Какие органические вещества содержаться растениях

Какие органические вещества содержаться растениях thumbnail

Метан, CH4; одно из простейших органических веществ

Органи́ческие соединения, органические вещества́ — вещества, относящиеся к углеводородам или их производным, то есть это класс химических соединений, объединяющий почти все химические соединения, в состав которых входит углерод[1] (за исключением карбидов, угольной кислоты, карбонатов, некоторых оксидов углерода, роданидов, цианидов).

Органические соединения редки в земной коре, но обладают большой важностью, потому что все известные формы жизни основаны на органических соединениях. Такие вещества часто включены в дальнейший круговорот жизни, как например органические вещества почвы (к слову, годовая продукция биосферы составляет 380 млрд.т)[2]. Основные дистилляты нефти считаются строительными блоками органических соединений[3]. Органические соединения, кроме углерода (C), чаще всего содержат водород (H), кислород (O), азот (N), значительно реже — серу (S), фосфор (P), галогены (F, Cl, Br, I), бор (B) и некоторые металлы (порознь или в различных комбинациях)[4].

История[править | править код]

Название органические вещества появилось на ранней стадии развития химии во времена господства виталистических воззрений, продолжавших традицию Аристотеля и Плиния Старшего о разделении мира на живое и неживое. В 1807 году шведский химик Якоб Берцелиус предложил назвать вещества, получаемые из организмов, органическими, а науку, изучающую их, — органической химией. Считалось, что для синтеза органических веществ необходима особая «жизненная сила» (лат. vis vitalis), присущая только живому, и поэтому синтез органических веществ из неорганических невозможен. Это представление было опровергнуто Фридрихом Вёлером, учеником Берцелиуса, в 1829 году путём синтеза «органической» мочевины из «минерального» цианата аммония, однако деление веществ на органические и неорганические сохранилось в химической терминологии и по сей день.

Количество известных органических соединений составляет почти 27 млн.
Таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной — двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, то есть стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).

Классификация[править | править код]

Основные классы органических соединений биологического происхождения — белки, липиды, углеводы, нуклеиновые кислоты — содержат, помимо углерода, преимущественно водород, азот, кислород, серу и фосфор. Именно поэтому «классические» органические соединения содержат прежде всего водород, кислород, азот и серу — несмотря на то, что элементами, составляющими органические соединения, помимо углерода могут быть практически любые элементы.

Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.

Характерные свойства[править | править код]

Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений.

  • Органические соединения обычно представляют собой газы, жидкости или легкоплавкие твёрдые вещества, в отличие от неорганических соединений, которые в большинстве своём представляют собой твёрдые вещества с высокой температурой плавления.
  • Органические соединения большей частью построены ковалентно, а неорганические соединения — ионно.
  • Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров — соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.
  • Явление гомологии — существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу — гомологическую разницу CH2. Целый ряд физико-химических свойств в первом приближении изменяется симбатно (мера схожести зависимостей в математическом анализе) по ходу гомологического ряда. Это важное свойство используется в материаловедении при поиске веществ с заранее заданными свойствами.
  • Горючесть. [источник не указан 1348 дней]

Номенклатура[править | править код]

Органическая номенклатура — это система классификации и наименований органических веществ.
В настоящее время распространена номенклатура ИЮПАК.

Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями — строением углеродного скелета соединения и его функциональными группами.

В зависимости от природы углеродного скелета органические соединения можно разделить на ациклические и циклические. Среди ациклических соединений различают предельные и непредельные. Циклические соединения разделяются на карбоциклические (алициклические и ароматические) и гетероциклические.

  • Органические соединения
    • Углеводороды
      • Ациклические соединения
        • Предельные углеводороды (алканы)
        • Непредельные углеводороды
          • Алкены
          • Алкины
          • Алкадиены (диеновые углеводороды)
      • Циклические углеводороды
        • Карбоциклические соединения
          • Алициклические соединения
          • Ароматические соединения
        • Гетероциклические соединения
    • Функциональные производные углеводородов:
      • Спирты, Фенолы
      • Простые эфиры
      • Альдегиды, Кетоны
      • Карбоновые кислоты
      • Сложные эфиры
      • Жиры
      • Углеводы
        • Моносахариды
        • Олигосахариды
        • Полисахариды
        • Мукополисахариды
      • Амины
      • Аминокислоты
      • Белки
      • Нуклеиновые кислоты

Алифатические соединения[править | править код]

Алифатические соединения — органические вещества, не содержащие в структуре ароматических систем.

