Какие минеральные вещества содержатся в клетке

Какие минеральные вещества содержатся в клетке thumbnail

Из этого урока вы узнаете о роли минеральных соединений микро- и макроэлементов в жизнедеятельности живых организмов. Вы познакомитесь с водородным показателем среды – рН, узнаете, как этот показатель связан с физиологией организма, каким образом в организме поддерживается постоянный рН среды. Выясните роль неорганических анионов и катионов в процессах обмена веществ, узнаете подробности о функциях катионов Na, K и Са в организме, а также какие другие металлы входят в состав нашего тела и каковы их функции.

Введение

Тема: Основы цитологии

Урок: Минеральные вещества и их роль в жизнедеятельности клетки

Введение. Минеральные вещества в клетке

Минеральные вещества составляют от 1 до 1,5% от сырой массы клетки, и находятся в клетке в виде солей диссоциированных на ионы, либо в твердом состоянии (рис. 1).

Рис. 1. Химический состав клеток живых организмов

В цитоплазме любой клетки находятся кристаллические включения, которые представлены слаборастворимыми солями кальция и фосфора; кроме них могут находиться оксид кремния и другие неорганические соединения, которые участвуют в образовании опорных структур клетки – в случае минерального скелета радиолярий – и организма, то есть образуют минеральное вещество костной ткани.

Неорганические ионы: катионы и анионы

Неорганические ионы, имеющие значение для жизнедеятельности клетки (рис. 2).

Рис. 2. Формулы основных ионов клетки

Катионы – калий, натрий, магний и кальций.

Анионы – хлорид анион, гидрокарбонат анион, гидрофосфат анион, дигидрофосфат анион, карбонат анион, фосфат анион и нитрат анион.

Рассмотрим значение ионов.

Ионы, располагаясь по разные стороны клеточных мембран, образуют так называемый трансмембранный потенциал. Многие ионы неравномерно распределены между клеткой и окружающей средой. Так, концентрация ионов калия (К+) в клетке в 20–30 раз выше, чем в окружающей среде; а концентрация ионов натрия (Na+) в десять раз ниже в клетке, чем в окружающей среде.

Благодаря существованию градиентов концентрации, осуществляются многие жизненно важные процессы, такие как сокращение мышечных волокон, возбуждение нервных клеток, перенос веществ через мембрану.

Катионы влияют на вязкость и текучесть цитоплазмы. Ионы калия уменьшают вязкость и увеличивают текучесть, ионы кальция (Са2+) обладают противоположным действием на цитоплазму клетки.

Анионы слабых кислот – гидрокарбонат анион (НСО3-), гидрофосфат анион (НРО42-) – участвуют в поддержании кислотно-щелочного баланса клетки, то есть pH среды. По своей реакции растворы могут быть кислыми, нейтральными и основными.

Кислотность или основность раствора определяется концентрацией в нем ионов водорода (рис. 3).

Рис. 3. Определение кислотности раствора при помощи универсального индикатора

Эту концентрацию выражают с помощью водородного показателя pH, протяженность шкалы от 0 до 14. Нейтральная среда pH – около 7. Кислая – меньше 7. Основная – больше 7. Быстро определить pH среды можно с помощью индикаторных бумажек, или полосок (см. видео).

Мы опускаем индикаторную бумажку в раствор, затем полоску вынимаем и сразу же сравниваем окрашивание индикаторной зоны полоски с цветами стандартной шкалы сравнения, которая входит в комплект, оценивая схожесть окрашивания и определяя значение pH (см. видео).

рН среды и роль ионов в его поддержании

Значение pH в клетке примерно равняется 7.

Изменение pH в ту или иную сторону губительно действует на клетку, поскольку сразу же изменяются биохимические процессы, проходящие в клетке.

Постоянство pH клетки поддерживается благодаря буферным свойствам её содержимого. Буферным называют раствор, который поддерживает постоянное значение pH среды. Обычно буферная система состоит из сильного и слабого электролита: соли и слабого основания или слабой кислоты, которые её образуют (Источник).

