Какие продукты и сколько энергии образуется при гликолизе моль глюкозы

Какие продукты и сколько энергии образуется при гликолизе моль глюкозы thumbnail

1. Энергетический обмен в клетке — катаболизм

Глава III.
Обеспечение клеток энергией
Энергетический обмен в клетке катаболизм
Задачи:
1. анаэробный этап окисления – гликолиз;
2. аэробный этап окисления.

2. В поисках капитана Гранта яхта «Дункан» совершает кругосветное путешествие.

В поисках капитана Гранта яхта «Дункан» совершает
кругосветное путешествие.

3. Несъедобная дичь

Герои романа Ж. Верна «Дети капитана Гранта» только собрались
поужинать мясом подстреленной ими дикой ламы, как вдруг
выяснилось, что оно совершенно несъедобно.
«Быть может, оно слишком долго лежало? – озадаченно спросил
один из них.
«Нет, оно, к сожалению, слишком долго бежало!» — ответил учёный
Жак Паганель.
Попробуйте выдвинуть гипотезы, объясняющие почему мясо
гуанако оказалось несъедобным?

4.

Подготовительный
Бескислородный
(анаэробный)
Кислородный (аэробный)

5.

Энергетический обмен в клетке
1.
Подготовительный этап:
Происходит в лизосомах.
Распад сложных органических молекул
до мономеров:
белки до ….
жиры — до ….
углеводы — до ….
нуклеиновые кислоты — ….
Глюкоза – основной источник энергии для клеток.
Вся энергия рассеивается в виде тепла.

6.

Энергетический обмен в клетке
2. Гликолиз, или бескислородное расщепление,
анаэробное дыхание
Реакции протекают в цитоплазме клетки.
Глюкоза с помощью 10 ферментативных
реакций превращается в 2 молекулы ПВК
— пировиноградной кислоты.
При этом образуется 200 кДж энергии: 120 рассеивается в виде тепла,
80 кДж запасается в форме 2 моль АТФ (КПД = 40%):
С6Н12О6 + 2АДФ + 2Н3РО4 2 С3Н4О3 + 2АТФ + 2Н2О

7.

Энергетический обмен в клетке
Дальнейшая судьба ПВК зависит от
присутствия О2 в клетке.
Если О2 нет, происходит анаэробное
брожение (дыхание), причем у дрожжей и
растений происходит спиртовое
брожение, при котором сначала
происходит образование уксусного
альдегида, а затем этилового спирта:
1) 2С3Н4О3 2СО2 + 2СН3СОН (уксусный альдегид)
2) 2СН3СОН + 2НАД·Н2 2С2Н5ОН + 2НАД+

8.

Энергетический обмен в клетке
У животных и некоторых бактерий при
недостатке О2 происходит молочнокислое
брожение с образованием молочной
кислоты:
2С3Н4О3 + 2НАД·Н2 2С3Н6О3 + 2НАД+
или
С6Н12О6 + 2АДФ + 2Н3РО4 2 С3Н6О3 + 2АТФ + 2Н2О

9.

10.

Повторение. Какие ответы верны:
**1. На подготовительном этапе энергетического обмена происходит:
1. Гидролиз белков до аминокислот.
2. Гидролиз жиров до глицерина и карбоновых кислот.
3. Гидролиз углеводов до моносахаридов.
4. Гидролиз нуклеиновых кислот до нуклеотидов.
2. Обеспечивают гликолиз:
1. Ферменты пищеварительного тракта и лизосом.
2. Ферменты цитоплазмы.
3. Ферменты цикла Кребса.
4. Ферменты дыхательной цепи.
3. В результате бескислородного окисления в клетках животных при
недостатке О2 образуется:
1. ПВК.
2. Молочная кислота.
3. Этиловый спирт.
4. Ацетил-КоА.

11.

Повторение. Какие ответы верны:
4. В результате бескислородного окисления в клетках у растений
при недостатке О2 образуется:
1. ПВК.
2. Молочная кислота.
3. Этиловый спирт.
4. Ацетил-КоА.
5. При гликолизе моль глюкозы образуется всего энергии:
1. 200 кДж.
2. 400 кДж.
3. 600 кДж.
4. 800 кДж.
6. Три моль глюкозы подверглось гликолизу в животных клетках
при недостатке кислорода. При этом углекислого газа
выделилось:
1. 3 моль.
2. 6 моль.
3. 12 моль.
4. Углекислый газ в животных клетках при гликолизе не выделяется.

