Какие физические свойства света

Какие физические свойства света thumbnail

Спектр света — часть спектра электромагнитного излучения.

Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме 380—400 нм (750—790 ТГц), а в качестве длинноволновой границы — участок 760—780 нм (385—395 ТГц).

В широком смысле, используемом вне физической оптики, светом часто называют любое оптическое излучение, то есть такое электромагнитное излучение, длины волн которого лежат в диапазоне с приблизительными границами от единиц нанометров до десятых долей миллиметра. В этом случае в понятие «свет» помимо видимого излучения включаются как инфракрасное, так и ультрафиолетовое излучения.

Раздел физики, в котором изучается свет, носит название оптика.

Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой (или, как говорили ранее, нулевой массой покоя).

Характеристики света

Одной из субъективных характеристик света, воспринимаемой человеком в виде осознанного зрительного ощущения, является его цвет, который для монохроматического излучения определяется главным образом частотой света, а для сложного излучения — его спектральным составом.

Свет может распространяться даже в отсутствие вещества, то есть в вакууме. При этом наличие вещества влияет на скорость распространения света.

Скорость света в вакууме с = 299 792 458 м/с (точно, так как с 1983 года единица длины в СИ — метр — определяется как расстояние, проходимое светом за определённый промежуток времени).

Свет на границе между средами испытывает преломление и отражение. Распространяясь в среде, свет поглощается веществом и рассеивается. Оптические свойства среды характеризуются показателем преломления, действительная часть которого равна отношению фазовой скорости света в вакууме к фазовой скорости света в данной среде, мнимая часть описывает поглощение света. В изотропных средах, где распространение света не зависит от направления, показатель преломления является скалярной функцией (в общем случае — от времени и координаты); в анизотропных средах он представляется в виде тензора. Зависимость показателя преломления от длины волны света (дисперсия) приводит к тому, что свет разных длин волн распространяется в среде с разной скоростью; благодаря этому возможно разложение немонохроматического света (например, белого) в спектр.

Как любая электромагнитная волна, свет может быть поляризованным. У линейно поляризованного света определена плоскость (т. н. плоскость поляризации), в которой происходят колебания электрического вектора волны. У циркулярно поляризованного света электрический вектор, в зависимости от направления поляризации, вращается по или против часовой стрелки. Неполяризованный свет является смесью световых волн со случайными направлениями поляризации. Поляризованный свет может быть выделен из неполяризованного пропусканием через поляризатор или отражением/прохождением на границе раздела сред при падении на границу под определённым углом, зависящим от показателей преломления сред (см. угол Брюстера). Некоторые среды могут вращать плоскость поляризации проходящего света, причём угол поворота зависит от концентрации оптически активного вещества; это явление используется, в частности, в поляриметрическом анализе веществ (например, для измерения концентрации сахара в растворе).

Количественно интенсивность света характеризуют с помощью фотометрических величин нескольких видов. К основным из них относятся энергетические и световые величины. Первые из них характеризуют свет безотносительно к свойствам человеческого зрения. Они выражаются в единицах энергии или мощности, а также производных от них. К энергетическим величинам в частности относятся энергия излучения, поток излучения, сила излучения, энергетическая яркость, энергетическая светимость и облучённость.

Каждой энергетической величине соответствует аналог — световая фотометрическая величина. Световые величины отличаются от энергетических тем, что оценивают свет по его способности вызывать у человека зрительные ощущения. Световыми аналогами перечисленных выше энергетических величин являются световая энергия, световой поток, сила света, яркость, светимость и освещённость.

Учёт световыми величинами зависимости зрительных ощущений от длины волны света приводит к тому, что при одних и тех же значениях, например, энергии, перенесённой зелёным и фиолетовым светом, световая энергия, перенесённая в первом случае, будет существенно выше, чем во втором. Такой результат отражает тот факт, что чувствительность человеческого глаза к зелёному свету выше, чем к фиолетовому.

Видимый свет — электромагнитное излучение с длинами волн ≈ 380—760 нм (от фиолетового до красного).

Скорость света

Скорость света в вакууме определяется в точности 299 792 458 м/с (около 300 000 км в секунду). Фиксированное значение скорости света в СИ связано с тем, что метр в настоящее время определяется в терминах скорости света. Все виды электромагнитного излучения, как полагают, распространяются в вакууме с точно такой же скоростью.