Действие буферного раствора заключается в том, что он противостоит изменениям pH среды. Изменение pH среды может возникнуть вследствие концентрирования раствора или разбавления его водой, кислотой или щелочью. Когда кислотность, то есть концентрация ионов водорода возрастает, свободные анионы, источником которых служит соль, взаимодействуют с протонами и удаляют их из раствора. Когда кислотность снижается, то усиливается тенденция к освобождению протонов. Таким образом поддерживается pH на определенном уровне, то есть поддерживается концентрация протонов на определенном постоянном уровне.

Некоторые органические соединения, в частности белки, также обладают буферными свойствами.

Катионы магния, кальция, железа, цинка, кобальта, марганца входят в состав ферментов и витаминов (см. видео).

Катионы металлов входят в состав гормонов.

Цинк входит в состав инсулина. Инсулин – это гормон поджелудочной железы, который регулирует уровень глюкозы в крови.

Магний входит в состав хлорофилла.

Железо входит в состав гемоглобина.

При недостатке этих катионов нарушается процессы жизнедеятельности клетки.

Ионы металлов как кофакторы

Значение ионов натрия и калия

Ионы натрия и калия распределены по всему объему организма, при этом ионы натрия входят, в основном, в состав межклеточной жидкости, а ионы калия содержатся внутри клеток: 95% ионов калия содержатся внутри клеток, а 95% ионов натрия содержатся в межклеточных жидкостях (рис. 4).

Рис. 4.

С ионами натрия связано осмотическое давление жидкостей, удержание воды тканями, а также перенос, или транспорт таких веществ как аминокислоты и сахара через мембрану.

Значение кальция в организме человека

Кальций является одним из самых распространенных элементов в организме человека. Основная масса кальция входит в состав костей и зубов. Фракция внекостного кальция составляет 1% от общего количества кальция в организме. Внекостный кальций влияет на свертываемость крови, а также нервно-мышечную возбудимость и сокращение мышечных волокон.

Фосфатная буферная система

Фосфатная буферная система играет роль в поддержании кислотно-щелочного баланса организма, кроме этого она поддерживает баланс в просвете канальцев почек, а также внутриклеточной жидкости.

Фосфатная буферная система состоит из дигидрофосфата и гидрофосфата. Гидрофосфат связывает, то есть нейтрализует протон. Дигидрофосфат высвобождает протон и взаимодействует с поступившими в кровь щелочными продуктами.

Фосфатная буферная система входит в буферную систему крови (Рис. 5).

Рис. 5.

Буферная система крови

В организме человека всегда имеются определенные условия для сдвига нормальной реакции среды ткани, например, крови, в сторону ацидоза (закисления) или алкалоза (раскисления – смещения рН в большую сторону).

В кровь поступают различные продукты, например, молочная кислота, фосфорная кислота, сернистая кислота, образующиеся в результате окисления фосфорорганических соединений либо серосодержащих белков. При этом реакция крови, может сдвигаться в сторону кислых продуктов.

При употреблении мясных продуктов, в кровь поступают кислые соединения. При употреблении растительной пищи, в кровь поступают основания.

Тем не менее, pH крови остается на определенном постоянном уровне.

В крови имеются буферные системы, которые поддерживают pH на определенном уровне.

К буферным системам крови относятся:

— карбонатная буферная система,

— фосфатная буферная система,

— буферная система гемоглобина,

— буферная система белков плазмы (Рис. 6).

Взаимодействие этих буферных систем создает определенное постоянное pH крови.

Рис. 6.

Таким образом, сегодня мы с вами рассмотрели минеральные вещества и их роль в жизнедеятельности клетки.

Домашнее задание

Какие химические вещества называют минеральными? Каково значение минеральных веществ для живых организмов? Из каких веществ в основном состоят живые организмы? Какие катионы входят в состав живых организмов? Каковы их функции? Какие анионы входят в состав живых организмов? Какова их роль? Что такое буферная система? Какие буферные системы крови вам известны? С чем связано содержание минеральных веществ в организме?