12.

Повторение. Какие ответы верны:
**7. Реакции подготовительного этапа происходят:
1. В пищеварительном тракте.
2. В митохондриях.
3. В цитоплазме.
4. В лизосомах.
8. Энергия, которая выделяется в реакциях подготовительного этапа:
1. Рассеивается в форме тепла.
2. Запасается в форме АТФ.
3. Большая часть рассеивается в форме тепла, меньшая — запасется в
форме АТФ.
4. Меньшая часть рассеивается в форме тепла, большая — запасется в
форме АТФ.

13.

Повторение. Какие ответы верны:
9. Энергия, которая выделяется в реакциях гликолиза:
1. Рассеивается в форме тепла.
2. Запасается в форме АТФ.
3. 120 кДж рассеивается в форме тепла, 80 кДж — запасается в форме
АТФ.
4. 80 кДж рассеивается в форме тепла, 120 кДж — запасается в форме
АТФ.

14.

Дайте краткие ответы на вопросы:
Что такое ассимиляция (определение)?
Что такое диссимиляция (определение)?
Какие организмы называются автотрофами (определение)?
На какие группы делятся автотрофы?
Какие организмы называются гетеротрофами?
Какие три этапа энергетического обмена вам известны?
Продукты гидролиза белков, жиров, углеводов, нуклеиновых кислот на
подготовительном этапе?
8. Что происходит с энергией, выделяющейся на подготовительном этапе
энергообмена?
9. Где расположены ферменты бескислородного этапа энергообмена?
10.Какие продукты и сколько энергии образуется при гликолизе?
1.
2.
3.
4.
5.
6.
7.

15.

3. Кислородное расщепление – клеточное дыхание
В результате ферментативного бескислородного
расщепления глюкоза распадается не до конечных
продуктов (СО2 и Н2О), а до соединений, которые
еще богаты энергией и, окисляясь далее, могут дать
ее в больших количествах (молочная кислота,
этиловый спирт).
Поэтому в аэробных организмах после гликолиза
следует завершающий этап энергетического обмена
— полное кислородное расщепление, или клеточное
дыхание. В процессе третьего этапа органические
вещества, образовавшиеся в ходе второго этапа при
бескислородном расщеплении и содержащие
большие запасы химической энергии, окисляются до
конечных продуктов СО2 и Н2О.

16.

3. Кислородное расщепление – клеточное дыхание
Происходит в митохондриях.
Как устроены митохондрии?
Каковы функции митохондрий?

17.

3. Кислородное расщепление – клеточное дыхание
На первом этапе пировиноградная кислота проникает в митохондрии, где
происходит ее дегидрирование (отщепление водорода) и декарбоксилирование
(отщепление углекислого газа) с образованием двууглеродной ацетильной группы,
которая вступает в цикл реакций, получивших название реакций цикла Кребса.

18.

3. Кислородное расщепление – клеточное дыхание
Ферменты дыхательной цепи и АТФ-синтетаза на кристах:
При разрушении 2 молекул молочной кислоты в митохондриях образуется:
2С3Н6О3 + 6О2 + 36 АДФ + 36 Н3РО4 6СО2 + 42Н2О + 36АТФ.

19. Цикл трикарбоновых кислот (цикл лимонной кислоты), цикл Кребса:

20.

Синтез АТФ в митохондрии с использованием энергии
Н+ резервуара:
2. Белки — переносчики электронов;
3.

21.

Подведем итоги:
1. Где происходят реакции третьего этапа энергетического обмена — кислородного
расщепления?
В митохондриях.
2. Что образуется при разрушении 2 молекул молочной кислоты в митохондриях?
2С3Н6О3 + 6О2 + 36 АДФ + 36 Н3РО4 6СО2 + 42Н2О + 36АТФ.
3. Какая часть энергии запасается в митохондриях в форме АТФ, какая часть –
рассеивается в форме тепла?
55% — в форме АТФ, 45% — в форме тепла.
4. Сколько всего молекул АТФ образуется в реакциях энергетического обмена при
полном разрушении молекулы глюкозы?
38 молекул, 2 – при гликолизе, 36 – в митохондриях.
5. Какие вещества, кроме углеводов, могут использоваться в энергетическом обмене?
Липиды, белки, однако мономеры белков, т. е. аминокислоты, слишком нужны клетке
для синтеза собственных белковых структур. Поэтому белки обычно представляют
собой «неприкосновенный запас» клетки и редко расходуются для получения энергии .

