого воздуха
  • Ректификационный
  • Адсорбционный
  • Мембранный

Первоначалом для существующих ВРУ, были ожижители воздуха. Первые ожижители представляли собой четырёхкаскадную систему охлаждения, с несколькими контурами охлаждения на базе аммиака, борного спирта и некоторых фракций природного газа (пропан, бутан, этан).

Первым, кто получил кислород из воздуха путём ректификации был Карл Линде в 1895 году. Он создал криогенный цикл, по которому работала установка разделения, в последующем её назвали установка Линде, а цикл разделения воздуха — цикл Линде. В данном цикле применялся изотермический дроссель эффект, который создавался за счет изотермического сжатия в компрессоре и последующего расширения через дроссельный вентиль. Установка работала по циклу высокого давления P = 10 ÷ 15 МПа, с производительностью Vк = 100 (м³ O2)/час и концентрацией xк = 99,5 ÷ 99,7 % O2. Линде впервые создал аммиачную холодильную машину, которую в последующем включил в цикл разделения воздуха (в 1902 год).

Установку низкого давления изобрел советский ученый П. Л. Капица в 1939 году. Установка была предназначена для получения газообразного кислорода и работала по циклу низкого давления P = 0,6 ÷ 0,7 МПа
снижение давления было достигнуто путём применения в цикле турбодетандера, а также увеличением на порядок по сравнением с циклом Линде (от 3000 м³ воздуха в час и выше) потребляемого воздуха.

Принцип работы и устройство[править | править код]

Устройство[править | править код]

ВРУ состоит из 2-х секций. Ожижительной и разделительной. Ожижительная секция предназначена для получения жидкого воздуха, вернее, жидкой флегмы, в которой массовая доля кислорода чуть выше, чем в воздухе, за счет более высокой температуры кипения, как следствие при испарении в парах над флегмой больше низкокипящих компонентов, таких как азот.

Ожижительная секция состоит из блока комплексной очистки и осушки (БКОО), компрессора, ряда теплообменников, расширителя, в роли которого выступает дроссель или детандер, и оканчивается резервуаром для скопления сжиженной флегмы. Чаще всего, резервуаром для флегмы является дно ректификационной колонны.

Как правило, в системе стоит от 2-х и более теплообменников. Первый теплообменник работает при положительных температурах, и предназначен для охлаждения сжатого компрессором воздуха, окружающим воздухом. Последующие теплообменники охлаждают сжатый воздух путём теплообмена с исходящими продуктами: кислородом, азотом или флегмой.

Разделительная секция чаще всего состоит из ректификационной колонны, конденсатора-испарителя и ряда азото-кислородных теплообменников. Количество ректификационных колонн зависит от того какой газ или жидкость получается в установке. Так при получении только газообразного азота в установке находится 1 колонна. При получении кислорода в установке будет находится: верхняя и нижняя колонны и конденсатор испаритель между ними . При получении аргона в установке будет находиться 4 колонны: нижняя, верхняя, сырого аргона, чистого аргона. Остальные газы (ксенон, криптон, неон) находящиеся в воздухе получают в крупных ВРУ в виде смесей, из которых далее, в специальном оборудовании, выделяют эти газы в чистом виде. Неон и гелий при работе ВРУ накапливаются в конденсаторе-испарителе в виде некондесируемой фракции и начинают мешать процессам конденсации азота, для их удаления предусмотрен вентиль стравливания.

Принцип работы[править | править код]

Воздух прошедший ряд фильтров механической фильтрации попадает в компрессор, где сжимается до давления цикла, далее воздух поступает в БКОО, где с помощью абсорбентов из него удаляются влага, двуокись углерода и углеводороды, после чего воздух попадает в теплообменники. После них он попадает в нижнюю ректификационную колонну, где ректифицирует на кубовую жидкость (~ 35 % O2, 2 % Ar, остальное азот) и газообразный азот с чистотой ~99,99 %.

Если установка получает помимо азота ещё и кислород, то кубовая жидкость подается в середину верхней ректификационной колонны, а жидкий азот в верх верхней ректификационной колонны. Из верха верхней ректификационной колонны отбирается газообразный азот, внизу собирается жидкий кислород. Жидкий кислород попадает в конденсатор-испаритель, который производит теплообмен с газообразным азотом нижней ректификационной колонны. Со временем в конденсаторе-испарителе накапливается неон и гелий, что предусматривает установку вентиля для стравливания этих газов.