Читайте также:  Какие витамины и минералы содержатся в мясе

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Химический состав живых организмов (Источник).

2. Википедия (Источник).

3. Биология и медицина (Источник).

4. Образовательный центр (Источник).

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Источник

Минеральные вещества в клетке находятся в виде солей в твёрдом состоянии, либо диссоциированы на ионы.
Неорганические ионы представлены катионами и анионами минеральных солей.

Пример:

катионы: K+, Na+, Ca2+, Mg2+, NH4+.

Анионы: Cl−, H2PO4−, HPO42−, HCO3−, NO3−, SO42−, PO43−, CO32−.

Вместе с растворимыми органическими соединениями неорганические ионы обеспечивают стабильные показатели осмотического давления.

Концентрация катионов и анионов в клетке и в окружающей её среде — различна. Внутри клетки преобладают катионы K+ и крупные отрицательные органические ионы, в околоклеточных жидкостях всегда больше ионов Na+ и Cl−. В результате образуется разность потенциалов между содержимым клетки и окружающей её средой, обеспечивающая такие важные процессы, как раздражимость и передача возбуждения по нерву или мышце.  

Являясь компонентами буферных систем организма, ионы определяют их свойства — способность поддерживать рН на постоянном уровне (близко к нейтральной реакции), несмотря на то, что в процессе обмена веществ непрерывно образуются кислые и щелочные продукты.

Пример:

анионы фосфорной кислоты (HPO42− и H2PO4−) создают фосфатную буферную систему млекопитающих, поддерживающую рН внутриклеточной жидкости в пределах (6,9)–(7,4).
Угольная кислота и её анионы (H2CO3 и CO32−) создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне (7,4).

Соединения азота, фосфора, кальция и другие неорганические вещества используются для синтеза органических молекул (аминокислот, белков, нуклеиновых кислот и др.).

Пример:

ионы некоторых металлов (Mg, Ca, Fe, Zn, Cu, Mn, Mo, Br, Co) являются компонентами многих ферментов, гормонов и витаминов или активируют их.

Калий — обеспечивает функционирование клеточных мембран, поддерживает кислотно-щелочное равновесие, влияет на активность и концентрацию магния.

Ионы Na+ и K+ способствуют проведению нервных импульсов и возбудимости клетки. Эти ионы входят также в состав натрий-калиевого насоса (активный транспорт) и создают трансмембранный потенциал клеток (обеспечивают избирательную проницаемость клеточной мембраны, что достигается за счёт разности концентраций ионов Na+ и K+: внутри клетки больше K+, снаружи больше Na+).

Ключевая роль в регуляции мышечного сокращения принадлежит ионам кальция (Ca2+). Миофибриллы обладают способностью взаимодействовать с АТФ и сокращаться лишь при наличии в среде определённых концентраций ионов кальция. Ионы кальция также необходимы для процесса свёртывания крови.

Железо входит в состав гемоглобина крови.

Азот входит в состав белков. Все важнейшие части клеток (цитоплазма, ядро, оболочка и др.) построены из белковых молекул.

Фосфор входит в состав нуклеиновых кислот; обеспечивает нормальный рост костной и зубной тканей.

При недостатке минеральных веществ нарушаются важнейшие процессы жизнедеятельности клетки.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е.А., Пасечник В.В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 января 2020;
проверки требуют 8 правок.

Химическая организация клетки — совокупность всех веществ, входящих в состав клетки. В состав клетки входит большое количество химических элементов Периодической системы, из которых 86 постоянно присутствуют, 25 необходимы для нормальной жизнедеятельности организма, а 16—18 из них абсолютно необходимы[1][2].

Химические элементы[править | править код]

Органогены (биоэлементы)[править | править код]

Органогены — химические элементы, входящие в состав всех органических соединений и составляющие около 98% массы клетки[1].

Элемент%
содержание
Функция
Кислород65—75Входит в состав большинства органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды.
Углерод15—18Входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных скелетов.
Водород8—10Входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.
Азот2—3Входит в состав аминокислот, белков (в том числе ферментов и гемоглобина), нуклеиновых кислот, хлорофилла, некоторых витаминов.

