Какие химические свойства характерны для 3 периода 1 группы гидроксида

Какие химические свойства характерны для 3 периода 1 группы гидроксида thumbnail

3. Гидроксиды

Среди
многоэлементных
соединений важную группу составляют гидроксиды. Некоторые из них
проявляют
свойства оснований (основные гидроксиды)  – NaOH, Ba(OH)2
и т.п.; другие
проявляют свойства кислот (кислотные гидроксиды) – HNO3, H3PO4 и другие.
Существуют и амфотерные гидроксиды,
способные в зависимости от условий проявлять как свойства оснований,
так и
свойства  кислот – Zn(OH)2,
Al(OH) 3
и т.п.

3.1.
Классификация,
получение и свойства оснований

Основаниями
(основными
гидроксидами) с позиции теории электролитической диссоциации являются
вещества,
диссоциирующие в растворах с образованием гидроксид-ионов ОН
.

По современной
номенклатуре их принято называть гидроксидами элементов с указанием,
если
необходимо, валентности элемента (римскими цифрами в скобках): КОН
– гидроксид
калия, гидроксид натрия NaOH,
гидроксид кальция Ca(OH)2,
гидроксид хрома (II) – Cr(OH)2,
гидроксид хрома (III) – Cr(OH)3.

Гидроксиды
металлов
принято делить
на две группы: растворимые
в воде
(образованные щелочными и щелочноземельными металлами
— Li, Na, K, Cs, Rb, Fr, Ca, Sr, Ba и поэтому
называемые щелочами) и нерастворимые в воде.
Основное различие между
ними заключается в том, что концентрация ионов ОН- в растворах
щелочей достаточно
высока, для нерастворимых же оснований она определяется растворимостью
вещества
и обычно очень мала. Тем не менее, небольшие равновесные концентрации
иона ОН- даже в
растворах нерастворимых
оснований определяют свойства этого класса соединений.

По числу
гидроксильных
групп (кислотность)
,
способных замещаться на кислотный остаток, различают:

— однокислотные
основания
– KOH, NaOH;

— двухкислотные
основания
– Fe(OH)2,
Ba(OH)2;

— трехкислотные
основания
– Al(OH)3,
Fe(OH)3.

Получение
оснований

1. Общим методом
получения оснований является реакция обмена, с помощью которой могут
быть
получены как нерастворимые, так и растворимые основания:

CuSO4
+ 2KOH = Cu(OH)2↓
+ K2SO4,

K2SO4
+ Ba(OH)2 = 2KOH + BaCO3↓.

При получении
этим
методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении
нерастворимых в воде оснований, обладающих амфотерными свойствами,
следует
избегать избытка щелочи, так как может произойти растворение
амфотерного
основания, например,

AlCl3
+ 3KOH = Al(OH)3 + 3KCl,

Al(OH)3
+ KOH = K[Al(OH)4].

В подобных
случаях для
получения гидроксидов используют гидроксид аммония, в котором
амфотерные оксиды
не растворяются:

AlCl3
+ 3NH4OH
= Al(OH)3↓
+ 3NH4Cl.

Гидроксиды
серебра, ртути
настолько легко распадаются, что при попытке их получения обменной
реакцией
вместо гидроксидов выпадают оксиды:

2AgNO3
+ 2KOH = Ag2O↓
+ H2O + 2KNO3.

2. Щелочи в
технике
обычно получают электролизом водных растворов хлоридов:

2NaCl
+ 2H2O = 2NaOH + H2 + Cl2.

(суммарная
реакция электролиза)

Щелочи могут
быть также
получены взаимодействием щелочных и щелочноземельных металлов или их
оксидов с
водой:

2Li + 2H2O = 2LiOH + H2↑,

SrO + H2O = Sr(OH)2.

Химические
свойства оснований

1. Все
нерастворимые в
воде основания при нагревании разлагаются с образованием оксидов:

2Fe(OH)3
= Fe2O3 + 3H2O,

Ca(OH)2
= CaO + H2O.