Углеводороды — Алканы — Алкены — Диены или Алкадиены — Алкины — Галогенуглеводороды — Спирты — Тиолы — Простые эфиры — Альдегиды — Кетоны — Карбоновые кислоты — Сложные эфиры — Углеводы или сахара — Нафтены — Амиды — Амины — Липиды — Нитрилы

Ароматические соединения[править | править код]

Ароматические соединения, или арены, — органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация).

Бензол-Толуол-Ксилол-Анилин-Фенол-Ацетофенон-Бензонитрил-
Галогенарены-Нафталин-Антрацен-Фенантрен-Бензпирен-Коронен-Азулен-Бифенил-Ионол.

Гетероциклические соединения[править | править код]

Гетероциклические соединения — вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом.

Пиррол-Тиофен-Фуран-Пиридин

Полимеры[править | править код]

Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты (соединения) меньшего размера. Эти сегменты могут быть идентичны, и тогда речь идёт о гомополимере. Полимеры относятся к макромолекулам — классу веществ, состоящих из молекул очень большого размера и массы.
Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид) или природными (целлюлоза, крахмал).

Структурный анализ[править | править код]

В настоящее время существует несколько методов характеристики органических соединений:

  • Кристаллография (рентгеноструктурный анализ) — наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.
  • Элементный анализ — деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.
  • Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определённых функциональных групп.
  • Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.
  • Спектроскопия ядерного магнитного резонанса ЯМР.
  • Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе.

См. также[править | править код]

  • Неорганические вещества
  • Органическая химия

Примечания[править | править код]

Источник

Лечебные свойства растений обусловлены содержанием в них активно действующих веществ, способных оказывать определенное влияние на организм в целом, на его органы и системы. Количество активных веществ не постоянное, оно меняется в зависимости от фазы развития растения, от почвы, на которой оно растет, правил заготовки, обработки и хранения.

Как показывают проведенные исследования, среди действующих активных веществ растений наибольший лечебный эффект имеют алкалоиды, гликозиды, сапонины, полисахариды, эфирные масла, органические кислоты, флавониды, фитонциды, витамины, химические элементы, пигменты, смолы, жирные масла.

Алкалоиды

Алкалоиды — это сложные органические соединения, содержащие азот, способные соединяться с кислотами, образуя соли, которые хорошо растворяются в воде. На вкус сами алкалоиды и их соединения горькие и часто ядовитые. Содержание алкалоидов в растениях не превышает 2-3 % в пересчете на массу сухого растения. Наибольшее количество их в растении содержится в период цветения или образования семян. К выделенным из растений алкалоидам относятся морфин, атропин, хинин, кофеин, папаверин, стрихнин, пилокарпин, эфедрин, платифиллин, никотин и др. Наиболее богаты алкалоидами чистотел большой, барбарис, мордовник, спорынья, листья чая, корень раувольфии змеиной, семена чилибухи, мак и ряд других растений. Алкалоидоносные растения применяются в виде водных настоев.

Гликозиды

Гликозиды — это органические вещества растительного происхождения, состоящие из сахаристой части — гликона и несахаристой — агликона, на которые они распадаются при кипячении и под действием ферментов. Гликозиды, получаемые в чистом виде, обычно горькие кристаллические вещества, хорошо растворимые в воде. В лечебной практике наиболее часто используются сердечные гликозиды, представителями которых являются строфантин, эризимин, гликозиды наперстянки. Гликозидсодержащими растениями являются адонис весенний, желтушник серый, кендырь коноплевый, ландыш майский, морской лук, наперстянка красная и др.

Сапонины

Сапонины — это гликозиды, не содержащие в своем составе азота. Они встречаются очень часто, хорошо растворяются в воде, при взбалтывании образуют стойкую пену, похожую на мыльную. В медицине сапонины используют как отхаркивающее средство, а также как мочегонные, общеукрепляющие, стимулирующие и тонизирующие вещества. Сапонинами богаты первоцвет, истод, солодка голая, хвощ полевой, почечный чай, аралия маньчжурская, женьшень, заманиха, элеутерококк.

Полисахариды

Полисахариды — это сложные углеводы. Для организма являются одним из основных источников энергии, которая образуется в результате обмена веществ. При исследовании в них выявлена многообразная биологическая активность: антибиотическая, противовирусная, противоопухолевая, антидотная. К полисахаридам относятся камеди, слизи, пектиновые вещества, инулин, крахмал, клетчатка.

