Какие продукты получают при коксовании

Кокс представляет собой твердый матово-черный, пористый продукт. Из тонны сухой шихты получают 650-750 кг кокса. Он используется главным образом в металлургии, а также для газификации, производства карбида кальция, электродов, как реагент и топливо в ряде отраслей химической промышленности. Широкое применение кокса в металлургии определяет основные предъявляемые к нему требования:

1. Кокс должен обладать достаточной механической прочностью, так как в противном случае он будет разрушаться в металлургических печах под давлением столба шихты, что увеличит сопротивление движению газов, приведет к расстройству работы доменной печи, снижению ее производительности и т.п.

2.  Кокс должен иметь теплотворную способность 31400-33500 кДж/кг.

3.  Иметь высокую реакционную способность и горючесть. Первый показатель характеризует скорость восстановления коксом диоксида углерода, второй – скорость горения кокса.

4. Качество кокса также характеризуется содержанием в нем золы, серы, влаги и выходом летучих веществ. Сера, содержащаяся в коксе, при доменной плавке переходит в чугун, ухудшая его качество. Допустимое содержание серы в коксе 1.2-1.7 %. Зола в коксе – это балласт, и содержание ее равно примерно 10.0-11.0 %. Выход летучих веществ из кокса составляет около 1.0 %. Увеличение влажности кокса понижает его теплотворную способность, в коксе допустимо до 5 % влаги.

Коксовый газ получается в количестве 310-340 м3 на 1 т сухого угля. Состав и выход коксового газа определяется главным образом температурой коксования. Из камеры, в которой происходит коксование, выходит так называемый прямой коксовый газ, содержащий газообразные продукты, пары каменноугольной смолы, сырого бензола и воды. После удаления из него смолы, сырого бензола, воды и аммиака получается так называемый обратный коксовый газ, который используется как сырье для химических синтезов. Помимо этого, коксовый газ применяется как промышленное топливо для обогрева коксовых, сталеплавильных и других печей.

Каменноугольная смола – вязкая черно-бурая, со специфическим запахом жидкость, содержащая около 300 различных веществ. Наиболее ценными компонентами смолы являются ароматические и гетероциклические соединения: бензол, толуол, ксилолы, фенол, крезол, нафталин, антрацен, фенантрен, пиридин, карбазол, кумарон и др. Плотность смолы 1.17-1.20 г/см3. Выход смолы составляет от 3 до 4 % от массы коксуемого сухого угля. Состав смолы зависит главным образом от температуры коксования, а выход – от температуры и природы исходных углей. С повышением температуры углубляется пиролиз углеводородов, что снижает выход смолы и увеличивает выход газа.

В настоящее время из каменноугольной смолы выделяют около двухсот продуктов различных наименований, куда входят смеси и индивидуальные вещества, служащие сырьем для синтеза красителей, фармацевтических препаратов, инсектофунгицидов, пластических масс, химических волокон и т.п.

Сырой бензол – это смесь, состоящая из сероуглерода, бензола, толуола, ксилолов, кумарона и других веществ. Выход сырого бензола составляет в среднем 1.1 % от количества угля. Выход зависит от состава и свойств исходного угля и температурных условий процесса. При разгонке из сырого бензола получают индивидуальные ароматические углеводороды и смеси углеводородов, служащие сырьем для химической промышленности. Сырой бензол и смола, получаемые при коксовании углей, несмотря на развитие нефтехимического синтеза служат главнейшими источниками ароматических углеводородов для химической промышленности.

Надсмольная вода представляет собой слабый водный раствор аммиака и аммонийных солей с примесью фенола, пиридиновых оснований и некоторых других продуктов. Из надсмольной воды при ее переработке выделяется аммиак, который совместно с аммиаком коксового газа используется для получения сульфата аммония и концентрированной аммиачной воды.

Разделение продуктов коксования

Сначала производят разделение прямого коксового газа. Из него конденсируют смолу и воду, улавливают аммиак, сырой бензол и сероводород. Затем подвергают разделению надсмольную воду, каменноугольную смолу и сырой бензол с получением индивидуальных веществ или их смесей (рис. 1.6).