Читайте также:  Какие продукты полезны при тренировках

22.

23. Ответ:

молочная кислота сделала невкусным
мясо животного, подстреленного
героями Жюль Верна.

Источник

Гликолиз  —  процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты, не является мембранозависимым процессом. Он происходит в цитоплазме. Однако ферменты гликолиза связаны со структурами цитоскелета. Суть гликолиза состоит в том, что молекула глюкозы (C6H12O6) без участия кислорода распадается на две молекулы пировиноградной кислоты (СН3СОСООН). При этом окисление идет за счет отщепления от молекулы глюкозы четырех атомов водорода, связывающихся со сложным органическим веществом НАД с получением двух молекул НАД•Н. Выделяющаяся при этом энергия запасается (40% от общего количества) в виде макроэргических связей двух молекул АТФ. 60% энергии выделяется в виде тепла. При последующем окислении НАД•Н получается еще 6 молекул АТФ. Таким образом, полный энергетический выход гликолиза в анаэробных условиях составляет 8 молекул АТФ.

На схеме в рамках обозначены исходные субстраты и конечные продукты гликолиза, цифрами в скобках — число молекул.

Для распада и частичного окисления молекулы глюкозы требуется протекание 11 сложных последовательных реакций.

Реакции гликолиза

Ход реакций

Ферменты, Активаторы, ингибиторы

Подготовительная стадия гликолиза

Стадия активации глюкозы проходит в 5 реакций, в ходе которых 1 молекула гексозы (глюкозы) расщепляется на 2 молекулы триоз-глицеральдегидфосфата

1. Необратимая реакция фосфорилирования глюкозы

Процесс гликолиза начинается с фосфорилирования глюкозы за счет АТФ — первая реакция. Это первая пусковая реакция гликолиза. Ее результатом является глюкозо-6-фосфат, имеющий отрицательный заряд. В гликолизе может участвовать не только глюкоза, но и другие гексозы (фруктоза), но в результате фосфорилирования и активации все равно образуется глюкозо-6-фосфат.

Уравнение необратимая реакция фосфорилирования глюкозы

фермент: гексокиназа

Активаторы: АДФ, Н3РO4.

Ингибиторы: глюкозо-6-Ф, фосфоенолпируват.

2. Обратимая реакция изомеризации глюкозо-6-фосфата

Во второй реакции происходит изомеризация (внутримолекулярные перестройки) глюкозо-6-фосфата во фруктозо-6-фосфат.

Уравнение обратимая реакция изомеризации глюкозо-6-фосфата 

фермент: глюкозо-6-фосфатизомераза

3. Необратимая реакция фосфорилирования фруктозо-6-фосфата (ключевая стадия гликолиза)

В третьей реакции происходит фосфорилирование (присоединение остатка ортофосфорной кислоты) фруктозо-6-фосфата с образованием фруктозо-1,6-дифосфата. При этом затрачивается еще одна молекула АТФ (уже вторая) — это вторая пусковая реакция гликолиза. Она идет в присутствии Mg2+ и является необратимой, так как сопровождается масштабным уменьшением свободной энергии.

Уравнение необратимая реакция фосфорилирования фруктозо-6-фосфата 

фермент: фосфофруктокиназа

Активаторы: АДФ, АМФ, Н3РO4, К+.

Ингибиторы: АТФ, цитрат, НАДН.

4. Обратимая реакция дихотомического расщепления фруктозо-1,6-дифосфата

В четвертой реакции гликолиза происходит расщепление фруктозо-1,6-дифосфата на две молекулы глицеральдегид-3-фосфата.

Уравнение реакция дихотомического расщепления фруктозо-1,6-дифосфата

фермент: алъдолаза

5. Обратимая реакция изомеризации дигидроксиацетона-3-фосфат в глицеральдегид-3-фосфат

В пятой реакции происходит изомеризация полученных триозофосфатов. На этом заканчивается первая стадия гликолиза.

