Какие хим свойства характерны для высшего оксида элемента 3
Шингиз Арсланбеков · 21 мая
1,7 K
Подготовка к ЕГЭ, ОГЭ и другим экзаменам.
Повышение успеваемости по биологии.
Занимательна… · biostudy.ru
К элементам 3 периода главной подгруппы I периода относятся элементы подгруппы бора. За исключением бора, все они являются металлами.
Оксиды бора будут вести себя как типичные кислотные оксиды, оксиды титана и индия — как типичные основные оксиды, оксиды аллюминия и галлия — амфотерные оксиды.
Сколько неметаллов в периодической системе менделеева?
Водород, гелий, бор, углерод, азот, кислород, фтор, неон, кремний, фосфор, сера, хлор, аргон, германий, мышьяк, селен, бром, криптон, йод, ксенон, астат, радон — всего 22 элемента.
Как изменяется полярность связи в оксидах второго периода: li2o, beo, b2o3, co2, n2o5? ответ?
Образование химическое. Интересуюсь IT- технологиями, религией, футболом и…
Полярность связи в оксидах второго периода, уменьшается. Находим ее, по разнице электроотрицательностей атомов соединения(Электроотрицательность — табличные данные).
Разницы электроотрицательностей этих оксидов:
Li2O 3,5-0,97=2,53
BeO 3,5-1,47=2,03
B2O3 3,5-2,02=1,48
CO2 3,5-2,5=1
N2O5 3,5-3,07=0,43
Как узнать, сколько атомов вещества в формуле?
Пример: HBrO..(2,3,4)?
(Бромная кислота)
по образованию химик-технолог, работаю в компании, продающей лабораторное…
Если по-простому, то пользуются расчетом через степени окисления. Для кислорода принимают (кроме соединений со фтором и перекисей) степень окисления равной минус 2, для водорода (кроме гидридов) плюс один.
Кислота — это соединение кислотообразующего оксида и воды, поэтому степень окисления элемента в кислоте такая же, как и в оксиде. Бромная — высшая кислота, степень окисления брома +7.
Количество элементов в оксиде считают через наименьшее общее кратное степеней окисления. Для 7 и 2 это 14. Тогда количество атомов брома в оксиде — 2, кислорода — 7. Формула оксида Br2O7. Добавим воду, получим H2Br2O8, а теперь проверим, можно ли молекулу «поделить пополам». Получится HBrO4.
Для большинства неорганических кислот это работает. В принципе, сложности только с ортофосфорной — H3PO4, но существует и метафосфорная кислота HPO3. Рассмотрение их различий несколько выходит за рамки школьной химии.
Прочитать ещё 1 ответ
На элементе какой группы оканчивается правильный период натуральной последовательности элементов?
Все мы знакомы с Периодической Системой Элементов. Автором которой считаем великого российского учёного Дмитрия Ивановича Менделеева, который в 1869 году разработал первый вариант периодической таблицы элементов, в которой не было единообразного окончания периодов на элементе определённой химической группы. С 1870-1871 годов по 1906 годы Менделеев стал неизменно оканчивать периоды на элементе группы галогенов.
Швейцарский химик Альфред Вернер в 1905 году окончил периоды на элементе группы благородных газов, тогда как Менделеев начинал периоды благородным газом. Но Последователи Менделеева приписывают именно Менделееву предложение оканчивать периоды на элементе группы благородных газов.
Мало кто из учёных и почти никто из школьников и простых обывателей знают, что немецкий врач и великий физик и химик Юлиус Лотар Мейер в 1862 году построил фрагмент периодической таблицы элементов с окончанием периодов на элементе группы щёлочноземельных металлов.
Кто же из этих авторов правильно окончил периоды Натуральной Последовательности элементов?
Шингиз Арсланбеков · 21 мая
1,7 K
Подготовка к ЕГЭ, ОГЭ и другим экзаменам.
Повышение успеваемости по биологии.
Занимательна… · biostudy.ru
К элементам 3 периода главной подгруппы I периода относятся элементы подгруппы бора. За исключением бора, все они являются металлами.
Оксиды бора будут вести себя как типичные кислотные оксиды, оксиды титана и индия — как типичные основные оксиды, оксиды аллюминия и галлия — амфотерные оксиды.
Сколько неметаллов в периодической системе менделеева?
Водород, гелий, бор, углерод, азот, кислород, фтор, неон, кремний, фосфор, сера, хлор, аргон, германий, мышьяк, селен, бром, криптон, йод, ксенон, астат, радон — всего 22 элемента.
Как изменяется полярность связи в оксидах второго периода: li2o, beo, b2o3, co2, n2o5? ответ?
Образование химическое. Интересуюсь IT- технологиями, религией, футболом и…
Полярность связи в оксидах второго периода, уменьшается. Находим ее, по разнице электроотрицательностей атомов соединения(Электроотрицательность — табличные данные).
Разницы электроотрицательностей этих оксидов:
Li2O 3,5-0,97=2,53
BeO 3,5-1,47=2,03
B2O3 3,5-2,02=1,48
CO2 3,5-2,5=1
N2O5 3,5-3,07=0,43
Как узнать, сколько атомов вещества в формуле?
Пример: HBrO..(2,3,4)?
(Бромная кислота)
по образованию химик-технолог, работаю в компании, продающей лабораторное…
Если по-простому, то пользуются расчетом через степени окисления. Для кислорода принимают (кроме соединений со фтором и перекисей) степень окисления равной минус 2, для водорода (кроме гидридов) плюс один.
Кислота — это соединение кислотообразующего оксида и воды, поэтому степень окисления элемента в кислоте такая же, как и в оксиде. Бромная — высшая кислота, степень окисления брома +7.
Количество элементов в оксиде считают через наименьшее общее кратное степеней окисления. Для 7 и 2 это 14. Тогда количество атомов брома в оксиде — 2, кислорода — 7. Формула оксида Br2O7. Добавим воду, получим H2Br2O8, а теперь проверим, можно ли молекулу «поделить пополам». Получится HBrO4.
Для большинства неорганических кислот это работает. В принципе, сложности только с ортофосфорной — H3PO4, но существует и метафосфорная кислота HPO3. Рассмотрение их различий несколько выходит за рамки школьной химии.
Прочитать ещё 1 ответ
На элементе какой группы оканчивается правильный период натуральной последовательности элементов?
Все мы знакомы с Периодической Системой Элементов. Автором которой считаем великого российского учёного Дмитрия Ивановича Менделеева, который в 1869 году разработал первый вариант периодической таблицы элементов, в которой не было единообразного окончания периодов на элементе определённой химической группы. С 1870-1871 годов по 1906 годы Менделеев стал неизменно оканчивать периоды на элементе группы галогенов.
Швейцарский химик Альфред Вернер в 1905 году окончил периоды на элементе группы благородных газов, тогда как Менделеев начинал периоды благородным газом. Но Последователи Менделеева приписывают именно Менделееву предложение оканчивать периоды на элементе группы благородных газов.
Мало кто из учёных и почти никто из школьников и простых обывателей знают, что немецкий врач и великий физик и химик Юлиус Лотар Мейер в 1862 году построил фрагмент периодической таблицы элементов с окончанием периодов на элементе группы щёлочноземельных металлов.
Кто же из этих авторов правильно окончил периоды Натуральной Последовательности элементов?
- Главная
- Вопросы & Ответы
- Вопрос 1775306
Гость:
6 лет назад
55
1
Лучший ответ:
Гость:
Элемент — сера. Высший оксид — SO₃. Ярко выраженный кислотный характер:
1) При взаимодействии с водой образуется кислота:
H₂O SO₃ = H₂SO₄ — серная кислота
2) Взаимодействует с основными оксидами и основаниями:
Na₂O SO₃ = Na₂SO₄
2KOH SO₃ = K₂SO₄ H₂O
6 лет назад
Ваш ответ (не менее 20 символов):
Ваше имя (не менее 2 символов):
Лучшее из галереи:
Другие вопросы:
Гость:
Какую роль отыгрывает право в нашей жизни
6 лет назад
Смотреть ответ
9
1
Гость:
Проверочное слово крихкий
6 лет назад
Смотреть ответ
4
1
Гость:
подскажите пожалуйста ,что это за растение,буду благодарна:3
6 лет назад
Смотреть ответ
5
1
Гость:
Двухвостка какой корень
6 лет назад
Смотреть ответ
13
1
Гость:
Если смешать 50мл воды и 50мл спирта,то объем полученной смеси окажется равным 96 мл.Как можно объяснить это явление?
6 лет назад
Смотреть ответ
5
1
Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими
соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.
Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением
периодического закона.
В периодической таблице элементы расположены в порядке увеличения атомного заряда, группируются в «строки и столбцы» — периоды и группы.
Период — ряд горизонтально расположенных химических элементов. 1, 2 и 3 периоды называются малыми, они состоят из одного ряда элементов.
4, 5, 6 — называются большими периодами, они состоят из двух рядов химических элементов.
Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в
высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).
Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете
предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.
Радиус атома
Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая
говорит о наиболее вероятном месте нахождения электрона.
В периоде радиус атома уменьшается с увеличением порядкового номера элементов («→» слева направо). Это связано с тем, что с увеличением номера группы
увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.
С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.
Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде «←» справа налево.
В группе радиус атома увеличивается с увеличением заряда атомных ядер — сверху вниз «↓». Чем больше период, тем больше электронных орбиталей вокруг атома,
соответственно, и больше его радиус.
С уменьшением заряда атома в группе радиус атома уменьшается — снизу вверх «↑». Это связано с уменьшением количества электронных орбиталей вокруг
атома. Для примера возьмем атомы бора и алюминия, элементов, расположенных в одной группе.
Период, группа и электронная конфигурация
Обратите внимание еще раз на важную деталь: элементы, находящиеся в одной группе (главной подгруппе!), имеют сходную конфигурацию внешнего уровня.
Так у бора на внешнем уровне расположены 3 электрона, у алюминия — тоже 3. Оба они в III группе.
Такая закономерность иногда может сильно облегчить жизнь, однако у элементов побочных подгрупп она отсутствует — там нужно считать электроны
«вручную», располагая их на электронных орбиталях.
Раз уж мы повели речь об электронных конфигурациях, давайте запишем их для бора и алюминия, чтобы лучше представлять их внешний уровень и увидеть
то самое «сходство»:
- B5 — 1s22s22p1
- Al13 — 1s22s22p63s23p1
Общую электронную конфигурацию для элементов III группы главной подгруппы можно записать ns2np1. Это будет работать для
бора, внешний уровень которого 2s22p1, алюминия — 3s23p1, галия — 4s24p1,
индия — 5s25p1 и таллия — 6s26p1. За «n» мы принимаем номер периода.
Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы,
то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.
Вам остается только распределить известное число электронов по s и p ячейкам, а затем подставить номер периода — и вот быстро получена
конфигурация внешнего уровня. Предлагаю посмотреть на примере ниже 🙂
Очень надеюсь, что теперь вы знаете: только глядя на положение элемента в периодической таблице, на группу и период, в которых он расположен,
вы уже можете составить конфигурацию его внешнего уровня. Безусловно, это для элементов главных подгрупп. Повторюсь: у побочных — только «вручную».
Длина связи
Длина связи — расстояние между атомами химически связанных элементов. Очевидно, что понятия длины связи и атомного радиуса взаимосвязаны напрямую.
Чем больше радиус атома, тем больше длина связи.
Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.
Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех
веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.
Металлические и неметаллические свойства
В периоде с увеличением заряда атома металлические свойства ослабевают, неметаллические — усиливаются (слева направо «→»). В группе с увеличением
заряда атома металлические свойства усиливаются, а неметаллические — ослабевают (сверху вниз «↓»).
Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают
S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.
Таким образом, самые сильные металлические свойства проявляет рубидий, но с другой стороны — у него самые слабые неметаллические свойства. Сера
обладает самыми слабыми металлическими свойствами, но, если посмотреть по-другому, сера — самый сильный неметалл.
Распределение металлов и неметаллов в периодической таблице также является наглядным отображением этого правила. Если провести условную
линию, проходящую от бора до астата, то справа окажутся неметаллы, а слева — металлы.
Основные и кислотные свойства
Основные свойства в периоде с увеличением заряда атома уменьшаются, кислотные — возрастают. В группе с увеличением заряда атома основные
свойства усиливаются, а кислотные — ослабевают.
Кислотные и основные свойства противопоставлены друг другу, как противопоставлены металлические и неметаллические. Где первые усиливаются,
вторые — убывают. Все аналогично, поэтому смело ассоциируйте одни с другими, так будет гораздо легче запомнить.
Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных
кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).
Это можно объяснить в темах диссоциации и химических связей. Когда мы дойдем до соответствующей темы, я напомню про HF и водородные связи между
молекулами, которые делают эту кислоту самой слабой. Сейчас воспринимайте это как исключение: HF — самая слабая из этих кислот, а
HI — самая сильная.
Восстановительные и окислительные свойства
Восстановительные свойства в периоде с увеличением заряда атома ослабевают, окислительные — усиливаются. В группе с увеличением заряда
атома восстановительные свойства усиливаются, а окислительные — ослабевают.
Ассоциируйте восстановительные свойства с металлическими и основными, а окислительные — с неметаллическими и кислотными. Так гораздо проще
запомнить 😉
Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону
Электроотрицательность — способность атома, связанного с другими, приобретать отрицательный заряд (притягивать к себе электроны).
Мы уже касались ее в статье, посвященной степени окисления. Это важное свойство, ведь более ЭО-ый атом притягивает
к себе электроны и уходит в отрицательную степень окисления со знаком минус «-«.
Все перечисленные в подзаголовке свойства вместе с ЭО усиливаются в периоде с увеличением заряда атома, в группе с увеличением заряда атома
они ослабевают. Таким образом, самый электроотрицательный элемент расположен справа вверху таблицы Д.И. Менделеева — это фтор.
Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий
расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе
выше теллура, значит и ее электроотрицательность тоже выше.
Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на
себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.
Понятию ЭО-ости «синонимичны» также понятия сродства к электрону — энергии, выделяющейся при присоединении электрона к атому, и энергии ионизации —
количеству энергии, которое необходимо для отщепления электрона от атома. И то, и другое возрастают с увеличением электроотрицательности.
Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.
Высшие оксиды и летучие водородные соединения (ЛВС)
В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды,
ниже строка с летучими водородными соединениями.
Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру,
для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.
В таблице видно, что для VIa группы формула высшего оксида RO3, а, к примеру, для IIIa группы — R2O3. Напишем
высшие оксиды для веществ из VIa : SO3, SeO3, TeO3 и IIIa группы: B2O3, Al2O3,
Ga2O3.
На экзамене строка с готовыми «высшими» оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим,
что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.
С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене.
Я расскажу вам, как легко их запомнить.
ЛВС характерны для IV, V, VI и VII группы. Элементы этих групп более электроотрицательны, чем водород, поэтому ходят в «-» отрицательную СО.
Минимальная степень окисления для элементов главных подгрупп, начиная с IV группы, может быть рассчитана так: номер группы — 8.
Например, для углерода минимальная СО = 4-8 = -4; для азота 5-8 = -3; для кислорода 6-8 = -2; для фтора 7-8 = -1. Для того, чтобы запомнить
ЛВС, вы должны ассоциировать IV, V, VI и VII группы с хорошо известными вам веществами: метаном, аммиаком, водой и фтороводородом.
Так как общее строение ЛВС в пределах одной группы сходно, то, вспомнив например H2O для кислорода в VI группе, вы легко
найдете формулы других ЛВС VI группы: серы — H2S, H2Se, H2Te, H2Po.
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.