Рис. 1.2.3.1.1. Технологическая схема переработки прямого коксового газа

Прямой коксовый газ представляет сложную смесь газообразных и парообразных веществ. Помимо водорода, метана, этилена и других углеводородов, оксида и диоксида углерода, азота, в 1 м3 газа (при 0 оС и 105 Па) содержится 80-130 г смолы, 8-13 г аммиака, 30-40 г бензольных углеводородов, 6-25 г сероводорода и других сернистых соединений, 0.5-1.5 г цианистого водорода, 250-450 г паров воды и твердых частиц. Газ выходит из коксовой печи при 700 оС. Процесс разделения прямого коксового газа начинается в газосборнике 2, в который интенсивно впрыскивается холодная вода. Из газа удаляются твердые частицы (уголь, коксовая пыль, зола) и каменноугольная смола. Смола и надсмольная вода после охлаждения в холодильнике 3 стекают в в сборник 4, где разделяются по плотности. Надсмольная вода, обогащенная хлоридом, сульфатом, роданидом, тиоцианом аммония, поступает в аппарат 5, в который сверху также подается 20 %-ный раствор гидроксида кальция, а снизу «острый» пар. Здесь идут реакции отделения аммиака:

2 NH4Cl + Ca(OH)2 = CaCl2 + 2 NH3  + 2 H2O

Аналогичным образом отделяют сероводород, циановодород, родановодород. Образовавшийся аммиак и аммиак, оставшийся в газе после холодильников, поступает в нейтрализатор колокольного типа 6, заполненный 10 %-ным раствором серной кислоты, которая при взаимодействии с аммиаком дает кристаллы сульфата аммония. Вместе с аммиаком в колонне 6 улавливаются пиридиновые основания с образованием сульфата пиридина. Кристаллы сульфата аммония вместе с маточным раствором выводят из колонны, отделяют от него центрифугированием в центрифуге 7 и используют как азотное удобрение.

Коксовый газ, очищенный от аммиака, направляется на улавливание сырого бензола. Наиболее распространенным методом улавливания сырого бензола является абсорбция его поглотительными маслами при 20-25 оС в скрубберах 9,10. В качестве поглотителей применяется каменноугольное или соляровое масло. Предварительно газ охлаждают водой в башне 8. При этом из газа вымываются нафталин и мельчайшие брызги серной кислоты, увлеченные из башни 6. Освобожденный от сырого бензола коксовый газ, так называемый обратный коксовый газ, в большинстве случаев очищается от сероводорода и других серосодержащих соединений и поступает потребителю. Раствор сырого бензола в поглотительном масле направляют в отпарочную колонну 12, где из него отгоняется сырой бензол, а масло после охлаждения возвращается на орошение скрубберов.

Надсмольная вода содержит растворенный аммиак, а также аммонийные соли (NH4)2CO3, (NH4)2S, NH4CN, NH4Cl, NH4SCN, (NH4)2SO4, образующиеся в результате взаимодействия аммиака с другими компонентами коксового газа при его охлаждении. Переработка надсмольной воды заключается в выделении из нее аммиака при нагревании ее паром и обработке известковым молоком. Аммиак отгоняется из надсмольной воды острым паром и используются для получения сульфата аммония. Фенолы, содержащиеся в надсмольной воде, также отгоняются острым паром, а затем поглощаются раствором едкого натра с образованием фенолятов.

Сырой бензол представляет собой сложную смесь, основная масса которой испаряется до 180 оС. Среднее содержание основных компонентов в сыром бензоле (%): сероуглерода и легкокипящих углеводородов 1.6-3.4; бензола 59.5-78.3; гомологов бензола 12-21; сольвентов (смесь триметилбензола, этилметилбензола и др.) 3-10. Получение отдельных компонентов из сырого бензола основано на различии их температур кипения и осуществляется ректификацией.

Каменноугольная смола содержит около 300 веществ. Содержание особо важных веществ в смоле (%): нафталина 5-10; фенантрена 4-6; карбазола 1-2; антрацена 0.5-1.5; фенола 0.2-0.5; крезола 0.6-1.2; пиридиновых оснований 0.5-1.5. Помимо этого, в смоле в небольших количествах содержатся бензольные углеводороды: бензол, толуол, ксилолы; около 50-60 % от массы смолы составляют высококипящие продукты с большой молекулярной массой. Смола подвергается разгонке, а затем из фракций ректификацией выделяются бензол и его гомологи, кристаллизацией – нафталин и антрацен. Фенол получается при обработке фракций раствором едкого натра с образованием фенолята натрия С6Н5ОNa, который при дальнейшем взаимодействии с диоксидом углерода дает фенол. Пиридиновые основания удаляются из фракций промывкой разбавленной серной кислотой. Остаток после перегонки смолы – каменноугольный пек используется для изготовления электродов для электролизеров и электрических печей, в дорожном строительстве как материал для изоляции электросетей и подземных трубопроводов.

