Какие физико химические свойства белков обусловливают их растворимость

§ 9. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ

Белки – это очень крупные молекулы, по своим размерам они могут уступать только отдельным представителям нуклеиновых кислот и полисахаридам. В таблице 4 представлены молекулярные характеристики некоторые белков.

Таблица 4

Молекулярные характеристики некоторых белков

Белок

Относитель-ная молекулярная масса

Число цепей

Число аминокислотных остатков

Инсулин

5733

2

51

Рибонуклеаза

13683

1

124

Миоглобин

16890

1

153

Химотрипсин

22600

3

241

Гемоглобин

64500

4

574

Глутамат-дегидрогеназа

~1000000

~40

~8300

В молекулах белков может содержаться самое разное количество аминокислотных остатков — от 50 и до нескольких тысяч; относительные молекулярные массы белков также сильно колеблются — от нескольких тысяч (инсулин, рибонуклеаза) до миллиона (глутаматдегидрогеназа) и более. Число полипептидных цепей в составе белков может составлять от единицы до нескольких десятков и даже тысяч. Так, в состав белка вируса табачной мозаики входит 2120 протомеров.

Зная относительную молекулярную массу белка, можно приблизительно оценить, какое число аминокислотных остатков входит в его состав. Средняя относительная молекулярная масса аминокислот, образующих полипептидную цепь, равна 128. При образовании пептидной связи происходит отщепление молекулы воды, следовательно, средняя относительная масса аминокислотного остатка составит 128 – 18 = 110. Используя эти данные, можно подсчитать, что белок с относительной молекулярной массой 100000 будет состоять приблизительно из 909 аминокислотных остатков.

Электрические свойства белковых молекул

Электрические свойства белков определяются присутствием на их поверхности положительно и отрицательно заряженных аминокислотных остатков. Наличие заряженных группировок белка определяет суммарный заряд белковой молекулы. Если в белках преобладают отрицательно заряженные аминокислоты, то его молекула в нейтральном растворе будет иметь отрицательный заряд, если преобладают положительно заряженные – молекула будет иметь положительный заряд. Суммарный заряд белковой молекулы зависит и от кислотности (рН) среды. При увеличении концентрации ионов водорода (увеличении кислотности) происходит подавление диссоциации карбоксильных групп:

Какие физико химические свойства белков обусловливают их растворимость

и в то же время увеличивается число протонированных амино-групп;  

Какие физико химические свойства белков обусловливают их растворимость

Таким образом, при увеличении кислотности среды происходит уменьшение на поверхности молекулы белка числа отрицательно заряженных и увеличение числа положительно заряженных групп. Совсем другая картина наблюдается при снижении концентрации ионов водорода и увеличении концентрации гидроксид-ионов. Число диссоциированных карбоксильных групп возрастает 

Какие физико химические свойства белков обусловливают их растворимость 

и снижается число протонированных аминогрупп 

Какие физико химические свойства белков обусловливают их растворимость.

Итак, изменяя кислотность среды, можно изменить и заряд молекулы белка. При увеличении кислотности среды в молекуле белка снижается число отрицательно заряженных группировок и увеличивается число положительно заряженных, молекула постепенно теряет отрицательный и приобретает положительный заряд. При снижении кислотности раствора наблюдается противоположная картина. Очевидно, что при определенных значениях рН  молекула будет электронейтральной, т.е. число положительно заряженных групп будет равно числу отрицательно заряженных групп, и суммарный заряд молекулы будет равен нулю (рис. 14).

Значение рН, при котором суммарный заряд белка равен нулю, называется изоэлектрической точкой и обозначается pI.

Какие физико химические свойства белков обусловливают их растворимость

Рис. 14. В состоянии изоэлектрической точки суммарный заряд молекулы белка равен нулю

Изоэлектрическая точка для большинства белков находится в области рН от 4,5 до 6,5. Однако есть и исключения. Ниже приведены изоэлектрические точки некоторых белков: 

Белок

pI

Пепсин

1,0

Каталаза

5,1

Рибонуклеаза

7,8

Лизоцим

11,0

При значениях рН ниже  изоэлектрической точки белок несет суммарный положительный заряд, выше – суммарный отрицательный.

В изоэлектрической точке растворимость белка минимальна, так как его молекулы в таком состоянии электронейтральны  и между ними нет сил взаимного отталкивания, поэтому  они могут «слипаться» за счет водородных и ионных связей, гидрофобных взаимодействий, ван-дер-ваальсовых сил.  При значениях рН, отличающихся от рI, молекулы белка будут нести одинаковый заряд — либо положительный, либо отрицательный. В результате этого между молекулами будут существовать силы электростатического отталкивания, препятствующие их «слипанию», растворимость будет выше.

Растворимость белков

Белки бывают растворимые и нерастворимые в воде. Растворимость белков зависит от их структуры, величины рН, солевого состава раствора, температуры и других факторов и определяется природой тех групп, которые находятся на поверхности белковой молекулы. К нерастворимым белкам относятся кератин (волосы, ногти, перья), коллаген (сухожилия), фиброин (щелк, паутина).  Многие другие белки растворимы в воде. Растворимость определяется наличием на их поверхности заряженных и полярных группировок (-СОО-, -NH3+, -OH и др.). Заряженные и полярные группировки белков притягивают к себе молекулы воды, и вокруг них формируется гидратная оболочка (рис. 15), существование которой обусловливает их растворимость в воде.

Какие физико химические свойства белков обусловливают их растворимость

Рис. 15. Образование гидратной оболочки вокруг молекулы белка.

На растворимость белка влияет наличие нейтральных солей (Na2SO4, (NH4)2SO4 и др.) в растворе. При малых концентрациях солей растворимость белка увеличивается (рис. 16), так как в таких условиях увеличивается степень диссоциации полярных групп и экранируются заряженные группы белковых молекул, тем самым снижается белок-белковое взаимодействие, способствующее образованию агрегатов и выпадению белка в осадок. При высоких концентрациях солей растворимость белка снижается (рис. 16) вследствие разрушения гидратной оболочки, приводящего к агрегации молекул белка.

Какие физико химические свойства белков обусловливают их растворимость

Рис. 16. Зависимость растворимости белка от концентрации соли

Существуют белки, которые растворяются только в растворах солей и не растворяются в чистой воде, такие белки называют глобулины. Существуют и другие белки – альбумины, они в отличие от глобулинов хорошо растворимы в чистой воде.
Растворимость белков зависит и от рН растворов. Как мы уже отмечали, минимальной растворимостью обладают белки в изоэлектрической точке, что объясняется отсутствием электростатического отталкивания между молекулами белка.
При определенных условиях белки могут образовывать гели. При образовании геля молекулы белка формируют густую сеть, внутреннее пространство которой заполнено растворителем. Гели образуют, например, желатина (этот белок используют для приготовления желе) и белки молока при приготовлении простокваши.
На растворимость белка оказывает влияние и температура. При действии высокой температуры многие белки выпадают в осадок вследствие нарушения их структуры, но об этом более подробно поговорим в следующем разделе.

Денатурация белка

Рассмотрим хорошо нам знакомое явление. При нагревании яичного белка происходит постепенное его помутнение, и затем образуется твердый сгусток. Свернувшийся яичный белок – яичный альбумин – после охлаждения оказывается нерастворимым, в то время как до нагревания яичный белок хорошо растворялся в воде. Такие же явления происходят и при нагревании практически всех глобулярных белков. Те изменения, которые произошли при нагревании, называются денатурацией. Белки в естественном состоянии носят название нативных белков, а после денатурации — денатурированных.
При денатурации происходит нарушение нативной кон-формации белков в результате разрыва слабых связей (ион-ных, водородных, гидрофобных взаимодействий). В результате этого процесса могут разрушаться четвертичная, третичная и вторичные структуры белка. Первичная структура при этом сохраняется (рис. 17).

Какие физико химические свойства белков обусловливают их растворимость

Рис. 17. Денатурация белка

При  денатурации гидрофобные радикалы аминокислот, находящиеся в нативных белках в глубине молекулы, оказываются на поверхности, в результате создаются условия для агрегации. Агрегаты белковых молекул выпадают в осадок. Денатурация сопровождается потерей биологической функции белка.

Денатурация белка может быть вызвана не только повышенной температурой, но и другими факторами. Кислоты и щелочи способны вызвать денатурацию белка: в результате их действия происходит перезарядка ионогенных групп, что приводит к разрыву ионных и водородных связей. Мочевина разрушает водородные связи, следствием этого является потеря белками своей нативной структуры. Денатурирующими агентами являются органические растворители и ионы тяжелых металлов: органические растворители разрушают гидрофобные связи, а ионы тяжелых металлов образуют нерастворимые комплексы с белками.

Читайте также:  Какими свойствами обладают минеральные

Наряду с денатурацией существует и обратный процесс – ренатурация. При снятии денатурирующего фактора возможно восстановление исходной нативной структуры. Например, при медленном охлаждении до комнатной температуры раствора восстанавливается нативная структура и биологическая функция трипсина.

Белки могут денатурировать и в клетке при протекании нормальных процессов жизнедеятельности. Совершенно очевидно, что утрата нативной структуры и функции белков – крайне нежелательное событие. В связи с этим следует упомянуть об особых белках – шаперонах. Эти белки способны узнавать частично денатурированные белки и, связываясь с ними, восстанавливать их нативную конформацию. Шапероны также узнают белки, процесс денатурации которых зашел далеко, и транспортируют их в лизосомы, где происходит их расщепление (деградация). Шапероны играют важную роль и в процессе формирования третичной и четвертичной структур во время синтеза белка.

Интересно знать! В настоящее время часто упоминается такое заболевание, как коровье бешенство. Эту болезнь вызывают прионы. Они могут вызывать у животных и человека и другие заболевания, носящие нейродегенеративный характер. Прионы – это инфекционные агенты белковой природы. Прион, попадая в клетку, вызывает изменение конформации своего клеточного аналога, который сам становится прионом. Так возникает заболевание. Прионный белок отличается от клеточного по вторичной структуре. Прионная форма белка имеет в основном b-складчатую структуру, а клеточная – a-спиральную.

Источник

Определение, состав и строение белка

Белки являются биополимерами, мономерами которых являются остатки альфа-аминокислот, соединенные между собой посредством пептидных связей. Аминокислотная последовательность каждого белка строго определена, в живых организмах она зашифрована посредством генетического кода, на основе считывания которого и происходит биосинтез белковых молекул. В построении белков участвует 20 аминокислот.

Рис. 1. Схема образования молекулы белка (дипептида).

Различают следующие виды структуры белковых молекул:

  1. Первичная. Представляет собой аминокислотную последовательность в линейной цепи.
  2. Вторичная. Это более компактная укладка полипептидных цепей при помощи формирования водородных связей между пептидными группами. Есть два варианта вторичной структуры – альфа-спираль и бета-складчатость.
  3. Третичная. Представляет собой укладку полипептидной цепочки в глобулу. При этом формируются водородные, дисульфидные связи, также стабилизация молекулы реализуется благодаря гидрофобным и ионным взаимодействиям аминокислотных остатков.
  4. Четвертичная. Белок состоит из нескольких полипептидных цепей, которые взаимодействуют между собой посредством нековалентных связей.

Таким образом, соединенные в определенной последовательности аминокислоты образуют полипептидную цепь, отдельные части которой сворачиваются в спираль или формируют складки. Такие элементы вторичной структур образуют глобулы, формируя третичную структуру белка. Отдельные глобулы взаимодействуют между собой, образуя сложные белковые комплексы с четвертичной структурой.

Рис. 2. Структурная организация белков.

Классификация белков

Существует несколько критериев, по которым можно классифицировать белковые соединения. По составу различают простые и сложные белки. Сложные белковые вещества содержат в своем составе неаминокислотные группы, химическая природа которых может быть различной. В зависимости от этого выделяют:

  • гликопротеины;
  • липопротеины;
  • нуклеопротеины;
  • металлопротеиды;
  • фосфопротеины;
  • хромопротеиды.

Также существует классификация по общему типу строения:

  • фибриллярные;
  • глобулярные;
  • мембранные.

Протеинами называют простые (однокомпонентные) белки, состоящие лишь из остатков аминокислот. В зависимости от растворимости они делятся на следующие группы:

Подобная классификация не совсем точна, ведь согласно последним исследованиям многие простые белки связаны с минимальным количеством небелковых соединений. Так, в состав некоторых протеинов входят пигменты, углеводы, иногда липиды, что делает их больше похожими на сложные белковые молекулы.

Физико-химические свойства белка

Физико-химические свойства белков обусловлены составом и количеством входящих в их молекулы остатков аминокислот. Молекулярные массы полипептидов сильно колеблются: от нескольких тысяч до миллиона и более. Химические свойства белковых молекул разнообразны, включают в себя амфотерность, растворимость, а также способность к денатурации.

Амфотерность

Поскольку в состав белков входят и кислые, и основные аминокислоты, то всегда в составе молекулы будут свободные кислые и свободные основные группы (СОО- и NН3+ соответственно). Заряд определяется соотношением основных и кислых аминокислотных групп. По этой причине белки заряжены “+”, если уменьшается рН, и наоборот, “-”, если рН увеличивается. В случае, когда рН соответствует изоэлектрической точке, белковая молекула будет иметь нулевой заряд. Амфотерность важна для осуществления биологических функций, одной из которых является поддержание уровня рН в крови.

Растворимость

Классификация белков по свойству растворимости уже была приведена выше. Растворимость белковых веществ в воде объясняется двумя факторами:

  • заряд и взаимное отталкивание белковых молекул;
  • формирование гидратной оболочки вокруг белка – диполи воды взаимодействуют с заряженными группами на внешней части глобулы.

Денатурация

Физико-химическое свойство денатурации представляет собой процесс разрушения вторичной, третичной структуры белковой молекулы под влиянием ряда факторов: температуры, действии спиртов, солей тяжелых металлов, кислот и других химических агентов.

Важно! Когда работу писать становится сложно, можно обратиться с вопросом к экспертам. Это поможет сделать работу быстро.

Подробнее

Важно! Первичная структура при денатурации не разрушается.

Рис. 3. Процесс денатурации белка.

Химические свойства белков, качественные реакции, уравнения реакций

Химические свойства белков можно рассмотреть на примере реакций их качественного обнаружения. Качественные реакции позволяют определить наличие пептидной группы в соединении:

1. Ксантопротеиновая. При действии на белок азотной кислоты высокой концентрации образуется осадок, который при нагревании приобретает желтый цвет.

2. Биуретовая. При действии на слабощелочной раствор белка сульфата меди образуются комплексные соединения между ионами меди и полипептидами, что сопровождается окрашиванием раствора в фиолетово-синий цвет. Реакция используется в клинической практике для определения концентрации белка в сыворотке крови и других биологических жидкостях.

Еще одним важнейшим химическим свойством является обнаружение серы в белковых соединениях. С этой целью щелочной раствор белка нагревают с солями свинца. При этом получают черный осадок, содержащий сульфид свинца.

Биологическое значение белка

Рис. 4. Структура фермента аланинаминотрансферазы

Благодаря своим физическим и химическим свойствам белки выполняют большое количество биологических функций, в перечень которых входят:

  • каталитическая (белки-ферменты);
  • транспортная (гемоглобин);
  • структурная (кератин, эластин);
  • сократительная (актин, миозин);
  • защитная (иммуноглобулины);
  • сигнальная (рецепторные молекулы);
  • гормональная (инсулин);
  • энергетическая.

Белки важны для организма человека, поскольку участвуют в образовании клеток, обеспечивают сокращение мышц у животных, вместе с сывороткой крови переносят многие химические соединения. Помимо этого, белковые молекулы являются источником незаменимых аминокислот и осуществляют защитную функцию, участвуя в выработке антител и формировании иммунитета.

ТОП-10 малоизвестных фактов о белке

Интересный факт! Первый белок выделили из муки

  1. Белки начали изучать с 1728 года, именно тогда итальянец Якопо Бартоломео Беккари выделил белок из муки.
  2. Сейчас широкое распространение получили рекомбинантные белки. Их синтезируют путем модификации генома бактерий. В частности, таким способом получают инсулин, факторы роста и другие белковые соединения, которые используют в медицине.
  3. У антарктических рыб были обнаружены белковые молекулы, предотвращающие замерзание крови.
  4. Белок резилин отличается идеальной эластичностью и является основой мест крепления крыльев насекомых.
  5. В организме есть уникальные белки шапероны, которые способны восстанавливать корректную нативную третичную или четвертичную структуру других белковых соединений.
  6. В ядре клетки присутствуют гистоны – белки, которые принимают участие в компактизации хроматина.
  7. Молекулярную природу антител – особых защитных белков (иммуноглобулинов) – начали активно изучать с 1937 года. Тиселиус и Кабат применяли электрофорез и доказали, что у иммунизированных животных увеличена гамма-фракция, а после абсорбции сыворотки провоцирующим антигеном, распределение белков по фракциям возвращалось к картине интактного животного.
  8. Яичный белок – яркий пример реализации белковыми молекулами резервной функции.
  9. В молекуле коллагена каждый третий аминокислотный остаток образован глицином.
  10. В составе гликопротеинов 15-20% составляют углеводы, а в составе протеогликанов их доля – 80-85%.
Читайте также:  Какие свойства присущи только географической оболочке кратко

Заключение

Белки – сложнейшие соединения, без которых сложно представить жизнедеятельность любого организма. Выделено более 5000 белковых молекул, но каждый индивидуум обладает собственным набором белков и этим отличается от других особей своего вида.

Источник

 
 
 

Физико-химические свойства белков

Аминокислотный состав и пространственная организация каждого белка определяют его физико-химические свойства. Белки обладают кислотно-основными,
буферными, коллоидными и осмотическими свойствами.

Белки как амфотерные макромолекулы

Белки являются амфотерными полиэлектролитами, т.е. сочетают в себе, подобно аминокислотам, кислотные и основные свойства. Однако природа групп, придающих амфотерные
свойства белкам, далеко не та же, что у аминокислот. Кислотно-основные свойства аминокислот обусловлены прежде всего наличием α-амино- и α-карбоксильной
групп (кислотно-основная пара). В молекулах белков эти группы участвуют в образовании пептидных связей, а амфотерность белкам придают кислотно-основные группы боковых
радикалов аминокислот, входящих в белок. Разумеется, в каждой молекуле нативного белка (полипептидной цепи) имеется как минимум по одной концевой α-амино- и
α-карбоксильной группе (если у белка только третичная структура). У белка с четвертичной структурой число концевых групп —NН2 и —СООН равно числу
субъединиц, или протомеров. Однако столь незначительное число этих групп не может объяснить амфотерность макромолекул белка. Поскольку большая часть полярных групп
находится на поверхности глобулярных белков, то именно они определяют кислотно-основные свойства и заряд белковой молекулы. Кислотные свойства белку придают кислые
аминокислоты (аспарагиновая, глутаминовая и аминолимонная), а щелочные свойства — основные аминокислоты (лизин, аргинин, гистидин). Чем больше кислых аминокислот
содержится в белке, тем ярче выражены его кислотные свойства, и чем больше входит в состав белка основных аминокислот, тем сильнее проявляются его основные свойства.
Слабая диссоциация SН-группы цистеина и фенольной группы тирозина (их можно рассматривать как слабые кислоты) почти не влияет на амфотерность белков.

Буферные свойства. Белки хотя и обладают свойствами буфера, но емкость их при физиологических значениях рН ограничена. Исключение составляют белки, содержащие
много гистидина, так как только боковая группа гистидина обладает буферными свойствами в интервале значений рН, близких к физиологическим. Таких белков очень мало.
Гемоглобин чуть ли не единственный белок, содержащий до 8% гистидина, является мощным внутриклеточным буфером в эритроцитах, поддерживая рН крови на постоянном уровне.

Заряд белковой молекулы зависит от содержания в ней кислых и основных аминокислот, а точнее, от ионизации кислых и основных групп бокового радикала этих аминокислот.
Диссоциация СООН-групп кислых аминокислот вызывает появление отрицательного заряда на поверхности белка, а боковые радикалы щелочных аминокислот несут положительный
заряд (за счет присоединения Н+ к основным группам). В нативной молекуле белка заряды распределяются асимметрично в зависимости от укладки полипептидной
цепи в пространстве. Если в белке кислые аминокислоты преобладают над основными, то в целом молекула белка электроотрицательна, т. е. является полианионом, и наоборот,
если преобладают основные аминокислоты, то она заряжена положительно, т. е. ведет себя как поликатион.

Суммарный заряд белковой молекулы, естественно, зависит от рН среды: в кислой среде он положителен, в щелочной отрицателен. То значение рН, при котором белок имеет
суммарный нулевой заряд, называется изоэлектрической точкой данного белка. В этой точке белок не обладает подвижностью в электрическом поле. Изоэлектрическая точка
каждого белка определяется соотношением кислых и основных групп боковых радикалов аминокислот: чем выше соотношение кислые/основные аминокислоты в белке, тем ниже его
изоэлектрическая точка. У кислых белков рН1 < 7, у нейтральных рН1 около 7, а у основных рН1 > 7. При значениях рН среды ниже
его изоэлектрической точки белок будет нести положительный заряд, а выше — отрицательный заряд. Усредненная изоэлектрическая точка всех белков цитоплазмы лежит в
пределах 5,5. Следовательно, при физиологическом значении рН (около 7,0 — 7,4) клеточные белки имеют общий отрицательный заряд. Избыток отрицательных зарядов белков
внутри клетки уравновешивается, как уже говорилось, неорганическими катионами.

Знание изоэлектрической точки очень важно для понимания стабильности белков в растворах, так как в изоэлектрическом состоянии белки наименее устойчивы. Незаряженные
частицы белка могут слипаться друг с другом и выпадать в осадок.

Коллоидные и осмотические свойства белков

Поведение белков в растворах имеет некоторые особенности. Обычные коллоидные растворы устойчивы только в присутствии стабилизатора, который препятствует осаждению
коллоидов, располагаясь на границе раздела «растворенное вещество — растворитель».

Водные растворы белков являются устойчивыми и равновесными, они со временем не выпадают в осадок (не коагулируют) и не требуют присутствия стабилизаторов. Белковые
растворы гомогенны и, в сущности, их можно отнести к истинным растворам. Однако высокая молекулярная масса белков придает их растворам многие свойства коллоидных
систем:

  • характерные оптические свойства (опалесценция растворов и способность их рассеивать лучи видимого света)
    [показать].

  • малая скорость диффузии
    [показать].

  • неспособность проникать через полупроницаемые мембраны
    [показать].

  • высокая вязкость растворов
    [показать].

  • способность к образованию гелей
    [показать].

Гидратация белков и факторы, влияющие на их растворимость

Белки — гидрофильные вещества. Если растворять сухой белок в воде, то сначала он, как всякое гидрофильное высокомолекулярное соединение, набухает, а затем молекулы
белка начинают постепенно переходить в раствор. При набухании молекулы воды проникают в белок и связываются с его полярными группами. Плотная упаковка полипептидных
цепей разрыхляется. Набухший белок можно считать как бы обратным раствором, т. е. раствором молекул воды в высокомолекулярном веществе — белке. Дальнейшее поглощение
воды приводит к отрыву молекул белка от общей массы и растворению. Но набухание не всегда ведет к растворению; некоторые белки, например коллаген, так и остаются
в набухшем виде, поглотив большое количество воды.

Растворение связано с гидратацией белков, т. е. связыванием молекул воды с белками. Гидратная вода так прочно связана с макромолекулой белка, что отделить ее
удается с большим трудом. Это говорит не о простой адсорбции, а об электростатическом связывании молекул воды с полярными группами боковых радикалов кислых аминокислот,
несущих отрицательный заряд, и основных аминокислот, несущих положительный заряд.

Однако часть гидратной воды связывается пептидными группами, которые образуют с молекулами воды водородные связи. Например, полипептиды с неполярными боковыми
группами тоже набухают, т. е. связывают воду. Так, большое количество воды связывает коллаген, хотя этот белок содержит преимущественно неполярные аминокислоты.
Вода, связываясь с пептидными группами, раздвигает вытянутые полипептидные цепи. Однако межцепочечные связи (мостики) не дают молекулам белка отрываться друг от друга
и переходить в раствор. При нагревании сырья, содержащего коллаген, межцепочечные мостики в коллагеновых волокнах разрываются и освобожденные полипептидные цепи
переходят в раствор. Эта фракция частично гидролизованного растворимого коллагена называется желатиной. Желатина по химическому составу близка к коллагену, легко
набухает и растворяется в воде, образуя вязкие жидкости. Характерным свойством желатины является способность к гелеобразованию. Водные растворы желатины широко
используются в лечебной практике как плазмозамещающее и кровоостанавливающее средство, а способность к гелеобразованию — при изготовлении капсул в фармацевтической
практике.

Читайте также:  Какие свойства есть у алоэ

Факторы, влияющие на растворимость белков. Растворимость разных белков колеблется в широких пределах. Она определяется их аминокислотным составом
(полярные аминокислоты придают большую растворимость, чем неполярные), особенностями организации (глобулярные белки, как правило, лучше растворимы, чем фибриллярные)
и свойствами растворителя. Например, растительные белки — проламины — растворяются в 60-80%-ном спирте, альбумины — в воде и в слабых растворах солей, а коллаген
и кератины нерастворимы в большинстве растворителей.

Стабильность растворам белков придают заряд белковой молекулы и гидратная оболочка. Каждая макромолекула индивидуального белка имеет суммарный заряд одного знака,
что препятствует их склеиванию в растворе и выпадению в осадок. Все, что способствует сохранению заряда и гидратной оболочки, облегчает растворимость белка и его
устойчивость в растворе. Между зарядом белка (или числом полярных аминокислот в нем) и гидратацией существует тесная связь: чем больше полярных аминокислот в белке,
тем больше связывается воды (в расчете на 1 г белка). Гидратная оболочка белка иногда достигает больших размеров, и гидратная вода может составлять до 1/5 его массы.

Правда, некоторые белки гидратируются сильнее, а растворяются хуже. Например, коллаген связывает воды больше, чем многие хорошо растворимые глобулярные белки,
но не растворяется. Его растворимости мешают структурные особенности — поперечные связи между полипептидными цепями. Иногда разноименно заряженные группы белка
образуют много ионных (солевых) связей внутри молекулы белка или между молекулами белков, что мешает образованию связей между молекулами воды и заряженными группами
белков. Наблюдается парадоксальное явление: в белке много анионных или катионных групп, а растворимость его в воде низкая. Межмолекулярные солевые мостики вызывают
склеивание молекул белка и их выпадение в осадок.

Какие же факторы среды влияют на растворимость белков и их стабильность в растворах?

  • Влияние нейтральных солей
    [показать].

  • Влияние рН среды
    [показать].

  • Влияние температуры
    [показать].

  • Влияние разнозаряженного белка
    [показать].

Высаливание

Растворы нейтральных солей широко используются не только для повышения растворимости белка, например при выделении его из биологического материала, но и для
избирательного осаждения разных белков, т. е. их фракционирования. Процесс осаждения белков нейтральными солевыми растворами называется высаливанием. Характерной
особенностью белков, полученных высаливанием, является сохранение ими нативных биологических свойств после удаления соли.

Механизм высаливания состоит в том, что добавляемые анионы и катионы солевого раствора снимают гидратную оболочку белков, являющуюся одним из факторов его
устойчивости. Возможно, одновременно происходит и нейтрализация зарядов белка ионами соли, что также способствует осаждению белков.

Способность к высаливанию наиболее выражена у анионов солей. По силе высаливающего действия анионы и катионы располагаются в следующие ряды:

  • SO42- > С6Н5О73- > СН3СОО- > Сl- > NO3- >
    Вr- > I- > CNS-
  • Li+ >Na+ > К+ > Pb+ > Сs+

Эти ряды называются лиотропными.

Сильным высаливающим эффектом в этом ряду обладают сульфаты. На практике для высаливания белков чаще всего применяют сульфат натрия и аммония. Кроме солей белки
осаждают органическими водоотнимающими средствами (этанол, ацетон, метанол и др.). Фактически это то же высаливание.

Высаливание широко используют для разделения и очистки белков, поскольку многие белки различаются по размеру гидратной оболочки и величине зарядов. Для каждого
из них имеется своя зона высаливания, т. е. концентрация соли, позволяющая дегидратировать и осадить белок. После удаления высаливающего агента белок сохраняет
все свои природные свойства и функции.

Денатурация (денативация) и ренатурация (ренативация)

При действии различных веществ, нарушающих высшие уровни организации белковой молекулы (вторичную, третичную, четвертичную) с сохранением первичной структуры,
белок теряет свои нативные физико-химические и, главное, биологические свойства. Это явление называется денатурацией (денативацией). Оно характерно только для молекул,
имеющих сложную пространственную организацию. Синтетические и природные пептиды не способны к денатурации.

При денатурации разрываются связи, стабилизирующие четвертичную, третичную и даже вторичную структуры. Полипептидная цепь разворачивается и находится в растворе
или в развернутом виде, или в виде беспорядочного клубка. При этом теряется гидратная оболочка и белок выпадает в осадок. Однако осажденный денатурированный белок
отличается от того же белка, осажденного путем высаливания, так как в первом случае он утрачивает нативные свойства, а во втором сохраняет. Это указывает на то, что
механизм действия веществ, вызывающих денатурацию и высаливание, разный. При высаливании сохраняется нативная структура белка, а при денатурации разрушается.

Денатурирующие факторы делятся на

  • физические
    [показать].

  • химические
    [показать].

Свойства денатурированных белков. Наиболее типичными для денатурированных белков являются следующие признаки.

  • Увеличение числа реактивных или функциональных групп по сравнению с нативной молекулой белка (функциональными группами называются группы боковых радикалов
    аминокислот: СООН, NН2, SН, ОН). Часть этих групп обычно находится внутри молекулы белка и не выявляется специальными реагентами. Развертывание
    полипептидной цепи при денатурации позволяет обнаружить эти дополнительные, или скрытые, группы.
  • Уменьшение растворимости и осаждение белка (связано с потерей гидратной оболочки, развертыванием молекулы белка с «обнажением» гидрофобных радикалов и
    нейтрализацией зарядов полярных групп).
  • Изменение конфигурации молекулы белка.
  • Потеря биологической активности, вызванная нарушением нативной структурной организации молекулы.
  • Более легкое расщепление протеолитическими ферментами по сравнению с нативным белком переход компактной нативной структуры в развернутую рыхлую форму облегчает
    доступ ферментов к пептидным связям белка, которые они разрушают.

Последнее качество денатурированного белка широко известно. Термическая или иная обработка продуктов, содержащих белки (главным образом мясные), способствует
лучшему перевариванию их с помощью протеолитических ферментов желудочно-кишечного тракта. В желудке человека и животных вырабатывается природный денатурирующий
агент — соляная кислота, которая, денатурируя белки, помогает их расщеплению ферментами. Однако наличие соляной кислоты и протеолитических ферментов не позволяет
применять белковые лекарственные препараты через рот, ибо они денатурируются и тут же расщепляются, теряя биологическую активность.

Заметим также, что денатурирующие вещества, осаждающие белки, используются в биохимической практике с иными целями, чем высаливающие. Высаливание как прием
применяется для выделения какого-то белка или группы белков, а денатурация для освобождения от белка смеси каких-либо веществ. Удаляя белок, можно получить
безбелковый раствор или устранить действие этого белка.

Долго считалось, что денатурация необратима. Однако в некоторых случаях удален?