Различные физики пытались измерить скорость света на протяжении всей истории. Галилей пытался измерить скорость света в семнадцатом веке. Ранний эксперимент по измерению скорости света был проведен Оле Рёмером, датским физиком, в 1676 году. С помощью телескопа Рёмер наблюдал движение Юпитера и одной из его лун Ио,фиксируя при этом моменты затмений Ио. Рёмер обнаружил, что эти моменты зависят от положения Земли на её орбите. Предположив, что такая зависимость обусловлена конечностью скорости света, он вычислил, что свету требуется около 22 минут, чтобы пройти расстояние, равное диаметру орбиты Земли. Тем не менее, его размер не был известен в то время. Если бы Рёмер знал диаметр орбиты Земли, он бы получил значение скорости, равное 227 000 000 м/с.

Другой, более точный способ измерения скорости света выполнил в Европе Ипполит Физо в 1849 году. Физо направил луч света в зеркало на расстоянии нескольких километров. Вращающееся зубчатое колесо было помещено на пути светового луча, который путешествовал от источника к зеркалу и затем возвращался к своему источнику. Физо обнаружил, что при определенной скорости вращения луч будет проходить через один пробел в колесе на пути и следующий разрыв на обратном пути. Зная расстояние до зеркала, число зубьев на колесе, и скорость вращения, Физо удалось вычислить скорость света 313 000 000 м/с.

Читайте также:  Какими свойствами обладают ферменты ответы

Существенного прогресса в измерениях скорости света удалось достигнуть в результате применения и совершенствования метода вращающегося зеркала, предложенного Франсуа Араго (1838 г.). Развив и осуществив идею Араго, Леон Фуко в 1862 году получил для скорости света значение (298 000 000±500 000) м/с. В 1891 году Саймон Ньюком, повысив точность измерений на порядок, получил величину (299 810 000±50 000) м/с. В итоге многолетних усилий Альберт А. Майкельсон добился ещё более высокой точности: полученное им в 1926 году значение составило (299 796 000±4 000) м/с. В ходе этих измерений А. Майкельсон измерял время, требовавшееся свету, чтобы пройти расстояние между вершинами двух гор, равное 35,4 км (точнее, 35 373,21 м).

Наивысшая точность измерений была достигнута в начале 1970-х. В 1975 году XV Генеральная конференция по мерам и весам зафиксировала это положение и рекомендовала считать скорость света, равной 299 792 458 м/с с относительной погрешностью 4•10−9, что соответствует абсолютной погрешности 1,1 м/с. Впоследствии это значение скорости света было положено в основу определения метра в Международной системе единиц (СИ), а сама скорость света стала рассматриваться как фундаментальная физическая постоянная, по определению равная указанному значению точно.

Эффективная скорость света в различных прозрачных веществах, содержащих обычную материю, меньше, чем в вакууме. Например, скорость света в воде составляет около 3/4 того, что в вакууме. Тем не менее, замедление процессов в веществе, как полагают, происходит не от фактического замедления частицы света, а от их поглощения и переизлучения заряженными частицами в веществе.

Как крайний пример замедления света, можно сказать, что двум независимым группам физиков удалось «полностью остановить» свет, пропуская её через конденсат Бозе-Эйнштейна на основе рубидия, Тем не менее слово «остановить» в этих экспериментах относится только к свету, хранящемуся в возбужденных состояниях атомов, а затем повторно излучается в произвольное более позднее время, как вынужденное вторым лазерным импульсом излучение. Во времена, когда свет «остановился», он перестал быть светом.

Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с.

Оптические свойства света

Изучение света и взаимодействия света и материи называют оптикой. Наблюдение и изучение оптических явлений, таких как радуга и северное сияние позволяют пролить свет на природу света.

Преломление

Преломлением света называется изменение направления распространения света (световых лучей) при прохождении через границу раздела двух различных прозрачных сред. Оно описывается законом Снеллиуса:

$ n_1sintheta_1 = n_2sintheta_2, $

где $ theta_1 $ — угол между лучом и нормалью к поверхности в первой среде, $ theta_2 $ — угол между лучом и нормалью к поверхности во второй среде, а $ n_1 $ и $ n_2 $ — показатели преломления первой и второй среды соответственно. При этом $ n=1 $ для вакуума и $ n>1 $ в случае прозрачных сред.

Когда луч света пересекает границу между вакуумом и другой средой, или между двумя различными средами, длина волны света изменяется, но частота остается неизменной. Если луч света не является ортогональным (или, скорее, нормальным) к границе, изменение длины волны приводит к изменению направления луча. Такое изменение направления и является преломлением света.

Преломление света линзами часто используется для такого управления светом, при котором изменяется видимый размер изображения, как, например, в лупах, очках, контактных линзах, микроскопах и телескопах.

Источники света

Свет создаётся во многих физических процессах, в которых участвуют заряженные частицы. Наиболее важным является тепловое излучение, имеющее непрерывный спектр с максимумом, положение которого определяется температурой источника. В частности, излучение Солнца близко к тепловому излучению абсолютно чёрного тела, нагретого до примерно 6000 К, причём около 40 % солнечного излучения лежит в видимом диапазоне, а максимум распределения мощности по спектру находится вблизи 550 нм (зелёный цвет). Другие процессы, являющиеся источниками света:

  • переходы в электронных оболочках атомов и молекул с одного уровня на другой (эти процессы дают линейчатый спектр и включают в себя как спонтанное излучение — в газоразрядных лампах, светодиодах и т. п. — так и вынужденное излучение в лазерах);
  • процессы, связанные с ускорением и торможением заряженных частиц (синхротронное излучение, циклотронное излучение, тормозное излучение);
  • черенковское излучение при движении заряженной частицы со скоростью, превышающей фазовую скорость света в данной среде;
  • различные виды люминесценции:
    • сонолюминесценция
    • триболюминесценция
    • хемилюминесценция (в живых организмах она носит название биолюминесценция)
    • электролюминесценция
    • катодолюминесценция
    • флюоресценция и фосфоресценция
    • сцинтилляция

В прикладных науках важна точная характеристика спектра источника света. Особенно важны следующие типы источников:

  • Абсолютно чёрное тело
  • Источник А
  • Источник В
  • Источник С
  • Источник D65

Указанные источники имеют разную цветовую температуру.

Лампы дневного света, выпускаемые промышленностью, испускают излучение с различным спектральным составом, в том числе:

  • Лампы белого света (цветовая температура 3500 К),
  • Лампы холодного белого света (цветовая температура 4300 К)
Читайте также:  Какими свойствами должна обладать информационная система

Радиометрия и световые измерения

Спектральные зависимости относительной чувствительности человеческого глаза для дневного (красная линия) и ночного (синяя линия) зрения.

К одним из наиболее важных и востребованных наукой и практикой характеристик света, как и любого другого физического объекта, относятся энергетические характеристики. Измерением и изучением такого рода характеристик, выраженных в энергетических фотометрических величинах, занимается раздел фотометрии, называемый «радиометрия оптического излучения». Таким образом, радиометрия изучает свет безотносительно к свойствам человеческого зрения.

С другой стороны, свет играет особую роль в жизни человека, поставляя ему бо́льшую часть необходимой для жизни информации об окружающем мире. Происходит это благодаря наличию у человека органов зрения — глаз. Отсюда вытекает необходимость измерения таких характеристик света, по которым можно было бы судить о его способности возбуждать зрительные ощущения. Упомянутые характеристики выражают в световых фотометрических величинах, а их измерения и исследования составляет предмет занятий другого раздела фотометрии — «световые измерения».

В качестве единиц измерения световых величин используются особые световые единицы, они базируются на единице силы света «кандела», являющейся одной из семи основных единиц Международной системы единиц (СИ).

Световые и энергетические величины связаны друг с другом с помощью |относительной спектральной световой эффективности монохроматического излучения для дневного зрения $ V(lambda) $, имеющей смысл относительной спектральной чувствительности среднего человеческого глаза, адаптированного к дневному зрению. Для монохроматического излучения с длиной волны $ lambda $, соотношение, связывающее произвольную световую величину $ X_v(lambda) $ с соответствующей ей энергетической величиной $ X_e(lambda) $, в СИ записывается в виде:

$ X_v(lambda)= 683 cdot X_e(lambda)V(lambda). $

В общем случае, когда ограничений на распределение энергии излучения по спектру не накладывается, это соотношение приобретает вид:

$ X_v=683cdotintlimits_{380~nm}^{780~nm}X_{e,lambda}(lambda)V(lambda) dlambda, $

где $ X_{e,lambda}(lambda) $ — спектральная плотность энергетической величины $ X_e $, определяемая как отношение величины $ dX_e(lambda) $, приходящейся на малый спектральный интервал, заключённый между $ lambda $ и $ lambda+dlambda $, к ширине этого интервала. Связь световой величины, характеризующей излучение, с соответствующей ей энергетической величиной, выражают также, используя понятие световая эффективность излучения.