Обратный коксовых газ имеет примерно следующий состав (об. %): водорода 54-59; метана 23-28; оксида углерода 5.0-7.0; тяжелых углеводородов 2-3; азота 3.0-5.0; диоксида углерода 1.5-2.5; кислорода 0.3-0.8. Теплотворная способность газа 16700-17200 кДж/м3.

Сырой бензол подвергают ректификации в колонне 14. При этом получают фракции: сероуглерод, бензол, толуол, о-ксилол, м-ксилол, п-ксилол, в кубе колонны остается сольвент-фракция. Фракции моют водой, обезвоживают и подвергают дальнейшей ректификации с целью получения сырья для органического и нефтехимического синтеза.

Источник

Коксова́ние — процесс переработки жидкого или твёрдого топлива нагреванием без доступа кислорода. При разложении топлива образуется твёрдый продукт — нефтяной или каменноугольный кокс и летучие продукты. Основное количество кокса получают из каменного угля[1].

История[править | править код]

Производство каменноугольного кокса возникло в XVIII веке[2], когда понадобилось заменить становившийся всё более дефицитным древесный уголь для доменных печей. Первая промышленная плавка на коксе выполнена в Великобритании в 1735 году. К 1983 году мировое производство кокса составило около 360 млн тонн[1].

Коксование углей[править | править код]

Коксотушильный вагон перед башней мокрого тушения

Широко распространённый технологический процесс, состоящий из следующих стадий: подготовка к коксованию, собственно коксование, улавливание и переработка летучих продуктов[2].

Подготовка включает обогащение (для удаления минеральных примесей) низкосернистых, малозольных, коксующихся углей, измельчение до зёрен размером около 0,3 мм, смешение нескольких сортов угля, сушка полученной шихты.

Коксовая печь — технологический агрегат, в котором осуществляется коксование каменного угля (на заводе бездымного топлива, Южный Уэльс)

Для коксования шихту загружают в щелевидную коксовую печь (ширина 400—450 мм, объём 30—40 м3). Каналы боковых простенков печей, выложенных огнеупорным кирпичом, обогреваются продуктами сгорания газов: коксового (чаще всего), доменного, генераторного, их смесей и др.

Продолжительность нагрева составляет 14—16 часов. Температура процесса — 900—1050 °C. Полученный кокс (75—78 % от массы исходного угля) в виде так называемого «коксового пирога» (спёкшейся пластической массы) — выталкивается специальными машинами («коксовыталкивателями») в железнодорожные вагоны, в которых охлаждается («тушится») водой или газом (азотом).

При 250 градусах Цельсия из угля испаряется вода, улетучиваются угарный газ и углекислый газ, при 350 градусах улетучиваются углеводороды, соединения азота и фосфора, при 500 градусах происходит спекание — образуется полукокс, при 700 градусах и больше улетучивается водород и образуется кокс[2].

Парогазовая смесь выделяющихся летучих продуктов (до 25 % от массы угля) отводится через газосборник для улавливания и переработки. Для разделения летучие продукты охлаждают впрыскиванием распыленной воды (от 70 °C до 80 °C) — при этом из паровой фазы выделяется большая часть смол, дальнейшее охлаждение парогазовой смеси проводят в кожухотрубчатых холодильниках (до 25—35 °C). Конденсаты объединяют и отстаиванием выделяют надсмольную воду и каменноугольную смолу. Затем сырой коксовый газ последовательно очищают от NH3 и H2S, промывают поглотительным маслом (для улавливания сырого бензола и фенола), серной кислотой (для улавливания пиридиновых оснований). Очищенный коксовый газ (14—15 % от массы угля) используют в качестве топлива для обогрева батареи коксовых печей и для других целей.

Из надсмольной воды (9—12 % от массы угля) отгонкой с паром выделяют: NH3 (в виде концентрированной аммиачной воды), фенолы, пиридиновые основания. Очищенную воду после разбавления технической водой направляют на тушение кокса или на биологическую очистку сточных вод на очистные сооружения.

Каменноугольная смола (3—4 % от массы угля) является сложной смесью органических веществ (в настоящее время идентифицировано только ~60 % компонентов смолы — более 500 веществ). Смолу методом ректификации подвергают разделению на фракции: нафталиновую, поглотительную, антраценовую и каменноугольный пёк. Из них, в свою очередь, кристаллизацией, фильтрованием, прессованием и химической очисткой выделяют: нафталин, антрацен, фенантрен, фенолы и каменноугольные масла.