Уравнение пятая реакция гликолиза

фермент: триозофосфатизомераза

Стадия генерации АТФ

Проходит в 6 реакций (или 5), в ходе которых энергия окислительных реакций трансформируется в химическую энергию АТФ (субстратное фосфорилирование).

6. Окисление глицеральдегид-3-фосфата до 1,3-дифосфоглицерата (реакция гликолитической оксиредукции)

В шестой реакции происходит окисление альдегидной группы до карбоксильной. Выделившийся Н+ акцептируется NAD, который восстанавливается до NADH. Освобождающаяся энергия затрачивается для образования высокоэнергетической связи 1,3-бифосфоглицерата (1,3-бифосфоглицериновая кислота).

уравнение окисление глицеральдегид-3-фосфата до 1,3-дифосфоглицерата

фермент: глицералъдегид-3-фосфат-дегидрогеназа

7. Субстратное фосфорилирование АДФ (7)

В седьмой реакции фосфорильная группа 1,3-бифосфоглицерата переносится на ADP, в результате чего образуется АТР (напоминаем, что следует иметь в виду две параллельные цепи реакций, с участием двух молекул триоз, образовавшихся из одной молекулы гексозы, следовательно, синтезируется не одна, а две молекулы АТР).

Субстратное фосфорилирование АДФ реакция

фермент: фосфоглицераткиназа

8. Реакция изомеризации 3-фосфоглицерата в 2-фосфоглицерат

В восьмой реакции гликолиза происходит перенос фосфатной группы с третьего атома углерода на второй. В результате образуется 2-фосфоглицерат (2-фосфоглицериновая кислота).

Реакция изомеризации уравнение процесса гликолиза

9. Реакция енолизации

Девятая реакция сопровождается внутримолекулярными окислительно-восстановительными процессами, в результате которых образуется фосфоенолпируват (фосфоенолпировиноградная кислота) с высокоэнергетической связью во втором атоме углерода и отщепляется молекула воды

Реакция енолизации роцесса гликолиза

фермент: енолаза

10. Реакция субстратного фосфорилирования

В ходе десятой реакции фосфорильная группа переносится на ADP. При этом синтезируется АТР и пируват (пировиноградная кислота). Эта реакция также необратима, поскольку высокоэкзергонична.

Реакция субстратного фосфорилирования уравнение 

фермент: пируваткиназа

11. Реакция обратимого восстановления пировиноградной кислоты до молочной кислоты (в анаэробных условиях)

Если после гликолиза следует аэробное расщепление, пируват мигрирует в матрикс митохондрий, где, взаимодействуя с коэнзимом-А, участвует в образовании ацетил-СоА. В анаэробных условиях пируват при участии NADH восстанавливается до лактата (молочной кислоты), который при этом является конечным продуктом гликолиза. Затем в аэробных условиях лактат может обратно превратиться в пируват и окислиться в митохондриях.

Реакция восстановления пирувата до молочной кислоты

фермент: лактатдегидрогеназа

1. Биология для поступающих в вузы / Г.Л. Билич, В.А. Крыжановский. — 2008.

2. Биология в таблицах и схемах / Спб. — 2004.

3. Биохимия в схемах и таблицах / И. В. Семак — Минск — 2011.

Источник

1. Тема: Энергетический обмен. Анаэробный гликолиз

Глава III.
Обеспечение клеток энергией.
Тема: Энергетический обмен.
Анаэробный гликолиз
Задачи:
Дать характеристику различным формам
биологического окисления, разобрать
анаэробный путь окисления — гликолиз
Пименов А.В.

2.

Биологическое окисление и горение
Обмен веществ (метаболизм) = ассимиляции + диссимиляции
Органические вещества пищи являются основным источником не
только материи, но и энергии для жизнедеятельности клеток
организма. При образовании сложных органических молекул была
затрачена энергия, потенциально она находится в форме
образованных химических связей. В результате реакций
энергетического обмена происходит окисление сложных молекул
до более простых и разрушение химических связей, при этом
происходит высвобождение энергии.
Биологическое окисление в клетках происходит с участием О2:
А + О2 АО2
и без его участия, за счет дегидрирования или переноса
электронов от одного вещества к другому:
АН2 + В А + ВН2, где вещество А окисляется за счет вещества В;
Fe2+ Fe3+ + e-, где двухвалентное железо окисляется до
трехвалентного.

3.

Биологическое окисление и горение
Процесс энергетического обмена
можно разделить на три этапа:
на первом этапе происходит
пищеварение, то есть сложные
органические молекулы
расщепляются до мономеров;
на втором происходит
бескислородное окисление этих
мономеров, субстратное
фосфорилирование;
последнем этапе происходит
окисление с участием кислорода в
митохондриях.

4.

Биологическое окисление и горение
Подготовительный этап.
Под действием ферментов
пищеварительного тракта или
ферментов лизосом
Сложные органические молекулы
расщепляются:
белки до ….
жиры — до ….
углеводы — до ….
нуклеиновые кислоты — ….
Вся энергия при этом рассеивается в
виде тепла.

Читайте также:  Какие продукты можно есть когда убираешь живот и бока в домашних условиях

5.

Биологическое окисление и горение

6.

Гликолиз, или бескислородное окисление, субстратное
фосфорилирование.
Окисление глюкозы в клетках без
участия кислорода происходит путем
дегидрирования, акцептором Н служит
кофермент НАД+. Реакции протекают в
цитоплазме, глюкоза с помощью 10
ферментативных реакций
превращается в 2 молекулы ПВК —
пировиноградной кислоты и
образуется восстановленная форма
переносчика водорода НАД·Н2
(никотинамидаденин-динуклеотида).
При этом образуется 200 кДж энергии, 120 рассеивается в форме
тепла, 80 кДж запасается в форме 2 моль АТФ:
С6Н12О6 + 2АДФ + 2Н3РО4 + 2НАД+
2 С3Н4О3 + 2АТФ + 2Н2О + 2НАД·Н2

7.

Гликолиз, или бескислородное окисление, субстратное
фосфорилирование.
Дальнейшая судьба ПВК зависит от
присутствия О2 в клетке.
Если О2 нет, происходит анаэробное
брожение (дыхание), причем у
дрожжей и растений происходит
спиртовое брожение, при котором
сначала происходит образование
уксусного альдегида, а затем этилового
спирта:
I. 2С3Н4О3 2СО2 + 2СН3СОН (уксусный альдегид)
II. 2СН3СОН + 2НАД·Н2 2С2Н5ОН + 2НАД+

8.

Гликолиз, или бескислородное окисление, субстратное
фосфорилирование.
У животных и некоторых бактерий при
недостатке О2 происходит
молочнокислое брожение с
образованием молочной кислоты:
2С3Н4О3 + 2НАД·Н2 2С3Н6О3 + 2НАД+

9.

Повторение. Какие ответы верны:
**Тест 1. На подготовительном этапе энергетического обмена
происходит:
1. Гидролиз белков до аминокислот.
2. Гидролиз жиров до глицерина и карбоновых кислот.
3. Гидролиз углеводов до моносахаридов.
4. Гидролиз нуклеиновых кислот до нуклеотидов.
Тест 2. Обеспечивают гликолиз:
1. Ферменты пищеварительного тракта и лизосом.
2. Ферменты цитоплазмы.
3. Ферменты цикла Кребса.
4. Ферменты дыхательной цепи.
Тест 3. В результате бескислородного окисления в клетках у
животных при недостатке О2 образуется:
1. ПВК.
2. Молочная кислота.
3. Этиловый спирт.
4. Ацетил-КоА.

10.

Повторение. Какие ответы верны:
Тест 4. В результате бескислородного окисления в клетках у
растений при недостатке О2 образуется:
1. ПВК.
2. Молочная кислота.
3. Этиловый спирт.
4. Ацетил-КоА.
Тест 5. При гликолизе моль глюкозы образуется всего энергии:
1. 200 кДж.
2. 400 кДж.
3. 600 кДж.
4. 800 кДж.
Тест 6. Три моль глюкозы подверглось гликолизу в животных
клетках при недостатке кислорода. При этом углекислого газа
выделилось:
1. 3 моль.
2. 6 моль.
3. 12 моль.
4. Углекислый газ в животных клетках при гликолизе не выделяется.