2. Наиболее
характерной
реакцией оснований является их взаимодействие с кислотами –
реакция
нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:

NaOH + HNO3 = NaNO3 + H2O,

Cu(OH)2
+ H2SO4 = CuSO4
+ 2H2O.

3. Щелочи
взаимодействуют
с кислотными и с амфотерными оксидами:

2KOH
+ CO2 = K2CO3
+ H2O,

2NaOH
+ Al2O3 = 2NaAlO2
+ H2O.

4. Основания
могут
вступать в реакцию с кислыми солями:

2NaHSO3
+ 2KOH = Na2SO3 + K2SO3
+2H2O,

Ca(HCO3)2
+ Ba(OH)2 = BaCO3↓
+ CaCO3 + 2H2O.

Cu(OH)2
+ 2NaHSO4 = CuSO4 + Na2SO4
+2H2O.

5. Необходимо
особенно
подчеркнуть способность растворов щелочей реагировать с некоторыми
неметаллами
(галогенами, серой, белым фосфором, кремнием):

2NaOH + Cl2 = NaCl +NaOCl + H2O (на
холоду),

6KOH + 3Cl2 = 5KCl
+
KClO3 + 3H2O (при
нагревании),

6KOH
+ 3S = K2SO3 + 2K2S
+ 3H2O,

3KOH
+ 4P + 3H2O = PH3↑
+ 3KH2PO2,

2NaOH
+ Si + H2O = Na2SiO3
+ 2H2↑.

6. Кроме того,
концентрированные растворы щелочей при нагревании способны растворять
также и
некоторые металлы (те, соединения которых обладают амфотерными
свойствами):

2Al
+ 2NaOH + 6H2O = 2Na[Al(OH)4]
+ 3H2↑,

Zn
+ 2KOH + 2H2O = K2[Zn(OH)4]
+ H2↑.

Растворы щелочей
имеют рН
> 7 (щелочная среда), изменяют
окраску индикаторов
(лакмус – синяя, фенолфталеин – фиолетовая).

© М.В. Андрюxoва, Л.Н. Бopoдина

К следующему разделу
К оглавлению


Источник

Шингиз Арсланбеков  ·  21 мая

2,0 K

Подготовка к ЕГЭ, ОГЭ и другим экзаменам.
Повышение успеваемости по биологии.
Занимательна…  ·  biostudy.ru

К элементам 3 периода главной подгруппы I периода относятся элементы подгруппы бора. За исключением бора, все они являются металлами.

Оксиды бора будут вести себя как типичные кислотные оксиды, оксиды титана и индия — как типичные основные оксиды, оксиды аллюминия и галлия — амфотерные оксиды.

Как узнать, сколько атомов вещества в формуле?
Пример: HBrO..(2,3,4)?
(Бромная кислота)

по образованию химик-технолог, работаю в компании, продающей лабораторное…

Если по-простому, то пользуются расчетом через степени окисления. Для кислорода принимают (кроме соединений со фтором и перекисей) степень окисления равной минус 2, для водорода (кроме гидридов) плюс один.

Кислота — это соединение кислотообразующего оксида и воды, поэтому степень окисления элемента в кислоте такая же, как и в оксиде. Бромная — высшая кислота, степень окисления брома +7.

Количество элементов в оксиде считают через наименьшее общее кратное степеней окисления. Для 7 и 2 это 14. Тогда количество атомов брома в оксиде — 2, кислорода — 7. Формула оксида Br2O7. Добавим воду, получим H2Br2O8, а теперь проверим, можно ли молекулу «поделить пополам». Получится HBrO4.

Читайте также:  Какие свойства организмов обуславливают различия между особями

Для большинства неорганических кислот это работает. В принципе, сложности только с ортофосфорной — H3PO4, но существует и метафосфорная кислота HPO3. Рассмотрение их различий несколько выходит за рамки школьной химии.