Коксохимические заводы являются одним из крупнейших потребителей каменного угля — до ¼ мировой добычи[1].

Полукоксование твёрдого топлива[править | править код]

Метод переработки твёрдых горючих топлив нагреванием до 500—600 °C без доступа воздуха. Наиболее распространено полукоксование горючих сланцев и бурых углей. Для проведения процесса используют аппараты непрерывного действия с внешним или внутренним подводом тепла. В результате процесса образуются: полукокс (50—70 % от массы исходного топлива), первичная смола (5—25 %), первичный газ, подсмольная вода.

Коксование тяжёлых нефтяных остатков[править | править код]

Нефтяной кокс получают коксованием жидких нефтяных остатков и пеков, при крекинге и пиролизе продуктов перегонки нефти, электродный пековый кокс — коксованием высокоплавкого каменноугольного пека. Нефтяной и электродный пековый кокс являются основным сырьём для производства электродов. Нефтяной и электродный пековый кокс имеют по сравнению с каменноугольным очень низкую зольность, как правило, не выше 0,3 % (до 0,8 % у нефтяного кокса)[1].

Коксование тяжёлых нефтяных остатков является разновидностью глубокого термического крекинга углеводородов с целью получения нефтяного кокса и газойлевых фракций. Осуществляется при 420—560 °C и давлениях до 0,65 МПа. Продолжительность процесса варьирует от десятков минут до десятков часов. Сырьём для процесса служат: тяжёлые фракции перегонки нефти, остатки деасфальтизации, термического и каталитического крекинга, пиролиза бензинов и газойлей.

Сущность процесса состоит в последовательном протекании реакций крекинга, дегидрирования, циклизации, ароматизации, поликонденсации и уплотнения с образованием сплошного «коксового пирога». Выделяющиеся летучие продукты подвергают ректификации для выделения целевых фракций и их стабилизации, кубовый остаток возвращают в процесс. Готовый кокс периодически выгружают, подвергают сушке и прокаливанию.

По аппаратурному оформлению различают: замедленное коксование в необогреваемых камерах (для получения малозольного кокса), обогреваемых кубах (для получения электродного и специальных видов кокса), коксование в «кипящем слое» порошкообразного кокса (так называемый «термоконтактный крекинг»). При сочетании последнего способа с газификацией кокса в процесс могут быть вовлечены кроме нефтяных остатков природные асфальты и битумы.

См. также[править | править код]

  • Сухая перегонка
  • Коксовая батарея

Ссылки[править | править код]

  • bse.sci-lib.com // Большая советская энциклопедия — Коксование
  • https://charcoal.mybb.ru //Применение кокса в чёрной металлургии

Примечания[править | править код]

Литература[править | править код]

  • Гл. ред. Е. А. Козловский. Горная энциклопедия в пяти томах. Том 2. — Москва: Советская энциклопедия, 1985. — 575 с.

Источник

    При работе стабилизационной колонны с подачей острого пара необходимо следить за тем, чтобы острый пар имел температуру на 20—30 °С выше температуры низа колонны. Несоблюдение данного условия приведет к нарушению режима колонны. При работе стабилизационной колонны с рециркуляцией остатка стабильное дизельное топливо нужно нагревать до температуры не выше 340 °С так как может происходить коксование продукта в печи. Перед сбросом в канализацию воды из бензинового сепаратора рекомендуется удалить из нее сероводород (в отгонной колонне очпстки газов или специальной колонне очистки конденсатов). Отгон (бензин) следует очищать от сероводорода. Сброс отгона (бензина), содержащего сероводород, в сырьевые резервуары установки не допускается. [c.126]

    Если продукт протекает в трубах в двух или более параллельных потоках и особенно если в трубах происходит испарение или коксование продукта, количество продукта должно автоматически регулироваться в каждом потоке. Иначе даже небольшое повышение температуры в одном потоке обусловило бы (в результате увеличенного испарения илн создания кокса) большие потери давления, что привело бы к уменьшению количества продукта в этом потоке. Меньшее количество продукта привело бы к дальнейшему повышению температуры, что, наконец, могло бы способствовать полному прекращению прохождения продукта в одном из потоков и к серьезному повреждению труб. [c.46]