Макроэлементы[править | править код]

Элементы, представленные в клетке в меньшем количестве — десятые и сотые доли процента[1].

Элемент%
содержание
Функция
Кальций0,04—2,00Содержится в мембране клетки, межклеточном веществе и костях. Участвует в регуляции внутриклеточных процессов, поддержания мембранного потенциала, передаче нервных импульсов, необходим для мышечного сокращения и экзоцитоза, участвует в свертывании крови. Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.
Фосфор0,2—1,0Входит в состав АТФ в виде остатка фосфорной кислоты (PO43-). Содержится в костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов).
Алюминий0,01-0,02%Снижает активность ряда ферментов (щелочной фосфатазы, лактатдегидрогеназы, каталазы и др.); также участвует в регуляции функций нервной системы
Железо0,15-0,2%Входит в состав гемоглобина крови, повышает тонус организма и потенцию. Необходимо для нормального функционирования иммунной системы
Йод0,01%Входит в состав гормонов щитовидной железы (тироксина, трийодтиронина).
Калий0,15—0,4Участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы. Содержится в межклеточных веществах. Участвует в фотосинтезе.
Сера0,15—0,2Содержится в некоторых аминокислотах, ферментах, тиамине. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.
Хлор0,05—0,1Участвует в формировании осмотического потенциала плазмы крови и других жидкостей в виде аниона. Содержится в желудочном соке.
Натрий0,02—0,03Участвует в поддержании мембранного потенциала, генерации нервного импульса, процессах осморегуляции(в том числе в работе почек у человека) и создании буферной системы крови.
Магний0,02—0,03Кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.

Микроэлементы[править | править код]

К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят рубидий, кадмий, барий, олово, свинец (необходим для усваивания железа), ванадий, германий, кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, галлий, цинк, молибден (участвует в связывании атмосферного азота), бор (влияет на ростковые процессы у растений), а также — кремний и стронций.

Читайте также:  В каких продуктах содержится быстрый сахар

Ультрамикроэлементы[править | править код]

Ультрамикроэлементы составляют менее 0,000001 % в организмах живых существ, к ним относят золото, серебро, которые оказывают бактерицидное воздействие, ртуть, подавляющую обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Также к ультрамикроэлементам относят селен, мышьяк, платину и цезий, бериллий, радий, уран, палладий, ниобий, ксенон, аргон, криптон, гелий, неон, полоний, радон, актиний, таллий, торий, иридий, и некоторые другие. Функции ультрамикроэлементов ещё малопонятны.

Вода[править | править код]

Вода является универсальным растворителем органических и неорганических веществ; она служит резервуаром для всех биохимических реакций клетки. При участии воды происходит теплорегуляция[3][4].

См. также[править | править код]

  • Биологически значимые элементы
  • Клетка
  • Сравнение строения клеток бактерий, растений, животных и грибов

Примечания[править | править код]

Литература[править | править код]

  • Билич Г. Л., Крыжановский В. А. Биология. Полный курс: В 4 т. — издание 5-е, дополненное и переработанное. — Оникс, 2009. — С. 20. — 864 с. — ISBN 978-5-488-02311-6.
  • Грин Н., Стаут У., Тейлор Д. Биология: в 3т. — Мир, 1993. — Т. 1. — С. 105—112. — 456 с. — ISBN 5-03-003685-7.

Источник

Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В таблице 1 представлены основные химические элементы, обнаруженные в клетках живых организмов.

Таблица 1. Содержание химических элементов в клетке

ЭлементКоличество, %ЭлементКоличество, %
Кислород65-75Кальций0,04-2,00
Углерод15-18Магний0,02-0,03
Водород8-10Натрий0,02-0,03
Азот1,5-3,0Железо0,01-0,015
Фосфор0,2-1,0Цинк0,0003
Калий0,15-0,4Медь0,0002
Сера0,15-0,2Иод0,0001
Хлор0,05-0,10Фтор0,0001

По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. макрос — большой).