11.

Повторение. Какие ответы верны:
**Тест 7. К биологическому окислению относятся:
1. Окисление вещества А в реакции: А + О2 АО2.
2. Дегидрирование вещества А в реакции: АН2 + В А + ВН2.
3. Потеря электронов (Fe2+ в реакции Fe2+ Fe3+ + е-).
4. Приобретение электронов (Fe3+ в реакции Fe3+ + е- Fe2+).
**Тест 8. Реакции подготовительного этапа происходят:
1. В пищеварительном тракте.
2. В митохондриях.
3. В цитоплазме.
4. В лизосомах.
Тест 9. Энергия, которая выделяется в реакциях
подготовительного этапа:
1. Рассеивается в форме тепла.
2. Запасается в форме АТФ.
3. Большая часть рассеивается в форме тепла, меньшая —
запасется в форме АТФ.
4. Меньшая часть рассеивается в форме тепла, большая —
запасется в форме АТФ.

12.

Повторение. Какие ответы верны:
Тест 10. Энергия, которая выделяется в реакциях гликолиза:
1. Рассеивается в форме тепла.
2. Запасается в форме АТФ.
3. 120 кДж рассеивается в форме тепла, 80 кДж — запасается в
форме АТФ.
4. 80 кДж рассеивается в форме тепла, 120 кДж — запасается в
форме АТФ.
Дайте краткие ответы на вопросы:
1.
2.
3.
4.
5.
6.
7.
Что такое ассимиляция (определение)?
Что такое диссимиляция (определение)?
Какие организмы называются автотрофами (определение)?
На какие группы делятся автотрофы?
Какие организмы называются гетеротрофами?
Какие три этапа энергетического обмена вам известны?
Продукты гидролиза белков, жиров, углеводов, нуклеиновых
кислот на подготовительном этапе?

13.

8. Что происходит с энергией, выделяющейся на подготовительном
этапе энергообмена?
9. Где расположены ферменты бескислородного этапа
энергообмена?
10.Какие продукты и сколько энергии образуется при гликолизе?

Источник

Черных Виталя

Гуру

(3977)

11 лет назад

1. Подготовительный
Крупные молекулы органических веществ под воздействием ферментов расщепляются на более простые: углеводы — на моносахариды, жиры — на глицерин и жирные кислоты, белки
Происходит в цитоплазме клеток.
Выделяется небольшое количество энергии, которое рассеивается в виде тепла.
2.А) Бескислородный (анаэробное дыхание или гликолиз) — расщепление глюкозы без участия кислорода.
Происходит на мембранах. Образуется 2 молекулы АТФ
Б) Кислородное расщепления, проходит на складках внутренней мембраны митоходрий — кристах.
Вещества предыдущего этапа расщепляются до конечных продуктов распада — воды и углекислого газа.
В результате образуются 36 молекул АТФ.!! !
Эта энергия запасается в клетке, и в дальнейшем расходуется клеткой

Мария Островерх

Гуру

(3053)

11 лет назад

1 ЭТАП: На подготовительном этапе крупные молекулы органических веществ под воздействием ферментов расщепляются на более простые: углеводы — на моносахариды, жиры — на глицерин и жирные кислоты, белки — на аминокислоты. Освобождаемая энергия рассеивается в виде тепла.

2 ЭТАП: На бескислородном этапе вещества, полученные на первом этапе, подвергаются дальнейшему расщеплению на мембранах клетки, в цитоплазме. Расщепление глюкозы до молекулы пировиноградной кислоты — это 13 ферментативных реакций, в которых также образуются две молекулы АТФ:

C6H12O6 + 2H3PO4 + 2АДФ = 2C3H4O3(ПВК) + 2АТФ +2H2O

Глюкоза в этом процессе не только расщепляется, но и окисляется (теряет атомы водорода) . В мышцах человека и животных две молекулы ПВК, приобретая атомы водорода, восстанавливаются в молочную кислоту С3Н6О3. Этим же продуктом заканчивается гликолиз у молочнокислых бактерий и грибков, применяемый для приготовления кислого молока, простокваши, кефира, а также при силосовании кормов в животноводстве.