    На рис. 10.7 и 10.8 показаны схемы двух промышленных комбинированных установок по переработке ВВН. С первой из них, мощностью по исходной нефти 4 млн т/год, отбирают на блоке АТ 1,2 млн т/год дистиллятов до 260 °С, а 2,8 млн т/год остатка выше 260 °С направляют на коксование. Продукты коксования подвергаются гидроочистке, после чего смешиваются в один поток, называемый синтетической нефтью (название не совсем точное, хотя и стало общепринятым точнее было бы название вторичная нефть ). Выход ее от исходной нефти составляет 50%. [c.475]

    Кислотность нефтей 25—28 топлива жидкого 36—38 Клен 228, 338—340 Кокс, характеристика 67. 68 Коксования продукты 32, 34. бб. 70, 71 Коксуемость дизельного топлива 37 масел 40, 41 присадок к маслам 43 смол из сланцев 69 Котельное топливо 37 Коэффициент расширения линейного пластмасс 303, 304, 310, 320, 324, 32O объемного каучуков 208, 209 теплопроводности см. Теплопроводность Красители органические 680—823 классификация техническая 688—701 химическая 680—687 обозначения 701—703 [c.1008]

    Очищенный дистиллят коксования Продукты крекинга гидро- Pd (0,5%) на цеолите 347—378° С. Выход 40% (878] [c.825]

    Качество полученных при коксовании продуктов также зависит от сырья и условий ведения процесса. По углеводородному составу газы коксования различных видов сырья незначительно отличаются друг от друга. При коксовании крекинг-остатка газы содержат меньше непредельных и больше метановых углеводородов, чем при коксовании гудрона. При коксовании крекинг-остатка сернистых нефтей в газе содержится много сероводорода. [c.25]

    Выделение ароматических углеводородов из продуктов коксования каменных углей — наиболее старый и до ЕО-х годов основной способ их получения. При нагревании свыше Ш00° С без доступа воздуха (сухая перегонка) уголь разлагается с образованием твердых (кокс), жидких (каменноугольная смола, аммиачная вода) и газообразных (газы коксования) продуктов перегонки, [c.69]

    Результаты, полученные при крекинге и гидрогенизации высококипящих вакуумных дистиллятов, близки к получаемым при переработке газойля. В настоящее время каталитическому крекингу или гидрогенизации над стационарным катализатором подвергают разнообразные виды сырья дистилляты коксования, продукты, получаемые в процессе деасфальтизации пропаном, и тяжелые масла жидкофазной гидрогенизации. [c.226]

    При периодическом коксовании продукты разложения непрерывно удаляются из реакционной зоны, а остаток постепенно утяжеляется, превращаясь в кокс. В коксе почти не содержится летучих, он не требует дополнительной прокалки. На кубовых установках вырабатывают из крекинг-остатков и смол пиролиза специальные виды кокса, которые не могут быть получены другими методами. [c.176]

    В процессе разложения спирта на катализаторе постепенно отлагается углерод, образующийся в результате побочных реакций полимеризации и коксования продуктов разложения этанола, вследствие чего активность катализатора понижается. Для регенерации катализатора периодически прекращают поступление паров спирта в реторты и продувают через них смесь воздуха и водяного пара при этом углерод выжигается с поверхности катализатора. [c.400]

    На УЗК, реакционные камеры которых рассчитаны на низкое давление, увеличение выхода кокса может быть достигнуто коксованием остатков после их предварительной термоконденсации. Для этой цели типовые УЗК необходимо дооборудовать дополнительным реактором термополиконденсации или использовать один из реакторов в трсх-реакторных установках. При этом дополнительный реактор терм о-1 онденсации устанавливается на линии после выхода вторичного сырья из печи (П-2). Вторичное сырье после нагрева до 420-440 С в конвекционной части и подовом экране печи и поступает на верхнюю часть реактора термоконденсации. Затем термопродукт с низа реактора поступает в радиантную секцию печи и с температурой 470-490 С поступает в реакторы коксования. Продукты коксования и дистиллят [c.73]

    На отопление печей оказывает значительное влияние соотношение давлений в камере коксования и в обогревательном простенке. Даже при тщательной кладке коксовых печей с применением шпунтованного фасонного кирпича неплотности кладки неизбежны, а потому возможно просачивание как коксового газа из камер печей в отопительную систему, так и продуктов горения и воздуха в камеру коксования. Продукты коксования, просачивающиеся из камер в нисходящий поток, сгорают в регенераторах это может быть обнаружено по ненормально высокой температуре продуктов горения на выходе из регенераторов и по их анализу. [c.227]

    Материальный баланс коксования продуктов деасфальтизации  [c.119]