Остальные элементы, представ ленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. микро — малый).

Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечисленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров — белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор — в состав нуклеиновых кислот, железо — в состав гемоглобина, а магний — в состав хлорофилла. Кальций играет важную роль в обмене веществ.

Часть химических элементов, содержащихся в клетке, входит в со став неорганических веществ — минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов ( HPO2-/4, H2PO-/4, СI-, НСО3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.

(У многих клеток среда слабощелочная и ее рН почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)

Из неорганических веществ в живой природе огромную роль играет вода.

Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани — всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.

Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды — потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?

В молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет

частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.

Вода — хороший растворитель. Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. гидро — вода и филео — люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).

Гидрофобными (от греч. гидро — вода и фобос — страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость. Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества — вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи.

НЕОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).

К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.
К микроэлеметам относятся марганец, медь, цинк, йод, фтор.
К ультрамикроэлементам относятся серебро, золото, бром, селен.

ЭЛЕМЕНТЫСОДЕРЖАНИЕ В ОРГАНИЗМЕ (%)БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ
Макроэлементы:
O.C.H.N62-3Входят в состав всех органических веществ клетки, воды
Фосфор Р1,0Входят в состав нуклеиновых кислот, АТФ (образует макроэргические связи), ферментов, костной ткани и эмали зубов
Кальций Са+22,5У растений входит в состав оболочки клетки, у животных — в состав костей и зубов, активизирует свертываемость крови
Микроэлементы:1-0,01
Сера S0,25Входит в состав белков, витаминов и ферментов
Калий К+0,25Обуславливает проведение нервных импульсов; активатор ферментов белкового синтеза, процессов фотосинтеза, роста растений
Хлор CI-0,2Является компонентом желудочного сока в виде соляной кислоты, активизирует ферменты
Натрий Na+0,1Обеспечивает проведение нервных импульсов, поддерживает осмотическое давление в клетке, стимулирует синтез гормонов
Магний Мg+20,07Входит в состав молекулы хлорофилла, содержится в костях и зубах, активизирует синтез ДНК, энергетический обмен
Йод I-0,1Входит в состав гормона щитовидной железы — тироксина, влияет на обмен веществ
Железо Fе+30,01Входит в состав гемоглобина, миоглобина, хрусталика и роговицы глаза, активатор ферментов, участвует в синтезе хлорофилла. Обеспечивает транспорт кислорода к тканям и органам
Ультрамикроэлементы:менее 0,01, следовые количества
Медь Си+2Участвует в процессах кроветворения, фотосинтеза, катализирует внутриклеточные окислительные процессы
Марганец МnПовышает урожайность растений, активизирует процесс фотосинтеза, влияет на процессы кроветворения
Бор ВВлияет на ростовые процессы растений
Фтор FВходит в состав эмали зубов, при недостатке развивается кариес, при избытке — флюороз
Вещества :
Н2060-98Составляет внутреннюю среду организма, участвует в процессах гидролиза, структурирует клетку. Универсальный растворитель, катализатор, участник химических реакций
Читайте также:  Какой витамин содержаться в капусте

ОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

ВЕЩЕСТВАСТРОЕНИЕ И СВОЙСТВАФУНКЦИИ
Липиды
Сложные эфиры высших жирных кислот и глицерина. В состав фосфолипидов входит дополнительно остаток Н3РО4.Обладают гидрофобными или гидрофильно-гидрофобными свойствами, высокой энергоемкостью Строительная — образует билипидный слой всех мембранных.
Энергетическая.
Терморегуляторная.
Защитная.
Гормональная (кортикостероиды, половые гормоны).
Компоненты витаминов D,E. Источник воды в организме.Запасное питательное вещество
Углеводы
Моносахариды:
глюкоза,
фруктоза,
рибоза,
дезоксирибоза
Хорошо растворимы в водеЭнергетическая
Дисахариды:
сахароза,
мальтоза (солодовый сахар)
Растворимы в водеКомпоненты ДНК, РНК, АТФ
Полисахариды:
крахмал,
гликоген,
целлюлоза
Плохо растворимы или нерастворимы в водеЗапасное питательное вещество. Строительная — оболочка растительной клетки
БелкиПолимеры. Мономеры — 20 аминокислот.Ферменты — биокатализаторы.
I структура — последовательность аминокислот в полипептидной цепи. Связь — пептидная — СО- NH-Строительная — входят в состав мембранных структур, рибосом.
II структура — a -спираль, связь — водороднаяДвигательная (сократительные белки мышц).
III структура — пространственная конфигурация  a -спирали (глобула). Связи — ионные, ковалентные, гидрофобные, водородныеТранспортная (гемоглобин). Защитная (антитела).Регуляторная (гормоны, инсулин)
IV структура характерна не для всех белков. Соединение нескольких полипептидных цепей в единую суперструктуруВ воде плохо растворимы. Действие высоких температур, концентрированных кислот и щелочей, солей тяжелых металлов вызывает денатурацию
Нуклеиновые кислоты:Биополимеры. Состоят из нуклеотидов
ДНК — дезокси-рибонуклеино-вая кислота.Состав нуклеотида: дезоксирибоза, азотистые основания — аденин, гуанин, цитозин, тимин, остаток Н3РО4. Комплементарность азотистых оснований А = Т, Г = Ц. Двойная спираль. Способна к самоудвоениюОбразуют хромосомы. Хранение и передача наследственной информации, генетического кода. Биосинтез РНК, белков. Кодирует первичную структуру белка. Содержится в ядре, митохондриях, пластидах
РНК — рибонуклеиновая кислота.Состав нуклеотида: рибоза, азотистые основания — аденин, гуанин, цитозин, урацил, остаток Н3РО4 Комплементарность азотистых оснований А = У, Г = Ц. Одна цепь
Информационная РНКПередача информации о первичной структуре белка, участвует в биосинтезе белка
Рибосомальная РНКСтроит тело рибосомы
Транспортная РНККодирует и переносит аминокислоты к месту синтеза белка — рибосомам
Вирусная РНК и ДНКГенетический аппарат вирусов

Ферменты.

Важнейшая функция белков — каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакции в клетке, называют ферментами. Ни один биохимический процесс в организме не происходит без участия ферментов.

В настоящее время обнаружено свыше 2000 ферментов. Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве. Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа. Каталаза увеличивает скорость разложения пероксида водорода (Н2О2) в 1011 раз. Фермент, катализирующий реакцию образования угольной кислоты (СО2+Н2О = Н2СО3), ускоряет реакцию в 107 раз.
Важным свойством ферментов является специфичность их действия, каждый фермент катализирует только одну или небольшую группу сходных реакций.

Вещество, на которое воздействует фермент, называют субстратом. Структуры молекулы фермента и субстрата должны точно соответствовать друг другу. Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.

Последовательность взаимодействия фермента и субстрата можно изобразить схематично:

Субстрат+Фермент — Фермент-субстратный комплекс — Фермент+Продукт.

Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса. При этом субстрат превращается в новое вещество — продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата.

Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а, следовательно, и к подавлению активности фермента. Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром. Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.

Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра, и фермент теряет свою активность.

Ферменты — это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов — специфичность действия в определенных условиях.

Нуклеиновые кислоты.

Нуклеиновые кислоты были от крыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его «нуклеином» (от лат. нуклеус — ядро).

В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле. Существует два типа нуклеиновых кислот — ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.

Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.

Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин — А, тимин — Т, гуанин — Г или цитозин — Ц), а также угле вод дезоксирибоза и остаток фосфорной кислоты.

Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.

Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.

Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц. Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации обо всех признаках организмов.

В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.

Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениновых нуклеотидов в любой молекуле ДНК равно числу тимидиновых нуклеотидов (А-Т), а число цитозиновых нуклеотидов равно числу гуаниновых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с Тимином другой цепи, а гуанин — тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг