Какие из нижеприведенных свойств для неравенств правильные

Тема 4. Неравенства и системы неравенств
При решении неравенств вы должны свободно владеть понятием числового неравенства, знать, что такое решение неравенства, что значит решить неравенство, помнить свойства неравенств. То же относится и к системам числовых неравенств. Все эти сведения вы можете найти в любом пособии для поступающих в вузы.
Напомним свойства числовых неравенств.
1. Если а > b , то b < а; наоборот, если а < b, то b > а.
2. Если а > b и b > c, то а > c. Точно так же, если а < b и b < c, то а < c.
3. Если а > b, то а + c > b+ c (и а – c > b – c). Если же а < b, то а + c < b+ c (и а – c < b – c). Т. е. к обеим частям неравенства можно прибавлять (или из них вычесть) одну и ту же величину.
4. Если а > b и c > d, то а + c > b + d; точно так же, если а < b и c < d, то а + c < b + d, т. е. два неравенства одинакового смысла можно почленно складывать.
Замечание.
Два неравенства одинакового смысла нельзя почленно вычитать друг из друга, так как результат может быть верным, но может быть и неверным. Например, если из неравенства 11 > 9 почленно вычесть неравенство 3 > 2, то получим верное неравенство 8 > 7. Если из неравенства 11 > 9 почленно вычесть неравенство 7 > 2, то полученное неравенство будет неверным.
5. Если а > b и c < d, то а – c > b – d; если а < b и c > d, то а – c < b – d, т.е. из одного неравенства можно почленно вычесть другое неравенство противоположного смысла, оставляя знак того неравенства, из которого вычиталось другое.
6. Если а > b и m – положительное число, то m а > m b и , т.е. обе части неравенства можно умножить или разделить на одно и то же положительное число ( знак неравенства остаётся тем же ).
Если же а > b и n – отрицательное число, то n а < n b и , т.е. обе части неравенства можно умножить или разделить на одно и то же отрицательное число, но при этом знак неравенства нужно переменить на противоположный.
7. Если а > b и c > d , где а, b, c, d > 0, то а c > b d и если а < b и c < d, где а, b, c, d > 0, то аc < bd, т.е. неравенства одного смысла на множестве положительных чисел можно почленно перемножать.
Следствие. Если а > b, где а, b > 0, то а2 > b2, и если а < b, то а2 < b2, т.е. на множестве положительных чисел обе части неравенства можно возводить в квадрат.
8. Если а > b, где а, b > 0, то и если а < b , то
.
Виды неравенств и способы их решения
1. Линейные неравенства и системы неравенств
Пример 1. Решить неравенство .
Решение:
.
Ответ: х < – 2.
Пример 2. Решить систему неравенств
Решение:
.
Ответ: (– 2; 0].
Пример 3. Найти наименьшее целое решение системы неравенств
Решение:
Ответ:
2. Квадратные неравенства
Пример 4. Решить неравенство х2 > 4.
Решение:
х2 > 4 (х – 2)∙(х + 2) > 0.
Решаем методом интервалов.
Ответ:
3. Неравенства высших степеней
Пример 5. Решить неравенство (х + 3)∙(х2 – 2х + 1) > 0.
Решение:
Ответ: .
Пример 6. Найти середину отрезка, который является решением неравенства 4х2 – 24х + 24 < 4у2, где .
Решение:
Область определения неравенства: .
С учётом области определения 4х2 – 24х + 24 < 4у2 будет равносильно неравенству
Решаем методом интервалов.
Решение неравенства: .
Середина отрезка: .
Ответ: .
4. Рациональные неравенства
Пример 7. Найти все целые решения, удовлетворяющие неравенству .
Решение:
Методом интервалов:
Решение неравенства: .
Целые числа, принадлежащие полученным полуинтервалам: – 6; – 5; – 4; 1.
Ответ: – 6; – 5; – 4; 1.
5. Иррациональные неравенства
Помните! Начинать решение иррациональных неравенств нужно с нахождения области определения.
Пример 8. Решить неравенство .
Решение:
Область определения: .
Так как арифметический корень не может быть отрицательным числом, то .
Ответ: .
Пример 9. Найти все целые решения неравенства .
Решение:
Область определения .
– быть отрицательным не может, следовательно, чтобы произведение было неотрицательным достаточно потребовать выполнения неравенства
, при этом учитывая область определения. Т.е. исходное неравенство равносильно системе
.
Целыми числами из этого отрезка будут 2; 3; 4.
Ответ: 2; 3; 4.