    До настоящего времени не имелось эффективного промышленного метода полного использования первичных смол каменных углей. Поэтому нами в качестве первого варианта, чтобы не осложнять разработку и освоение нового процесса, было предложено получать в процессе непрерывного коксования продукты, пригодные для переработки на коксохимических заводах, что должно ускорить его внедрение в промышленность. [c.129]

    Величина теплонапряженности поверхности нагрева отражает эффективность передачи тепла через поверхность нагрева. Чем больше тепловая напряженность поверхности нагрева, тем меньших размеров требуется печь для передачи заданного количества тепла. Однако очень высокая теплонапряженность поверхности нагрева может вызвать коксование продукта и прогар труб вследствие чрезмерного повышения температуры стенки трубы. Температура стенки трубы зависит также от температуры сырья и скорости его движения. Чем ниже температура сырья и выше скорость его движения, тем большую теплонапряженность поверхности труб можно допустить. [c.164]

    НЫМ сырьем, а также устраненин преждевременного образования корки кокса на дне куба. Последняя может легко образоваться при загрузке холодного сырья тяжелые нефтяные остатки из-за плохой теплопроводности прп отсутствии перемешивания прогреваются по всей массе медленно, а в то же время в пограничном слое уже может происходить коксование. Образующаяся тонкая корка кокса еще больше ухудшает теплопередачу и затрудняет коксование продукта, вследствие чего может перегреться и прогореть днище, в то время как над слоем кокса будет оставаться незакоксовавшаяся жидкость. [c.314]

    В теплообменниках, предназначенных для утилизации теплоты 0ТХ0ДЯ1ЦИХ продуктов, более загрязненные и склонные к полимеризации и коксованию продукты направляют в трубное пространство, так как оно более доступно для очистки. В трубное пространство вводят также агрессивные жидкости, поскольку при таком решении из коррозионностойких материалов изготавливают не весь аппарат, а лишь часть его (трубный пучок и крышку). [c.94]

    В экспеиимвнгах по непосовдотнвнному коксованию продуктов селективного окисления гудрона, деасфальтизата цроцесса «Добен», вакуумного остатка газового конденсата были получены различные результаты, часть из которых представлена в табл.2, [c.31]

    Накоиление коксовых отложений ири крекинге ДЭА ири температурах регенерации на цеолитах 13Х, 5А, SG-80 иллюстрирует рис. 4.88, из которого следует, что коксованию продуктами крекинга ДЭА наиболее подвержен цеолит 13Х. [c.405]

    Газойль процесса коксования, Продукты гидрокрекинга Цеолит, содержащий 0,01—5, i) металлов и соединений металлов Pt-группы и до 10% NagO 1 бар, 370° С, 0,5 Ч-1 [426] [c.506]

    Из данных табл. 16 видно, что процесс газообразования при каталитическом крекинге различного сырья при одних и тех же условиях процесса различен. Выход газа при крекинге первичного сырья больше, чем нри крекинге вторичного сырья. Так,-при крекинге фракций прямой перегонки балаханской и туймазинской нефтей (температура процесса 450°, объемная скорость подачи сырья 0,65) выход газа колеблется в пределах 13,9—16,0 о и в среднем составляет 15,0%, а при каталитическом крекинге дистиллята, полученного от коксования продукта термического крекинга и смеси продуктов газоконтактной переработки (ГКП), выход сырья достигает соответственно только 13,7, 12,6 и 11,8% и в среднем составляет 12,7%, хотя температурный режим процесса каталитического крекинга в последних случаях был на 25—35° выше, чем в первом. [c.28]

    Сроки ревизий клапанов устанавливаются исходя из особенностей производства данной отрасли промышленности, но не более 12 мес. Ориентировочные сроки пробега между ревизиями предохранительных клапанов типа ППК, работающих в нефтеперерабатывающей промышленности на аппаратах со сжатым воздухом, инертным газом, с неагрессивными, незагрязненными и неполимеризующимися средами при температуре до 250° С — 12 мес. на аппаратах с неагрессивными, незагрязненными и неполимеризующимися средами при температуре выше 250° С и при установке клапанов без рычага подрыва — 6 мес. на аппаратах с агрессивными, загрязненными и полимеризующимися средами — 3 мес., с температурой более 250° С, при которой возможно коксование продукта, — 3 мес. на аппаратах со сжиженными газами (кроме аммиака) — 4 мес. [c.220]

    Очищенный дистиллят коксования Продукты крекинга гидро- Pd (0.5%) ча цеолите 347—378° G. Выход 40% I878J [c.825]

Технология синтетических каучуков (1987) — [

c.116

]

Источник