Прочитать ещё 1 ответ

Осуществимы ли реакции:
соль +неметалл,галоген + кислота(без галогена)?
Реакция замещения металла в основаниях по такому же принципу как и в солях? Если металл правее в ряду, значит реакция не идет?

Химик, программист, трансженщина, феминистка

Да легко:
1. Na2S + S -> Na2S2 (Na2S4, Na2S5 и т.д.)
2. H2SO3 + Cl2 + H2O -> H2SO4 + 2HCl
3. С основаниями сложнее, поскольку растовримых в воде оснований мало и все они весьма активных металлов, но если нас устраивает расплав основания, то конечно всё пойдет как по маслу (главное не забыть делать это в инертной атмосфере)
NaOH + K -> Na + KOH
ну и классический термит — это по сути тоже подобный пример реакции (только основной оксид, а не гидроксид)
Fe3O4 + Al -> Al2O3 + Fe

Какими химическими реакциями обусловлена токсичность веществ?

Главный редактор издания «Популярный университет», химик по образованию, продвигаю массы…  ·  popuni.ru

Для начала давайте определимся с определением слова «токсичность». Токсичность — это вполне конкретный показатель, который отражает летальную дозу веществ. Чем ниже летальная доза, тем выше токсичность, и наоборот. То есть, например, у повареной соли летальная доза составляет 3 г на килограмм. Это много, поэтому соль малотоксична. У ботулотоксина токчичность очень высокая, так как требуется всего 1 нанограмм на килограмм веса этого вещества, чтобы человек умер.

Смерть от токсинов обусловлена множеством химических реакций, и для каждого вещества они свои. Ботулотоксин, например, парализует все мышцы тела, и человек умирает от паралича дыхательной мускулатуры и/или остановки сердца.

Другая группа соединений — металлы — склонны накапливаться в человеческих органах в виде отложений и вызывать различные нарушения. Например, избыточное накопление железа в организме может спровоцировать развитие ряда заболеваний, включая цирроз, артрит, и сахарный диабет.

Существует летальная доза и у таких, казалось бы, безопасных веществ, как витамины. Витамин С например, может привести к смерти, если принять его за один раз более 12 грамм на килограмм веса. Тогда нарушается всасывание другого витамина — B12, — повышается концентрация мочевой кислоты в моче, развиваются камни в почках и избыток этого вещества в клетках может просто нарушить их функцию.

Прочитать ещё 1 ответ

Как изменяется полярность связи в оксидах второго периода: li2o, beo, b2o3, co2, n2o5? ответ?

Образование химическое. Интересуюсь IT- технологиями, религией, футболом и…

Полярность связи в оксидах второго периода, уменьшается. Находим ее, по разнице электроотрицательностей атомов соединения(Электроотрицательность — табличные данные).

Разницы электроотрицательностей этих оксидов:

Li2O 3,5-0,97=2,53

BeO 3,5-1,47=2,03

B2O3 3,5-2,02=1,48

CO2 3,5-2,5=1

N2O5 3,5-3,07=0,43

Источник

Ãèäðîêñèäû – ýòî õèìè÷åñêèå ñîåäèíåíèÿ, ñîñòîÿùèå èç àòîìà ìåòàëëà è ãèäðîêñèëüíîé ãðóïïû (ÎÍ). Íàïðèìåð, ãèäðîêñèä íàòðèÿ – NaOH, ãèäðîêñèä êàëüöèÿ – Ca(OH)2, ãèäðîêñèä áàðèÿ – Ba(OH)2 è ò.ä.

Ïîëó÷åíèå ãèäðîêñèäîâ.

1. Ðåàêöèÿ îáìåíà:

CaSO4 + 2NaOH = Ca(OH)2 + Na2SO4,

2. Ýëåêòðîëèç âîäíûõ ðàñòâîðîâ ñîëåé:

2KCl + 2H2O = 2KOH + H2 ↑+ Cl2↑,

3. Âçàèìîäåéñòâèå ùåëî÷íûõ è ùåëî÷íî-çåìåëüíûõ ìåòàëëîâ èëè èõ îêñèäîâ ñ âîäîé:

Ê + 2H2O = 2KOH + H2 ↑,

Õèìè÷åñêèå ñâîéñòâà ãèäðîêñèäîâ.

1. Ãèäðîêñèäû èìåþò ùåëî÷íîé õàðàêòåð ñðåäû.

2. Ãèäðîêñèäû ðàñòâîðÿþòñÿ â âîäå (ùåëî÷è) è áûâàþò íåðàñòâîðèìûìè. Íàïðèìåð, KOH – ðàñòâîðÿåòñÿ â âîäå, à Ca(OH)2 – ìàëîðàñòâîðèì, èìååò ðàñòâîð áåëîãî öâåòà. Ìåòàëëû 1-îé ãðóïïû ïåðèîäè÷åñêîé òàáëèöû Ä.È. Ìåíäåëååâà äàþò ðàñòâîðèìûå îñíîâàíèÿ (ãèäðîêñèäû).

3. Ãèäðîêñèäû ðàçëàãàþòñÿ ïðè íàãðåâå:

Cu(OH)2=CuO + H2O.

4. Ùåëî÷è ðåàãèðóþò ñ êèñëîòíûìè è àìôîòåðíûìè îêñèäàìè:

2KOH + CO2 = K2CO3 + H2O.

5. Ùåëî÷è ìîãóò ðåàãèðîâàòü ñ íåêîòîðûìè íåìåòàëëàìè ïðè ðàçëè÷íûõ òåìïåðàòóðàõ ïî-ðàçíîìó:

NaOH + Cl2 = NaCl + NaOCl + H2O (õîëîä),

NaOH + 3Cl2 = 5NaCl + NaClO3 + 3H2O (íàãðåâ).

6. Âçàèìîäåéñòâóþò ñ êèñëîòàìè:

KOH + HNO3 = KNO3 + H2O.

  

Êàëüêóëÿòîðû ïî õèìèè

Õèìèÿ îíëàéí íà íàøåì ñàéòå äëÿ ðåøåíèÿ çàäà÷ è óðàâíåíèé.
Êàëüêóëÿòîðû ïî õèìèè
  

Ñîåäèíåíèÿ õèìè÷åñêèõ ýëåìåíòîâ

Àëêàíû, âîäà, ãàëîãåíû, ìûëà, æèðû, ãèäðîêñèäû; îêñèäû, õëîðèäû, ïðîèçâîäíûå õèìè÷åñêèõ ýëåìåíòîâ òàáëèöû Ìåíäåëååâà
Ñîåäèíåíèÿ õèìè÷åñêèõ ýëåìåíòîâ
  

Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó õèìèè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ
  

Õëîðèäû ìåòàëëîâ.

Õëîðèä ìåòàëëî⠖ ýòî ïðîèçâîäíîå îò õëîðîâîäîðîäíîé êèñëîòû è àòîìîì ìåòàëëà.
Õëîðèäû ìåòàëëîâ.
  

Ôòîðîâîäîðîä.

Ôòîðîâîäîðîä – ýòî êèñëîòà ñðåäíåé ñèëû HF .
Ôòîðîâîäîðîä.

Источник

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH)2. Однако существуют исключения. Так, гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2 к основаниям не относятся.