Главным результатом анаэробного гликолиза во всех организмах является образование двух молекул АТФ. Высвобождающаяся при расщеплении глюкозы энергия относительно невелика — 200 кДж/моль. 40% энергии, освободившейся в результате этого распада, запасаются в виде макроэргических связей в молекулах АТФ, остальные 60% рассеиваются во внешнюю среду.

Основной выход энергии и молекул АТФ происходит на третьем, кислородном этапе гликолиза, называемом еще аэробным дыханием.

3 ЭТАП — Кислородный гликолиз. При наличии достаточного количества кислорода дальнейший процесс расщепления ПВК происходит уже не в цитоплазме, а в митохондриях, и включает несколько десятков последовательных реакций, каждая из которых обслуживается своим комплексом ферментов.

Молекулы ПВК под действием ферментов (и кофермента НАД — никотинамидадениндинуклеотида) поэтапно окисляются сначала до уксусной кислоты, а затем, в так называемом цикле Кребса (или трикарбоновых кислот) , до углекислого газа и воды (медленное горение) . В процессе окисления образуются сложные молекулярные соединения с присоединенными к ним атомами водорода. Молекулы-переносчики подхватывают и перемещают электроны этих атомов по длинной цепи ферментов от одного к другому. На каждом шаге электроны вступают в окислительно-восстановительные реакции и отдают свою энергию, которая идет на перемещение протонов на внешнюю сторону внутренней мембраны митохондрии.

Читайте также:  Какие продукты нужно купить домой

В результате оставшиеся протоны и перемещенные электроны оказываются на разных сторонах внутренней мембраны. На мембране создается разность потенциалов.

Фермент, синтезирующий АТФ (АТФ-синтетаза) , встроен во внутреннюю мембрану по всей ее толщине. Этот фермент имеет характерную особенность: небольшой каналец в молекулярной структуре. При накоплении на мембране разности потенциалов примерно в 200 мВ ионы Н+ начинают протискиваться через каналец в молекуле АТФ-синтетазы. В процессе энергичного продвижения ионов через фермент происходит синтез АТФ из АДФ с участием фосфорной кислоты.

В химических реакциях кислородного гликолиза освобождается большое количество энергии — 2600 кДж/моль. Существенная ее часть (55%) запасается в высокоэнергетичных связях образующихся молекул АТФ и по каналам эндоплазматической сети отправляется в другие участки клетки, где требуется энергия. . Остальные 45% рассеиваются в виде.

Итоговое уравнение кислородной стадии выглядит следующим образом:

2С3Н6О3(молочн. кислота) + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 42Н2О + 36АТФ

Марина Молодцова

Гуру

(2819)

11 лет назад

1. Подготовительный — происходит в цитоплазме клеток. Под действием ферментов полисахариды расщепляются на моносахариды (глюкоза, фруктоза и Др.) , жиры расщепляются до глицерина и жирных кислот, белки — до аминокислот, нуклеиновые кислоты до нуклеотидов. При этом выделяется небольшое количество энергии, которое рассеивается в виде тепла.
2. Бескислородный (анаэробное дыхание или гликолиз) — многоступенчатое расщепление глюкозы без участия кислорода. Его называют брожением. В мышцах в результате анаэробного дыхания молекула глюкозы распадается на две молекулы лировиноградной кислоты (С3Н4О3), которые затем восстанавливаются в молочную кислоту (С3Н6О3). В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ.

Суммарное уравнение этого этапа:
С6Н12О6 + 2Н3РО4 + 2АDФ -> 2С3Н6О3 + 2АТФ + 2Н2О
У дрожжевых грибков молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение) . У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и др. При распаде одной молекулы глюкозы образуется две молекулы АТФ, в связях которой сохраняется 40% энергии, остальная энергия рассеивается в виде тепла.

Кислородное дыхание — этап аэробного дыхания или кислородного, расщепления, который проходит на складках внутренней мембраны митоходрий — кристах. На этом этапе вещества предыдущего этапа расщепляются до конечных продуктов распада — воды и углекислого газа. В результате расщепления двух молекул молочной кислоты образуются 36 молекул АТФ. Основное условие нормального течения кислородного расщепления — целостность митохондриальных мембран. Кислородное дыхание — основной этап в обеспечении клетки кислородом. Он в 20 раз эффективнее бескислородного этапа.