Пример 10. Решить неравенство .
Решение:
Область определения:
Преобразуем неравенство: . С учётом области определения видим, что обе части неравенства — положительные числа. Возведём обе части в квадрат и получим неравенство, равносильное исходному.
т.е.
, и этот числовой отрезок включён в область определения.
Ответ: .
Пример 11. Решить неравенство .
Решение:
Раскрываем знак модуля.
Объединим решения систем 1) и 2): .
Ответ: .
6. Показательные, логарифмические неравенства и системы неравенств
Пример 12. Решите неравенство .
Решение:
.
Ответ: .
Пример 13. Решите неравенство .
Решение:
.
Ответ: .
Пример 14. Решите неравенство .
Решение:
Ответ: .
Пример 15. Решите неравенство .
Решение:
Ответ: .
Задания для самостоятельного решения
Базовый уровень
Целые неравенства и системы неравенств
1) Решите неравенство 2х – 5 ≤ 3 + х.
2) Решите неравенство – 5х > 0,25.
3) Решите неравенство .
4) Решите неравенство 2 – 5х ≥ – 3х.
5) Решите неравенство х + 2 < 5x – 2(x – 3).
6) Решите неравенство
.
7) Решите неравенство (х – 3) (х + 2) > 0.
8) Решить систему неравенств
9) Найдите целочисленные решения системы неравенств .
10) Решить систему неравенств .
11) Решить систему неравенств
12) Найти наименьшее целое решение неравенства
13) Решите неравенство .
14) Решите неравенство .
15) Решите неравенство .
16) Решите неравенство .
17) Найдите решение неравенства , принадлежащие промежутку
.
18) Решить систему неравенств
19) Найти все целые решения системы
Рациональные неравенства и системы неравенств
20) Решите неравенство .
21) Решите неравенство .
22) Определите число целых решений неравенства .
23) Определите число целых решений неравенства .
24) Решите неравенство .
25) Решите неравенство 2x<16 .
26) Решите неравенство .
27) Решите неравенство .
28) Решите неравенство .
29) Найдите сумму целых решений неравенства на отрезке [– 7, 7].
30) Решите неравенство .
31) Решите неравенство .
Иррациональные неравенства
32) Решите неравенство .
33) Решите неравенство
34) Решите неравенство .
Показательные, логарифмические неравенства и системы неравенств
35) Решите неравенство .
36) Решите неравенство .
37) Решите неравенство .
38) Решите неравенство .
39) Решите неравенство .
40) Решите неравенство 49∙7х < 73х + 3.
41) Найдите все целые решения неравенства .
42) Решите неравенство .
43) Решите неравенство .
44) Решите неравенство 7x+1-7x<42 .
45) Решите неравенство log3(2×2+x-1)>log32 .
46) Решите неравенство log0,5(2x+3)>0 .
47) Решите неравенство .
48) Решите неравенство .
49) Решите неравенство .
50) Решите неравенство logx+112>logx+12 .
51) Решите неравенство logx9<2.
52) Решите неравенство .
Повышенный уровень
53) Решите неравенство |x-3|>2x.
54) Решите неравенство 2│х + 1| > х + 4.
55) Найдите наибольшее целое решение неравенства .
56) Решить систему неравенств
57) Решить систему неравенств .
58) Решите неравенство .
59) Решите неравенство 25•2x-10x+5x>25 .
60) Решите неравенство .
Ответы
1) х ≤ 8; 2) х < – 0,05; 3) х ≥ 5; 4) х ≤ 1; 5) х > –2; 6) х < 11; 7) ; 8) (-2;0]; 9) – 1; 10) х ≥ 7,5; 11)
; 12) 1; 13)
; 14) х ≤ – 0,9; 15) х < – 1; 16) х < 24; 17)
; 18)
; 19) 3, 4, 5;
20) (0; 2); 21) (0; 1,5); 22) 3; 23) 6; 24) (–1; 1,5); 25) х < 4; 26); 27) (– 3; 17); 28)
; 29) – 10; 30) (0; + ∞); 31); 32) [1;17); 33) x > 17; 34) х ≥ 2; 35)
; 36) х < 2; 37) х > 0; 38) х ≤ 3; 39) х > – 3,5; 40) х > – 0,5; 41) 0, 1, 2, 3, 4, 5; 42) х < 3; 43)
; 44) х < 1; 45)
; 46) (– 1,5; – 1); 47) х < 0; 48)
; 49)
; 50) х > 0; 51)
; 52)
; 53) х < 1; 54)
; 55) – 1; 56)
; 57) [3,5; 10]; 58) (0, 1); 59) (0; 2); 60)
.
- Главная
- Вопросы & Ответы
- Вопрос 6432091
Гость:
9 лет назад
5
1
Лучший ответ:
Гость:
Правильные ответы к тесту выделены
Тест прошел проверку
ставим +1 к ответу)
10 Ноября в 19:28
Ваш ответ (не менее 20 символов):
Ваше имя (не менее 2 символов):
Лучшее из галереи:
Другие вопросы:
По сигналу «Внимание всем!» вы включили радио и прослушали сообщение: «Внимание! Говорит штаб ГО города! Граждане! В связи с повышением Колебательные движения водной среды морей и океанов, вызываемые силой ветров, приливами и отливами, подводными землетрясениями и извержениями вулкано…
9 лет назад
Смотреть ответ
27
1
Гость:
Значительное затопление местности в результате подъема уровня воды в реке, озере, водохранилище или море, наносящее материальный ущерб Вы с товарищами в лесу. Из-за неосторожного обращения с огнем одного из вас возник небольшой пожар. Как следует поступать в таких случаях. Назовите ваши дальнейшие д…
9 лет назад
Смотреть ответ
9
1
Гость:
Вы в группе из 10 туристов остановились в лесу на привале около ручья. Все очень устали, и руководитель принял решение разбить лагерь. Быстро поставили Назовите допущенную ошибку.
В зависимости от масштаба, повторяемости и наносимого ущерба наводнения подразделяют на:
(*ответ*) сре…
9 лет назад
Смотреть ответ
30
1
Гость:
Вспомните наиболее безопасные места, где можно укрыться от цунами. Выберите их в предлагаемых вариантах ответо Циклоны, возникающие в Атлантическом океане, называют
(*ответ*) ураганами
тайфунами
бурями
шквалом
Циклоны, возникающие в западной час…
9 лет назад
Смотреть ответ
15
1
Гость:
Установите соответствие Циклон < мощный атмосферный вихрь с пониженным атмосферным давлением в центре Разрушающее действие смерча связано
(*ответ*) с действием стремительно вращающегося воздуха и резким вертикальным подъемом воздушных масс
с динамическим воздействием мас…
9 лет назад
Смотреть ответ
14
1
С неравенствами мы познакомились в школе, где применяем числовые неравенства. В данной статье рассмотрим свойства числовых неравенств, не которых строятся принципы работы с ними.
Свойства неравенств аналогичны свойствам числовых неравенств. Будут рассмотрены свойства, его обоснования, приведем примеры.
Числовые неравенства: определение, примеры
При введении понятия неравенства имеем, что их определение производится по виду записи. Имеются алгебраические выражения, которые имеют знаки ≠, <, >, ≤ , ≥. Дадим определение.
Определение 1
Числовым неравенством называют неравенство, в записи которого обе стороны имеют числа и числовые выражения.
Числовые неравенства рассматриваем еще в школе после изучения натуральных чисел. Такие операции сравнения изучаются поэтапно. Первоначальные имею вид 1<5, 5+7>3. После чего правила дополняются, а неравенства усложняются, тогда получаем неравенства вида 523>5,1(2), ln 0.73-172<0.
Свойства числовых неравенств
Чтобы правильно работать с неравенствами, необходимо использовать свойства числовых неравенств. Они идут из понятия неравенства. Такое понятие задается при помощи утверждения, которое обозначается как «больше» или «меньше».
Определение 2
- число a больше b, когда разность a-b – положительное число;
- число a меньше b, когда разность a-b – отрицательное число;
- число a равно b, когда разность a-bравняется нулю.
Определение используется при решении неравенств с отношениями «меньше или равно», «больше или равно». Получаем, что
Определение 3
- a больше или равно b, когда a-b является неотрицательным числом;
- a меньше или равно b, когда a-b является неположительным числом.
Определения будут использованы при доказательствах свойств числовых неравенств.
Основные свойства
Рассмотрим 3 основные неравенства. Использование знаков < и > характерно при свойствах:
Определение 4
- антирефлексивности, которое говорит о том, что любое число a из неравенств a<a и a>a считается неверным. Известно, что для любого a имеет место быть равенство a−a=0, отсюда получаем, что а=а. Значит, a<a и a>a неверно. Например, 3<3 и -41415>-41415 являются неверными.
- ассиметричности. Когда числа a и b являются такими, что a<b, то b>a, и если a>b, то b<a. Используя определение отношений «больше», «меньше» обоснуем его. Так как в первой части имеем, что a<b, тогда a−b является отрицательным числом. А b−a=−(a−b) положительное число, потому как число противоположно отрицательному числу a−b. Отсюда следует, что b>a. Аналогичным образом доказывается и вторая его часть.
Пример 1
Например, при заданном неравенстве 5<11 имеем, что 11>5, значит его числовое неравенство −0,27>−1,3 перепишется в виде −1,3<−0,27.
Перед тем, как перейти к следующему свойству, заметим, что при помощи ассиметричности можно читать неравенство справа налево и наоборот. Таким образом, числовое неравенство можно изменять и менять местами.
Определение 5
- транзитивности. Когда числа a, b, c соответствуют условию a<b и b<c, тогда a<c, и если a>b и b>c, тогда a>c.
Доказательство 1
Первое утверждение можно доказать. Условие a<b и b<c означает, что a−b и b−c являются отрицательными, а разность а-с представляется в виде (a−b)+(b−c), что является отрицательным числом, потому как имеем сумму двух отрицательных a−b и b−c. Отсюда получаем, что а-с является отрицательным числом, а значит, что a<c. Что и требовалось доказать.
Аналогичным образом доказывается вторая часть со свойством транизитивности.
Пример 2
Разобранное свойство рассматриваем на примере неравенств −1<5 и 5<8. Отсюда имеем, что −1<8. Аналогичным образом из неравенств 12>18 и 18>132 следует, что 12>132.
Числовые неравенства, которые записываются с помощью нестрогих знаков неравенства, обладают свойством рефлексивности, потому как a≤a и a≥a могут иметь случай равенства а=а. им присуща ассиметричность и транзитивность.
Определение 6
Неравенства, имеющие в записи знаки ≤ и≥, имеют свойства:
- рефлексивности a≥a и a≤a считаются верными неравенствами;
- антисимметричности, когда a≤b, тогда b≥a, и если a≥b, тогда b≤a.
- транзитивности, когда a≤b и b≤c, тогда a≤c, а также, если a≥b и b≥c, то тогда a≥c.
Доказательство производится аналогичным образом.
Другие важные свойства числовых неравенств
Для дополнения основных свойств неравенств используются результаты, которые имеют практическое значение. Применяется принцип метода оценка значений выражений, на которых и базируются принципы решения неравенств.
Данный пункт раскрывает свойства неравенств для одного знака строгого неарвенства. Аналогично производится для нестрогих. Рассмотрим на примере, сформулировав неравенство если a<b и c являются любыми числами, то a+c<b+c. Справедливыми окажутся свойства:
- если a>b, то a+c>b+c;
- если a≤b, то a+c≤b+c;
- если a≥b, то a+c≥b+c.
Для удобного представления дадим соответствующее утверждение, которое записывается и приводятся доказательства, показываются примеры использования.
Определение 7
Прибавление или вычисления числа к обеим сторонам. Иначе говоря, когда a и b соответствуют неравенству a<b, тогда для любого такого числа имеет смысл неравенство вида a+c<b+c.
Доказательство 2
Чтобы доказать это, необходимо, чтобы уравнение соответствовало условию a<b. Тогда (a+c)−(b+c)=a+c−b−c=a−b. Из условия a<b получим, что a−b<0. Значит, (a+c)−(b+c)<0, откуда a+c<b+c. Множество действительных числе могут быть изменены с помощью прибавления противоположного числа –с.
Пример 3
К примеру, если обе части неравенства 7>3 увеличиваем на 15, тогда получаем, что 7+15>3+15. Это равно 22>18.
Определение 8
Когда обе части неравенства умножить или разделить на одно и то же число c, получим верное неравенство. Если взять число c отрицательным, то знак поменяется на противоположный. Иначе это выглядит так: для a и b неравенство выполняется, когда a<b и c являются положительными числами, то a·c<b·c, а если v является отрицательным числом, тогда a·c>b·c.
Доказательство 3
Когда имеется случай c>0, необходимо составить разность левой и правой частей неравенства. Тогда получаем, что a·c−b·c=(a−b)·c. Из условия a<b, то a−b<0, а c>0, тогда произведение (a−b)·c будет отрицательным. Отсюда следует, что a·c−b·c<0, где a·c<b·c. Другая часть доказывается аналогичным образом.
При доказательстве деление на целое число можно заменить умножением на обратное заданному, то есть 1c. Рассмотрим пример свойства на определенных числах.