Читайте также:  Каким свойством обладает число 0 при сложении

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2. Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

щелочи и нерастворимые основания

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

примеры реакций нейтрализации

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

взаимодействие гидроксида железа серной и кремниевой кислотами

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH)2 могут образовывать основные соли при недостатке кислоты, например:

образование основных солей

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

взаимодействие щелочей с кислотными оксидами

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P2O5, SO3, N2O5, с образованием средних солей:

Cu(OH)2 + SO3 <.p>

Нерастворимые основания вида Me(OH)2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

Cu(OH)2 + CO2 = (CuOH)2CO3 + H2O

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

гидроксид железа и диоксид кремния не реагируют

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

NaOH взаимодействие с Al2O3 Al(OH)3 ZnO Zn(OH)2 при сплавлении

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

взаимодействие водных растворов щелочей с амфотерными оксидами и нидроксидами гидроксокомплексы

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na[Al(OH)4] образуется соль Na3[Al(OH)6]:

образвание гексагидроксоалюмината натрия

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Например:

взаимодействие оснований с солями необходимые требования

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH)2, устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH)2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000oC:

разложение гидроксида кальция

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 oC:

разложение гидроксида меди температура

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с кислотами:

Взаимодействие гидроксида цинка с серной кислотой

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с такими кислотами, как H2S, H2SO3 и H2СO3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

гидроксиды трехвалентных металлов не реагируют с сернистой угольной и сероводородной кислотами

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO3, P2O5, N2O5):

Al(OH)3 SO3 реакция

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с кислотными оксидами SO2 и СO2.

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

NaOH водный раствор реакция с Al(OH)3

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

твердый NaOH реакция с Al(OH)3 при сплавлении

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Na2O + Al(OH)3 взаимодействие

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду:

Al(OH)3 реакция разложения

Источник

Анонимный вопрос  ·  30 мая 2019

30,6 K

Амфотерными называются элементы, которые в соединениях проявляют свойства металлов и неметаллов. К ним относятся элементы А-групп Периодической системы — Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп — Cr, Mn, Fe, Zn, Cd, Au и др.

Оксиды и гидроксиды этих соединений, соотвественно, будут амфотерными.

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  ·  vk.com/mendo_him

☘️Амфотерные оксиды — это оксиды, у которых элемент в степени окисления +3 или +4
Например, Al2O3, ТiO2, Cr2O3, Fe2O3, PbO2
☘️Но☝️
ZnO, BeO тоже амфотерные, хотя Zn и Be в степени окисления +2. Это нужно запомнить)
☘️Гидроксиды, которые соответствуют амфотерными оксидам, тоже амофотерны ????

Эффективный репетитор по математике, физике, химии. Автор книг и консультант по обучению…  ·  repetitor-5.ru

Читайте также:  Охарактеризуйте свойства белого и красного фосфора какими опытами можно

Из #викивпечку : Амфоте́рность (от др.-греч. ἀμφότεροι «двойственный; обоюдный») — способность некоторых химических веществ и соединений проявлять в зависимости от условий как кислотные, так и осно́вные свойства.
Похожее слово есть в биологии: «амфибия» — животное, которое может жить и в воде, и на суше. Амфи — и тот, и другой, био — жизнь. Живёт… Читать далее

Почему гидроксид кобальта бывает синей, розовой и фиолетовой окраски?

Researcher, Institute of Physics, University of Tartu

Цвет гидроксида кобальта обусловлен поглощением, связанным с переходами d-электронов иона кобальта. То есть, фактически, цвет соединения будет обусловлен энергией перехода. Энергия же перехода между d-орбиталями (т.н. энергия расщепления) зависит от типа лигандов. Есть такие понятия «лиганд сильного поля» и «лиганд слабого поля», я не хочу вдаваться в подробности можете почитать, например, здесь: wikipedia.org . Для данного вопроса важно, что в гидроксиде кобальта у иона кобальта может быть два лиганда — это, собственно, ОН-группа и молекулярная вода. ОН группа — лиганд более слабого поля, чем вода. Поэтому, насколько я понимаю, в зависимости от соотношения ОН-групп и воды в ближней координационной сфере иона кобальта, гидроксид будет менять цвет от розового (много воды, как в растворах солей кобальта, в которых ион кобальта как раз в виде аквакомплекса плавает) до голубого (много ОН групп).

Что такое «оляция» и «оксоляция»?

Researcher, Institute of Physics, University of Tartu

Возьмем обычный гидроксид. Ну, скажем, гидроксид титана или ортотитановая кислота, кому как нравится. Формула Ti(OH)4. Т.е. условная молекула этого соединения содержит четыре ОН-группы, присоединенные к атому титана. Каждая из этих ОН-групп присоединена к титану так: Ti-OH. Это обычный вариант, обычная концевая («терминальная») ОН-группа, которая присоединена сигма-связью только к одному атому, как ей и положено.
Однако, у кислорода есть неподеленная электронная пара, которая может «сесть» на чью-нибудь незаполненную орбиталь по донорно-акцепторному механизму, а у титана есть куда ей сесть. При этом происходит образование мостиковой ОН-группы между двумя молекулами гидроксида титана (т.е. ОН-группа уже была по обычной сигма-связи соеденина с одним атомом титана, а теперь присоединилась неподеленной парой к еще одному. Выглядит это так: (HO)3Ti-O(H)-Ti(OH)4 . При этом мы видим, что мостиковый кислород имеет три связи, а один из атомов титана — пять. Такая мостиковая ОН-группа называется «ол-группа«, а процесс ее образования, которыя я описал выше — оляцией.
Это структура с формально трехвалентным кислородом и пятивалентным титаном является неустойчивой и довольно быстро переходит в более удобоваримую структуру с мостиковым атомом кислорода: (HO)3Ti-O(H)-Ti(OH)4 -> (HO)3Ti-O-Ti(OH)3 + H2O. Теперь, как мы видим, у всех всё в порядке — кислород двухвалентный, оба титана четырехвалентны, всё как обычно. Этот процесс называется оксоляцией, поскольку ол-группа превращается в мостиковую оксо-группу (-O-). Можно заметить, что отщепилась молекула воды и гидроксид как бы стал на шажок ближе к оксиду. Это будет совершенно справедливое замечание, поскольку конечным результатом оксоляции (далеко не всегда достигаемым, конечно) и будет оксид, у которого ОН-группы остались только на поверхности.

Процессы оляции-оксоляции характерны для амфотерных гидроксидов, а также для слабых кислот и оснований. Обычно происходят после их образования в результате гидролиза, то есть сначала из какой-то соли в результате гидролиза получается гидроксид чего-то, а потом постепенно он претерпевает процессы оляции-оксоляции, при этом из индивидуальных молекул этого гидроксида с одним центральным атомом получаются многоатомные (конденсированные) оксо-гидроксосоединения (это называют поликонденсацией). Именно в связи с этим процессом свежеосажденные гидроксиды гораздо более реакционно способны, чем состарившиеся. У преподавателей есть садистический эксперимент для первокурсников или старших школьников — всем известно, что гидроксид алюминия растворяется в избытке щелочи. Так вот надо аккуратно осадить его, потом оставить на некоторое время, а потом попросить студента растворить его в NaOH. Если студент не в курсе дела, то он будет его растворять до позеленения и навсегда потом запомнит, что такое оляция-оксоляция 🙂

Какие вещества называют оксидами?

Мои интересы: разнообразны, но можно выделить следующие: литература, история…

Оксиды это соединения различных химических элементов с кислородом. При этом кислород находистя в опредленной степени окисления. В реакцию с кислородом могут вступать и металлы, и неметаллы. Чаще всего в результате реакций с неметаллами образуются кислотные оксиды, а с металлами — основания.

Какими способами доказывается амфотерный характер соединений?

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  ·  vk.com/mendo_him

☘️Амфотерные соединения — это вещества, которые ведут себя, как кислоты и как основания????
Возьмем Al(OH)3. Как доказать, что он амфотерный? ????
????Добавим в него кислоту HCl
Al(OH)3+3HCl=3H2O+AlCl3
Гидроксид алюминия реагирует с кислотой подобно основаниям)
????Теперь возьмём щёлочь NaOH
Al(OH)3+NaOH=Na[Al(OH)4]
Мы видим, что он реагирует основаниями, как кислоты)
Делаем вывод, что он амфотерный

Источник