Камеди

Камеди — это коллоидные полупрозрачные клейкие вещества различного химического строения (вишневый клей, аравийская камедь или гуммиарабик), хорошо растворимые в воде и нерастворимые в спирте. В медицине их используют в качестве эмульгаторов. Замедляя всасывание лекарственных веществ из кишечника, они удлиняют срок их действия.

Слизи

Слизи — это безазотистые вещества, которые являются мягчительными и обволакивающими средствами. Они используются для защиты слизистой оболочки зева, желудка, бронхов от воздействия раздражающих веществ при лечении желудочно-кишечного тракта. Наибольшее количество слизи содержится в льняном семени, клубнях ятрышника, в ромашке аптечной, корнях алтея, в коровяке высоком, череде трехраздельной, семенах подорожника, цветках липы сердцевидной и других растениях.

Пектиновые вещества

Пектиновые вещества широко распространены в природе, они входят в состав межклеточного склеивающего вещества и близки к камедям и слизям. В присутствии органических кислот с сахаром образуют студни, которые обладают адсорбирующим, противовоспалительным действием. Более того, студенистое вещество связывает стронций и кобальт, удаляя их из организма. Пектины, улучшают пищеварение, способствуют удалению из организма излишков холестерина. Много пектинов содержится в плодах земляники лесной, шиповника, в ягодах клюквы, черной смородины, в яблоках, апельсинах и мандаринах.

Эфирные масла

Эфирные масла — это сложные смеси различных летучих веществ. Они хорошо растворяются в спирте и плохо в воде. В зависимости от химического строения одни из них обладают болеутоляющим свойством, другие — успокаивающим или возбуждающим, третьи — смягчающим кашель, бактерицидным, антисептическим и противоглистным. В некоторых растениях эфирного масла содержится до 20 %. К эфиромасличным растениям относятся мята, душица, тимьян, лаванда, полынь горькая, роза, герань, кориандр, укроп, анис, тмин, лимон, апельсин и др.

Органические кислоты

Органические кислоты — это органические соединения со свойствами кислот. В виде солей или в свободном состоянии они содержатся в клеточном соке. Наиболее распространенными являются яблочная, лимонная, винно-каменная, щавельная, салициловая, уксусная кислоты. Органические кислоты увеличивают выделение слюны, желчи, сока поджелудочной железы, усиливают перистальтику кишечника, угнетают процессы гниения в толстом кишечнике, участвуют в обмене веществ. Их много содержится в яблоках, лимонах, черной смородине, шиповнике, щавеле, клюкве.

Флавоноиды

Флавоноиды — оганические соединения, имеющие желтую окраску, не растворяются в воде. Содержатся в цветках и листьях многих растений. В медицине используются для укрепления стенок сосудов, предотвращают кровоподтеки и внутренние кровоизлияния. Широко применяются при аллергии, лучевой болезни. Флавоны и их соединения не ядовиты. Они содержатся в спорыше, бессмертнике, пустырнике, стальнике, терне.

Фитонциды

Фитонциды — это органические соединения, которые вырабатываются растениями в целях самозащиты от микробов, грибков и инфузорий, а также для активизации многих жизненных функций самих растений. Их иногда называют антибиотиками высших растений. Фитонциды многих растений сохраняют свою активность в течение длительного времени, они устойчивы к воздействию высоких и низких температур. В медицине применяются при лечении заболеваний желудочно-кишечного тракта, легочных заболеваний, ран, язв, ангин и некоторых кожных заболеваний. Фитонциды содержатся в луке, чесноке, красном стручковом перце, хрене, кочанной капусте, яблоках, мандаринах, лимонах, апельсинах, крапиве, шалфее, эвкалипте, березе, дубе, сосне, сирени, клюкве, бруснике, калине, черемухе.

Витамины

Витамины — это биологически активные органические вещества разнообразного химического строения, активно участвуют в обмене веществ и образовании ферментов. В настоящее время известно свыше 30 витаминов. При заболеваниях потребность организма в витаминах возрастает. При недостатке их в организме нарушается обмен веществ, снижается работоспособность, задерживается рост молодого организма, наступает быстрая утомляемость. Витамины, входя в состав ферментов, участвуют в образовании гормонов.