Световые величины относятся к классу редуцированных фотометрических величин, к которому принадлежат и другие системы фотометрических величин. Однако, только световые величины узаконены в рамках СИ и только для них в СИ определены специальные единицы измерений.

Давление света

Свет оказывает физическое давление на объекты на своем пути — явление, которое не может быть выведено из уравнений Максвелла, но может быть легко объяснено в корпускулярной теории, когда фотоны соударяются с преградой и передают свой импульс. Давление света равно мощности светового пучка, поделённой на с, скорость света. Из-за величины с, эффект светового давления является незначительным для повседневных объектов. Например, одномилливатная лазерная указка создаёт давление около 3,3 пН. Объект, освещенный таким образом, можно было бы поднять, правда для монеты в 1 пенни на это потребуется около 30 млрд 1-мВт лазерных указок. Тем не менее, в нанометровом масштабе эффект светового давления является более значимым, и использование светового давления для управления механизмами и переключения нанометровых коммутаторов в интегральных схемах является активной областью исследований.

При больших масштабах световое давление может заставить астероиды вращаться быстрее, действуя на их неправильные формы, как на лопасти ветряной мельницы. Возможность сделать солнечные паруса, которые бы ускорили движение космических кораблей в пространстве, также исследуется.

Восприятие света глазом

Нормированные спектральные зависимости чувствительности колбочек трёх типов. Пунктиром показана светочувствительность палочек.

Видеть окружающий мир мы можем только потому, что существует свет и человек способен его воспринимать. В свою очередь, восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Сетчатка человеческого глаза имеет два типа светочувствительных клеток: палочки и колбочки. Палочки обладают высокой чувствительностью к свету и функционируют в условиях низкой освещённости, отвечая тем самым за ночное зрение. Однако, спектральная зависимость чувствительности у всех палочек одинакова, поэтому палочки не могут обеспечить способность различать цвета. Соответственно, изображение, получаемое с их помощью, бывает только чёрно-белым.

Колбочки имеют относительно низкую чувствительность к воздействию света и обусловливают механизм дневного зрения, действующий только при высоких уровнях освещённости. В то же время, в отличие от палочек, в сетчатке глаза человека имеется не один, а три типа колбочек, отличающихся друг от друга расположением максимумов их спектральных распределений чувствительности. Вследствие этого колбочки поставляют информацию не только об интенсивности света, но и о его спектральном составе. Благодаря такой информации у человека и возникают цветовые ощущения.

Спектральный состав света однозначно определяет его цвет, воспринимаемый человеком. Обратное утверждение, однако, неверно: один и тот же цвет может быть получен различными способами. В случае монохроматического света ситуация упрощается: соответствие между длиной волны света и его цветом становится взаимнооднозначным. Данные о таком соответствии представлены в таблице.

Таблица соответствия частот электромагнитного излучения и цветов

ЦветДиапазон длин волн, нмДиапазон частот, ТГцДиапазон энергии фотонов, эВ
Фиолетовый380—440790—6803,26-2,82
Синий440—485680—6202,82-2,56
Голубой485—500620—6002,56-2,48
Зеленый500—565600—5302,48-2,19
Желтый565—590530—5102,19-2,10
Оранжевый590—625510—4802,10-1,98
Красный625—740480—4051,98-1,68

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA
, если не указано иное.

Источник

Вопрос, что такое свет в физике, является ключевым для многих отраслей деятельности науки и техники, он вызывает живой интерес как специалистов, так и просто любителей все знать. Использование слова «свет» в физике достаточно условно, так как оно не передает никаких свойств и характеристик отдельно взятого типа излучения. Это общее определение, которое удобно использовать для такого же общего описания природного явления.

Читайте также:  Какое свойство твердых тел проявляется

Свет – это то явление, с которым мы сталкиваемся постоянно, и благодаря чему вообще существует все живое на земле. Частицы так называемого «света» движутся от Солнца через огромные комические просторы на Землю, освещают ее и придают предметам, окружающим человека, видимость и многие свойства. На это явление можно смотреть далеко не с одной точки зрения, поэтому данный вопрос стоит рассмотреть более подробно.

Что такое свет в физике

Споры вокруг того, что же такое свет, шли в физике и научной среде многие века. Различные деятели выдвигали самые разные теории, что представляет собой данное явление природы, но никак не могли сойтись в едином мнении. Теории появлялись, как грибы после дождя, то опровергая, то дополняя друг друга. 

Теории природы света

Был создан целый раздел физики – оптика, задача которого стояла в изучении рассматриваемого явления.