Суммарное уравнение кислородного расщепления:
2С3Н603 + 602 + 36H3PО4 + 36АДФ -> 6CO2 + 38Н2О + 36АТФ
По способу получения энергии все организмы делятся на две группу — автотрофные и гетеротрофные.
Энергетический обмен в аэробных клетках растений, грибов и животных протекает одинаково. Это свидетельствует об их родстве. Количество митохондрий в клетках тканей различно, оно зависит от функциональной активности клеток. Например, много митохондрий в клетках мышц.

диас абдуллин

Ученик

(181)

4 года назад

1 ЭТАП: На подготовительном этапе крупные молекулы органических веществ под воздействием ферментов расщепляются на более простые: углеводы — на моносахариды, жиры — на глицерин и жирные кислоты, белки — на аминокислоты. Освобождаемая энергия рассеивается в виде тепла.

2 ЭТАП: На бескислородном этапе вещества, полученные на первом этапе, подвергаются дальнейшему расщеплению на мембранах клетки, в цитоплазме. Расщепление глюкозы до молекулы пировиноградной кислоты — это 13 ферментативных реакций, в которых также образуются две молекулы АТФ:

C6H12O6 + 2H3PO4 + 2АДФ = 2C3H4O3(ПВК) + 2АТФ +2H2O

Глюкоза в этом процессе не только расщепляется, но и окисляется (теряет атомы водорода) . В мышцах человека и животных две молекулы ПВК, приобретая атомы водорода, восстанавливаются в молочную кислоту С3Н6О3. Этим же продуктом заканчивается гликолиз у молочнокислых бактерий и грибков, применяемый для приготовления кислого молока, простокваши, кефира, а также при силосовании кормов в животноводстве.

Главным результатом анаэробного гликолиза во всех организмах является образование двух молекул АТФ. Высвобождающаяся при расщеплении глюкозы энергия относительно невелика — 200 кДж/моль. 40% энергии, освободившейся в результате этого распада, запасаются в виде макроэргических связей в молекулах АТФ, остальные 60% рассеиваются во внешнюю среду.

Основной выход энергии и молекул АТФ происходит на третьем, кислородном этапе гликолиза, называемом еще аэробным дыханием.

3 ЭТАП — Кислородный гликолиз. При наличии достаточного количества кислорода дальнейший процесс расщепления ПВК происходит уже не в цитоплазме, а в митохондриях, и включает несколько десятков последовательных реакций, каждая из которых обслуживается своим комплексом ферментов.

Молекулы ПВК под действием ферментов (и кофермента НАД — никотинамидадениндинуклеотида) поэтапно окисляются сначала до уксусной кислоты, а затем, в так называемом цикле Кребса (или трикарбоновых кислот) , до углекислого газа и воды (медленное горение) . В процессе окисления образуются сложные молекулярные соединения с присоединенными к ним атомами водорода. Молекулы-переносчики подхватывают и перемещают электроны этих атомов по длинной цепи ферментов от одного к другому. На каждом шаге электроны вступают в окислительно-восстановительные реакции и отдают свою энергию, которая идет на перемещение протонов на внешнюю сторону внутренней мембраны митохондрии.

В результате оставшиеся протоны и перемещенные электроны оказываются на разных сторонах внутренней мембраны. На мембране создается разность потенциалов.

Фермент, синтезирующий АТФ (АТФ-синтетаза) , встроен во внутреннюю мембрану по всей ее толщине. Этот фермент имеет характерную особенность: небольшой каналец в молекулярной структуре. При накоплении на мембране разности потенциалов примерно в 200 мВ ионы Н+ начинают протискиваться через каналец в молекуле АТФ-синтетазы. В процессе энергичного продвижения ионов через фермент происходит синтез АТФ из АДФ с участием фосфорной кислоты.

В химических реакциях кислородного гликолиза освобождается большое количество энергии — 2600 кДж/моль. Существенная ее часть (55%) запасается в высокоэнергетичных связях образующихся молекул АТФ и по каналам эндоплазматической сети отправляется в другие участки клетки, где требуется энергия. . Остальные 45% рассеиваются в виде.

Итоговое уравнение кислородной стадии выглядит следующим образом:

2С3Н6О3(молочн. кислота) + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 42Н2О + 36АТФ

Источник