Большое значение придается витаминам при лечении заболеваний нервной системы, желудочно-кишечного тракта, сердца, органов кроветворения. Так, аскорбиновая кислота (витамин С) способствует повышению протромбина; фолиевая кислота, содержащаяся в листьях растений, особенно шпината, — образованию эритроцитов; витамин К — нормальному свертыванию крови. Витамин Р повышает прочность капилляров; витамин Р способствует заживлению ран и язв, он содержится в капусте, зеленых овощах, в медицине применяется при лечении язвенной болезни желудка и двенадцатиперстной кишки. Много витаминов находится в шиповнике, облепихе, сосне, крапиве, лимонах, черной смородине, шпинате, рябине, клюкве и многих других растениях и плодах.

Химические элементы

Химические элементы содержатся в составе каждого растения и живого организма. При их недостатке нарушается обмен веществ, резко снижается сопротивляемость организма к факторам внешней среды. Они входят в состав ферментов, гормонов, витаминов и участвуют в процессах тканевого дыхания.

Жирные масла

Жирные масла —  это сложные эфиры глицерина и жирных кислот. Образуются в семенах, а некоторые, как оливковое масло, — в мякоти плодов. В медицине чаще всего используются для наружного применения, касторовое и подсолнечное масло принимают внутрь.

Источник

Все живые организмы на Земле имеют сходный химический состав. Но при этом имеют некоторые особенности в соотношении различных веществ, отличающие их друг от друга. Например, в клетках растений в общей сложности содержится больше воды, чем в клетках животных. В свою очередь имеются небольшие различия в химическом составе у различных видов растений. Кроме того различные органы и ткани одного растения также различаются между собой по количеству в них тех или иных веществ.

Все живые организмы, в том числе растения, содержат в своем составе две группы химических веществ: 1) органические, 2) неорганические. Причем особенностью живых организмов является то, что органические вещества в них сильно преобладают над неорганическими (если не считать воду). Это касается как и массы, так и разнообразия.

Органические вещества растений

К основным органическим веществам живых организмов относят белки, жиры и углеводы. Также почти во всех живых клетках есть нуклеиновые кислоты. Они играют важную роль в передаче наследственной информации при размножении и делении клеток. Есть и другие органические вещества, но их намного меньше, чем белков, жиров и углеводов. Поэтому то, говоря об органических веществах, часто упоминают лишь белки, жиры и углеводы.

Главная функция белков — строительная. Они входят в состав многих органоидов клеток. Также белки помогают протекать химическим реакциям. Это ферментативная функция белков. Есть у них и другие функции. Различных видов белков существует огромное множество. Многие белки растений по своему строению отличаются от белков животных и других организмов.

Жиры и углеводы в растениях в основном играют роль запасных питательных веществ. Они обеспечивают растение энергией, когда ему это необходимо.

В процессе фотосинтеза в растениях синтезируется простой углевод — глюкоза. Далее при ее накоплении, в растениях из глюкозы синтезируется крахмал. Этим химический состав растений отличается от животных и грибов. В животных сложным углеводом, выполняющим функцию запасного вещества, является не крахмал, а гликоген.

Семена разных видов растений достаточно сильно могут отличаться между собой по преобладанию тех или иных органических веществ. Так в семенах пшеницы много углеводов, а в семенах подсолнечника — много жиров.

Неорганические вещества растений

К неорганическим веществам, которые входят в состав живых организмов, относятся вода и минеральные соли. Соли в основном распадаются на заряженные ионы.

Воду можно считать основой жизни. Именно в воде возможно протекание большинства химических реакций, а в живых организмов реакции идут очень интенсивно и в больших количествах. В различных органах растений процессы жизнедеятельности идут с разной интенсивностью. Поэтому органы различаются по количеству воды в них. Например, в семенах воды мало, так как зародыш в них «спит», и процессы замедлены или приостановлены. Чтобы семени прорасти, ему надо впитать воду (набухнуть). В листьях растений воды много, так как там активно идет синтез различных веществ.

Минеральные вещества, в основном соли, необходимы растениям для многих процессов жизнедеятельности, например, для фотосинтеза и роста. Растения всасывают минеральные вещества корнями вместе с водой, в которой они растворены. Далее по корню и стеблю водный раствор поднимается туда, где он особенно нужен. В листьях процентное содержание минеральных веществ больше, чем в корнях. Если растению не хватает какого-либо минерального вещества, то оно заболевает.

Источник