К изучению природы света приложили свои талантливые руки все видные деятели науки, начиная с 17 века. Такие европейские светила, как Декарт, Гук, Юнг, Ньютон, Гейгенс, Ампер и многие другие предпринимали многие попытки понять, чем является видимое нам излучение: волной или же потоком частиц. 

Именно это противоречие, к которому приводили опыты, ставило исследователей в тупик. Ученым была никак не понятна сочетаемость: как в одном эксперименте явление может вести себя, как поток частиц, а в другом – как электромагнитное излучение.

На сегодня данный вопрос в известной степени решен. Все новые знания позволили вникнуть в суть вещей более глубоко. Корпускулярную и волновую теорию позже дополнила электромагнитная, далее специальная теория относительности Эйнштейна, позже квантовая теория и, наконец, квантовая электродинамика.

Волновые свойства света

То, что свет – это волна излучения с определенными волновыми свойствами, начали предполагать многие ученые еще в 17-18 веках. Опыты Юнга, Френеля, Ньютона явственно показали, что волновые характеристики выражаются в двух ключевых явлениях: дифракции и интерференции. Именно они имеют значения при доказательстве того, что мы имеем дело с волной.

Дифракция света

Луч видимого диапазона излучения способен как бы огибать препятствия любой формы и засвечивать даже ту область, которая якобы находится в тени. Отклонение от прямолинейного распространения, которое невозможно для твердых частиц, получило название дифракции.

Также доказано, что излучение может накладываться друг на друга и как бы дополнять волны аналогичной природы, либо же «тушить», уменьшать их интенсивность. Это явление получило название интерференции. 

Оно активно применяется, к примеру, при производстве автомобильных фар – в их стеклах есть специальная фактура, которая позволяет использовать интерференцию и максимально увеличивать интенсивность свечения.

Но утверждение, что свет – это только волна, также находит протесты. Так как другие опыты, скажем, русского ученого Вавилова, показывают, что ему свойственна двойственная характеристика.

Электромагнитная природа света

То, что обычный солнечный луч является электромагнитной волной, является доказанным научным фактом. Над этим трудились многие умы, в частности, Эйнштейн, Вавилов и другие. Не один раздел физики посвящен доказательству того факта, что свет возникает в результате различных возбуждений в атомах и молекулах. 

Теория Максвелла

Это может быть тепловое, химическое или электромагнитное воздействие. При прохождении различных процессов в атоме он излучает кванты энергии во всем видимом диапазоне.

Определение электромагнитной природы излучения доказано многими экспериментами, а также теорией. Наиболее полное описание данных вопросов дал известный ученый Максвелл в своих уравнениях по электромагнетизму.

Спектральный состав света

Как показал в своих экспериментах английский естествоиспытатель Ньютон, обычный белый свет – это набор многих цветов, то есть волн с различной длиной, которые в результате взаимодействия складываются в один белый. Длина волн видимого спектра лежит в диапазоне 380-780 нанометров. 

Диапазон видимого света

Наука смогла доказать, что практически любой вариант излучения не является монохроматичным – то есть, состоящим из волн только одной длины. Почти любой источник света испускает определенный спектр излучения, в котором есть разброс по длинам волн.

Если излучение имеет более короткие волны, нежели 380 нм, то они относятся к ультрафиолетовому свету, если большие 780 нм – инфракрасному. За их пределами сверху и снизу есть и другие типы излучения: гамма-лучи, рентгеновские волны, микроволновой диапазон.

Закон прямолинейного распространения света

Любой школьник, перешедший в 9-11 класс, должен знать, что свет в однородной среде распространяется по прямолинейной траектории, а его скорость равна 3х108 м/с. С такой скоростью луч долетает от Земли до Луны (расстояние между которыми 384 000 километров) всего примерно за 1,2-1,3 секунды!

Закон прямолинейного распространения света

Исходя из прямолинейного распространения света, выводятся многие понятия, такие как тень, угол падения и отражения, и многое другое. Разный раздел науки по-разному использует эти данные, но они имеют большое значение в технике и теории.

Подытоживая скажем, что лексическое значение греческого слова «фотон» четко передает его смысл – это свет. Свет одновременно является и электромагнитной волной, и потоком частиц фотонов, которые распространяются от источника излучения и заполняют собой все окружающее пространство по законам прямолинейного распространения, дифракции, интерференции и т. д. 

И естественное, и искусственное освещение имеют одинаковые свойства, за исключением, разве что длины волны, ее амплитуды и других, более конкретных характеристик каждой волны.

Источник