Читайте также:  Какие продукты можно привезти из чехии

Классификация ВРУ[править | править код]

Существуют три метода разделения воздуха: адсорбционный, мембранный и криогенный. Отсюда и типы установок: адсорбционные, мембранные и криогенные.

Криогенные ВРУ[править | править код]

подразделяются[1]:

  • по давлению цикла разделения: P = 15 ÷ 20 МПа — высокое давление, P = 4 ÷ 7 МПа — среднее давление, P = 0,5 ÷ 1,2 МПа — низкое давление. Основано на классификации компрессоров по давлению нагнетания. Тем же образом классифицируют адсорбционные и мембранные установки разделения воздуха.
  • по производительности:
    • малой Vк = 30 ÷ 300 (м³ N2 или O2)/час при нормальных условиях (T0 = 273 K, P0 = 760 мм рт.ст. = 101325 Па = 1 атм);
    • средней Vк = 300 ÷ 3000 (м³ N2 или O2)/час при нормальных условиях;
    • высокой Vк > 3000 (м³ N2 или O2)/час при нормальных условиях;
  • по состоянию получаемого продукта:
    • Для получения газообразных продуктов;
    • Для получения жидких продуктов;
    • Для одновременного получения продуктов в жидкой и газообразной фазах;

Существуют малые ВРУ в которых в качестве ожижительной части используется газовая криогенная машина, работающей по обратному циклу Стирлинга. Рабочим газом в такой машине в большинстве случаев является гелий.

Расшифровка названия:[1]

После тире в названии ВРУ указывается её производительность по первому продукту в тыс.м³/ч или тыс.кг/ч если речь идет о жидких продуктах.

  • А — получение газообразного азота
  • Кд — получение газообразного кислорода
  • Аж — получение жидкого азота
  • Кж — получение жидкого кислорода
  • Ар — получение газообразного аргона
  • Кт — получение технологического (чистота 95 %) кислорода

Пример: установка АжКж-0,6 получает жидкий азот в количестве 0,6 тыс.кг/ч, а также жидкий кислород.
Установка КА-5 производит газообразный кислород в количестве 5 000 м³/ч, а также газообразный азот.

См. также[править | править код]

  • Криогеника

Литература[править | править код]

  • Справочник Кислород том 1 и том 2, в 2 томах, под ред Глизманенко Д. Л., М: «Металлургия», 1967 г.
  • Установки, машины и аппараты криогенной техники часть 1 и 2, в 2 частях, Усюкин И. П., М.: Пищевая промышленность, 1976 г.

Примечания[править | править код]

  1. 1 2 Установки, машины и аппараты криогенной техники, Усюкин И. П., М.: Пищевая промышленность, 1976

Ссылки[править | править код]

  • История Института кислородного машиностроения

Источник

Для получения основных продуктов разделения воздуха – азота и кислорода -используются воздухоразделительные установки, которые по принципу работы разделены на три основных типа:

  • криогенные — с разделением воздуха методом низкотемпературной ректификации;
  • адсорбционные — работающие при температуре окружающей среды и обеспечивающие разделение воздуха с помощью адсорбентов;
  • мембранные — работающие при температуре окружающей среды и обеспечивающие разделение воздуха с помощью полимерных мембран (молекулярных сит), выполненных в виде капиллярных трубок.

Критерием выбора типа установки является необходимый продукт, его состояние (сжиженное или газообразное), чистота, давление продуктового газа, производительность и экономичность.

Криогенные воздухоразделительные установки (ВРУ)

Принцип работы криогенных воздухоразделительных установок основан на низкотемпературной ректификации сжиженного воздуха. Установки состоят из компрессорного, технологического и вспомогательного оборудования. Упрощенная технологическая схема выглядит следующим образом: воздух после сжатия в компрессоре проходит блоки очистки, где освобождается от влаги, углекислоты и углеводородов, расширяется в детандере с понижением температуры, проходит через теплообменники, сжижается и попадает в ректификационную колонну на разделение, после чего, в зависимости от режима, выдается азот или кислород в жидком или газообразном состоянии.