Пример 4
Разрешено обе части неравенства 4<6 умножаем на положительное 0,5, тогда получим неравенство вида −4·0,5<6·0,5, где −2<3. Когда обе части делим на -4, то необходимо изменить знак неравенства на противоположный . отсюда имеем, что неравенство примет вид −8:(−4)≥12:(−4), где 2≥−3.
Теперь сформулируем вытекающие два результата, которые используются при решении неравенств:
- Следствие 1. При смене знаков частей числового неравенства меняется сам знак неравенства на противоположный, как a<b, как −a>−b. Это соответствует правилу умножения обеих частей на -1. Оно применимо для перехода. Например, −6<−2, то 6>2.
- Следствие 2. При замене обратными числами частей числового неравенства на противоположный, меняется и его знак, причем неравенство останется верным. Отсюда имеем, что a и b являются положительными числами, a<b, 1a>1b.
При делении обеих частей неравенства a<b разрешается на число a·b. Данное свойство используется при верном неравенстве 5>32 имеем, что 15<23. При отрицательных a и b c условием, что a<b , неравенство 1a>1b может получиться неверным.
Пример 5
Например, −2<3, однако, -12>13 являются неверным равенством.
Все пункты объединяет то, что действия над частями неравенства дают верное неравенство на выходе. Рассмотрим свойства, где изначально имеется несколько числовых неравенств, а его результат получим при сложении или умножении его частей.
Определение 9
Когда числа a, b, c, d справедливы для неравенств a<b и c<d, тогда верным считается a+c<b+d. Свойство можно формировать таким образом: почленно складывать числа частей неравенства.
Доказательство 4
Докажем, что (a+c)−(b+d) является отрицательным числом, тогда получим, что a+c<b+d. Из условия имеем, что a<b и c<d. Выше доказанное свойство позволяет прибавлять к обеим частям одинаковое число. Тогда увеличим неравенство a<b на число b, при c<d, получим неравенства вида a+c<b+c и b+c<b+d. Полученное неравенство говорит о том, что ему присуще свойство транзитивности.
Свойство применяется для почленного сложения трех, четырех и более числовых неравенств. Числам a1, a2, …, an и b1, b2, …, bn справедливы неравенства a1<b1, a2<b2, …, an<bn , можно доказать метод математической индукции , получив a1+a2+…+an<b1+b2+…+bn.
Пример 6
Например, при данных трех числовых неравенствах одного знака −5<−2, −1<12 и 3<4. Свойство позволяет определять то, что −5+(−1)+3<−2+12+4 является верным.
Определение 10
Почленное умножение обеих частей дает в результате положительное число. При a<b и c<d, где a, b, c и d являются положительными числами, тогда неравенство вида a·c<b·d считается справедливым.
Доказательство 5
Чтобы доказать это, необходимо обе части неравенства a<b умножить на число с, а обе части c<d на b. В итоге получим, что неравенства a·c<b·c и b·c<b·d верные, откуда получим свойство транизитивности a·c<b·d.
Это свойство считается справедливым для количества чисел, на которые необходимо умножить обе части неравенства. Тогда a1, a2, …, an и b1, b2, …, bnявляются положительные числами, где a1<b1, a2<b2, …, an<bn, то a1·a2·…·an<b1·b2·…·bn.
Заметим, что при записи неравенств имеются неположительные числа, тогда их почленное умножение приводит к неверным неравенствам.
Пример 7
К примеру, неравенство 1<3 и −5<−4 являются верными, а почленное их умножение даст результат в виде 1·(−5)<3·(−4), считается, что −5<−12 это является неверным неравенством.
Следствие: Почленное умножение неравенств a<b с положительными с a и b, причем получается an<bn.
Свойства числовых неравенств
Рассмотрим ниже свойства числовых неравенств.
- a<a, a>a — неверные неравенства,
a≤a, a≥a- верные неравенства. - Если a<b, то b>a — антисимметричность.
- Если a<b и b<c то a<c — транзитивность.
- Если a<b и c — любоое число, то a+с<b+c.
- Если a<b и c — положительное число, то a·c<b·c,
Если a<b и c — отрицательное число, то a·c>b·c.
Следствие 1: если a<b, то -a>-b.
Следствие 2: если a и b — положительные числа и a<b, то 1a>1b.
- Если a1<b1, a2<b2,…, an<bn, то a1+a2+…+an<b1+b2+…+bn.
- Если a1, a2,…, an, b1, b2,…,bn- положительные числа и a1<b1, a2<b2,…, an<bn, то a1·a2·…·an<b1·b2·…bn.
Cледствие 1: если a<b, a и b — положительные числа, то an<bn.