Криогенные ВРУ технически достаточно сложны, требуют значительного времени для выхода на режим, смену режима и отогрев, включают в себя энергоемкую систему очистки, металлоемкое тепло- и массообменное оборудование, детандер, систему автоматики. Криогенные установки требуют высококвалифицированного обслуживания и достаточно энергоемки. Эти недостатки компенсируются возможностью получения сжиженных продуктов разделения воздуха и чистого медицинского кислорода.

НПО «ГЕЛИЙМАШ» выпускает малые криогенные установки по циклу высокого давления в двух базовых исполнениях: стационарную СКДС-100В и транспортабельную ТКДС-100В, размещенную в двух стандартных 20-футовых контейнерах. Станции предназначены для получения газообразного азота или кислорода под давлением, сжиженного азота или кислорода а также сухого воздуха высокого давления, свободного от примесей. По требованиям заказчиков возможно изготовление установок — модификаций базовых моделей.

Адсорбционные воздухоразделительные установки

Для потребителей газообразного азота и кислорода выпускаются адсорбционные воздухоразделительные установки. Их работа основана на селективном поглощении компонентов воздуха молекулярными адсорбентами по технологии Короткоцикловой безнагревной адсорбции (КБА) или в английском варианте Pressure Swing Adsorption (PSA).

При прохождении сжатого воздуха через один из двух попеременно работающих адсорберов происходит преимущественное поглощение азота или кислорода (одновременно с водяными парами, двуокисью углерода и углеводородными соединениями) из воздуха, а оставшийся газ направляется потребителю. Регенерация адсорбента осуществляется при сбросе давления в адсорбере и его продувке. Рабочий процесс на осуществляется при положительной температуре в полностью автоматическом режиме.

К числу факторов, обеспечивающих конкурентоспособность установок КБА (PSA), относится их сравнительная дешевизна, простота монтажа, эксплуатации и технического обслуживания. Кроме того, установки этого типа отличает компактность оборудования, высокая степень безопасности, надежности, автоматизации технологического процесса (включая пуск и остановку), короткий период пуска и практически неограниченная продолжительность рабочей кампании.

Читайте также:  Какие продукты нельзя есть при себореи

Адсорбционный метод разделения воздуха в достаточно большом диапазоне производительности и концентрации отличается большей экономичностью по сравнению с криогенным методом, что связано с меньшим давлением в цикле. Однако этот метод не позволяет получать чистый технический кислород и сжиженные газы.

Установки КБА для производства кислорода

Воздухоразделительные установки КБА (PSA) предназначенные для получения кислорода, обеспечивают относительно невысокую концентрацию продукта (не более 95%). Эта величина в определенной степени ограничивает применение установок. Не смотря на ограничения по концентрации кислорода, спектр применения установок достаточно широк:

  • для получения кислорода для автогенных работ (за исключением автоматической резки металлов);
  • в силикатной промышленности и целлюлозно-бумажном производстве;
  • в рыбоводстве;
  • для обработки сточных вод и обеспечения кислородом озонаторных установок;
  • в процессе переработки органических отходов (пиролиз);
  • в микробиологических производствах;
  • в пищевой и фармацевтической промышленностях, в сельском хозяйстве;
  • в других областях для интенсификации технологических процессов.

Установки КБА для производства азота

Серийные воздухоразделительные установки, работающие по принципу КБА (PSA) и предназначенные для производства газообразного азота, обеспечивают чистоту продукта до 99,9995%. Применение дополнительных модулей позволяет получить ещё более чистый азот.

Установки применяются:

  • для обеспечения пожаро-взрывобезопасности во время проведения монтажных, профилактических и ремонтных работ на установках, блоках и элементах нефтегазового комплекса;
  • для создания «азотной подушки» при переливе и транспортировке нефтепродуктов;
  • для создания инертной среды в химических производствах при разделении сложных растворов и смесей, в том числе в лако-красочной промышленности;
  • для создания инертных сред в электронной промышленности;
  • в качестве средств пожаротушения и прекращения процессов тления в технологических процессах;
  • для упаковки пищевых продуктов;
  • в других областях для создания нейтральных сред.

Мембранные воздухоразделительные установки

Мембранные воздухоразделительные установки отличаются от остальных выдачей только одного целевого продукта – азота.
По составу оборудования мембранные установки аналогичны адсорбционным, только вместо адсорбционного блока разделения устанавливается блок со стандартными мембранными картриджами. Объем и чистота продуктового азота определяется производительностью компрессора, пропускной способностью мембранных картриджей и соотношением перерабатываемого и продуктового потоков.

Мембраны очень чувствительны к капельной влаге и маслу, поэтому установки эксплуатируются при температуре выше 0?С, а процессу подготовки воздуха уделяется особое внимание.

получение

Какие продукты разделения воздуха

Какие продукты разделения воздуха

Какие продукты разделения воздуха

Источник

Лекции.Орг

Общие сведения

Состав воздуха, продукты его разделения и их использование

Состав атмосферного воздуха не постоянен. Содержание компонентов зависит от географической широты, высоты над поверхностью, солнечной активности и других факторов. Существенно неодинакова загрязненность воздушного бассейна, где содержание примесей может меняться в течение суток, например, под влиянием метеорологических условий.

Усредненный состав сухого атмосферного воздуха у поверхности земли приведен в табл. 1.1.

Таблица 1.1. Усредненный состав атмосферного воздуха

 
Газ
Молекулярная масса Объемное содержание в воздухе, % Массовое содержание, % Нормальная температура кипения, К
Азот N2 28,016 78,09 75,52 77,36
Кислород O2 32,00 20,95 23,15 90,19
Аргон Ar 39,944 0,93 1,28 87,29
Диоксид углерода CO2 44.01 0,03 0,05 194,6
Неон Ne 20,183 1,8×10-3 1,25×10-3 27,0
Гелий He 4,003 5,24×10-4 0,72×10-4 4,22
Криптон Kr 83,8 1×14-4 3,3×10-4 119,0
Водород H2 2,016 5×10-5 0,035×10-4 20,4
Закись азота N2O 44,016 5×10-5 8×10-5 184,60
Ксенон Xe 131,3 8×10-5 3,6×10-5 165,0
Озон O3 48,00 1×10-6 1,5×10-6 161,25
Радон Rn   6×10-18 4,5×10-17 211,35

Кроме того, в зависимости от производственной деятельности в регионе, в воздухе содержится незначительное количество метана, ацетилена и других высокомолекулярных углеводородов.

Содержание в воздухе водяных паров зависит от температуры и относительной влажности j. Значение относительной влажности обычно усредняется для определенного региона. Для средней полосы России j=0,7-0,8.

В табл. 1.2. приведено насыщающее влагосодержание воздуха в зависимости от его температуры при нормальном атмосферном давлении.

При сжатии воздуха содержание влаги в нем при полном насыщении уменьшается.

Таблица 1.2. Насыщающее влагосодержание воздуха в зависимости от температуры при атмосферном давлении

Температура воздуха, °С Влагосодержание, г/кг Температура воздуха, °С Влагосодержание, г/кг Температура воздуха, °С Влагосодержание, г/кг Температура воздуха, °С Влагосодержание, г/кг
25,40 3,73 -30 0,229 -60 0,00695
19,07 -5 1,7 -35 0,133 -65 0,00286
14,17 -10 1,59 -40 0,077 -70 0,00163
10,35 -15 1,01 -45 0,043 -75 0,00073
7,48 -20 0,63 -50 0,024 -80 0,00032
5,313 -25 0,39 -55 0,013 -90 0,000082

Основными продуктами разделения предварительно осушенного воздуха в современных воздухоразделительных установках (ВРУ) являются следующие так называемые промышленные газы:

Читайте также:  Какие продукты развивают память мозга

кислород технический – 99,2-99,7 % (1-й сорт – 99,7; 2-й сорт – 99,5; 3-й сорт – 99,2 %) и технологический – 92-98 % (в среднем – 95 %, остальное азот);

азот особой чистоты – не менее 99,996 %, высшего сорта – 99,994; 1-го сорта – 99,5; 2-го сорта – 99 и 3-го сорта – 97 %;

аргон высшего сорта – 99,993 и 1-го сорта – 99,987 %; сырой аргон – 86-90 %, содержащий до 4 % О2 и до 10 % N2; технический – 86-87 % с примесью 12-14 % азота;

первичный криптоноксеноновый концентрат с объемной долей криптона и ксенона до 0,2 %;

неоногелиевая смесь с объемной долей неона и гелия от 40 % и выше.

В дальнейшем сырой аргон и криптоноксеноновый концентрат подвергаются очистке и дополнительной ректификации.

Применение основных продуктов разделения воздуха – кислорода и азота, является одним из важных направлений технического прогресса в ряде отраслей промышленного производства. Это черная и цветная металлургия, химическая, нефтехимическая и пищевая промышленность, энергетика, медицина, машиностроение и пр. Использование этих продуктов позволяет интенсифицировать технологические процессы в этих отраслях. Это способствует увеличению выработки продукции, улучшению ее качества, снижению себестоимости.

По данным США использование кислорода в различных отраслях промышленности распределяется приблизительно следующим образом (в % от общего производства кислорода):

черная и цветная металлургия 60;

химическая промышленность 25;

ракетная техника и энергетика 10;

нефтепереработка 3;

прочие отрасли 2 %.

В течение последних 25 лет ежегодный прирост производства кислорода составляет 12-15 %.

Примерные удельные расходы кислорода на единицу продукции составляют:

в доменном производстве – 100-150 м3 на 1 т чугуна;

при конверторной выплавке стали – 55-60 м3/т кислорода 1-го и 2-го сорта;

в электроплавильном производстве – 15-20 м3/т, кислорода того же качества;

в производстве азотной кислоты – 155 м3/т, кислорода 1-3 сортов.

При аэрации и осветлении сточных вод воздухом, обогащенным кислородом, в зависимости от степени их загрязнения расходуется от 2 до 24 м3/м3.

С каждым годом все большее применение находит азот. В химической промышленности на производство аммиака, этилена, пропилена, азотных удобрений расходуется до 1000 м3 азота на каждую тонну продукта.

Особое развитие нашла так называемая «азотная технология». Она стремительно расширяет области своего внедрения:

в машиностроении, например, это азотирование поверхностей деталей, что обеспечивает повышение прочности и износостойкости. Закалка инструмента в жидком азоте повышает его стойкость до 90 раз. Значительно надежнее и прочнее становятся неразъемные соединения, полученные с помощью жидкого азота, например, запрессовка бандажей, втулок и пр.;

в пищевой промышленности – азот наилучший охладитель и консервант продуктов питания;

в легкой промышленности – обработка кож, различного сырья. Замораживание жидким азотом тканей позволяет роботизировать и автоматизировать процессы раскроя и пошива одежды;

в медицине – безболезненные и быстрые операции на коже, глазах. Консервация органов пересадки, крови и др.

Жидкий азот является важнейшим хладоносителем для предварительного охлаждения газов в криогенных установках. С его помощью получают жидкий водород, гелий и др. редкие газы. На него возлагают большие надежды энергетики – разработчики высокотемпературной сверхпроводимости.

Аргон применяют как защитную среду для расплавленных металлов от окисления при плавке, разливе и электросварке нержавеющих сталей, титана, магния, алюминия. При плазменно-дуговой резке легированных сталей, сплавов алюминия, меди. При получении чистых металлов – титана, циркония, ниобия, молибдена и др.

Широко используется аргон в электроламповой промышленности для заполнения ламп накаливания и газоразрядных ламп. Лампы накаливания с аргоном имеют повышенные срок службы и светоотдачу. Аргон препятствует диффузии вольфрама, помутнению колб, уменьшают тепловые потери, так как позволяют повысить температуру нити накаливания.

В полупроводниковой промышленности аргон используется как защитная среда при производстве монокристаллов титана, бария, кремния и др. полупроводниковых материалов.

Сжижаются не только воздух и его компоненты. На практике широко применяются многие газы в сжиженном и твердом виде, например, CO2, CH4, H2, F2, и др. Некоторые из них применяются как хладагенты, другие как горючее и окислители. В ряде случаев сжижение ведется с целью перевоза и хранения.

Процессы сжижения газов довольно энергоемки. Например: для получения 1 т сухого льда (СО2) затрачивается 125-150 кВт×ч электроэнергии;

1 т жидкого кислорода (О2) – 1200-1500 кВт×ч;

1т жидкого водорода (Н2) – 60000-80000 кВт×ч.

Эксергетический КПД процессов сжижения, реализуемых в технических установках не превышает 20-25 %, а часто 10-15 %.

Дата добавления: 2016-03-28; просмотров: 1689 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник