Какие бывают свойства степеней

Какие бывают свойства степеней thumbnail

Ранее мы уже говорили о том, что такое степень числа. Она имеет определенные свойства, полезные в решении задач: именно их и все возможные показатели степени мы разберем в этой статье. Также мы наглядно покажем на примерах, как их можно доказать и правильно применить на практике.

Свойства степени с натуральным показателем

Вспомним уже сформулированное нами ранее понятие степени с натуральным показателем: это произведение n-ного количества множителей, каждый из которых равен а. Также нам понадобится вспомнить, как правильно умножать действительные числа. Все это поможет нам сформулировать для степени с натуральным показателем следующие свойства:

Определение 1

1. Главное свойство степени: am·an=am+n

Можно обобщить до: an1·an2·…·ank=an1+n2+…+nk.

2. Свойство частного для степеней, имеющих одинаковые основания: am:an=am−n 

3. Свойство степени произведения: (a·b)n=an·bn

Равенство можно расширить до: (a1·a2·…·ak)n=a1n·a2n·…·akn 

4. Свойство частного в натуральной степени: (a:b)n=an:bn 

5. Возводим степень в степень: (am)n=am·n,

Можно обобщить до:(((an1)n2)…)nk=an1·n2·…·nk

6. Сравниваем степень с нулем:

  • если a>0, то при любом натуральном n, an будет больше нуля;
  • при a, равном 0, an также будет равна нулю;
  • при a<0 и таком показателе степени, который будет четным числом 2·m, a2·m будет больше нуля;
  • при a <0 и таком показателе степени, который будет нечетным числом 2·m−1, a2·m−1 будет меньше нуля.

7. Равенство an<bn будет справедливо для любого натурального n при условии, что a и b больше нуля и не равны друг другу.

8. Неравенство am>an будет верным при условии, что m и n – натуральные числа, m больше n и а больше нуля и не меньше единицы.

В итоге мы получили несколько равенств; если соблюсти все условия, указанные выше, то они будут тождественными. Для каждого из равенств, например, для основного свойства, можно поменять местами правую и левую часть: am·an=am+n — то же самое, что и am+n=am·an. В таком виде оно часто используется при упрощении выражений.

Далее мы разберем каждое свойство подробно и попробуем привести доказательства.

1. Начнем с основного свойства степени: равенство am·an=am+n будет верным при любых натуральных m и n и действительном a. Как доказать это утверждение?

Основное определение степеней с натуральными показателями позволит нам преобразовать равенство в произведение множителей. Мы получим запись такого вида:

Свойства степени с натуральным показателем

Это можно сократить до Свойства степени с натуральным показателем (вспомним основные свойства умножения). В итоге мы получили степень числа a с натуральным показателем m+n. Таким образом, am+n, значит, основное свойство степени доказано.

Разберем конкретный пример, подтверждающий это.

Пример 1

Итак, у нас есть две степени с основанием 2. Их натуральные показатели — 2 и 3 соответственно. У нас получилось равенство: 22·23=22+3=25 Вычислим значения, чтобы проверить верность этого равенства.

Выполним необходимые математические действия: 22·23=(2·2)·(2·2·2)=4·8=32 и 25=2·2·2·2·2=32

В итоге у нас вышло: 22·23=25. Свойство доказано.

В силу свойств умножения мы можем выполнить обобщение свойства, сформулировав его в виде трех и большего числа степеней, у которых показатели являются натуральными числами, а основания одинаковы. Если обозначить количество натуральных чисел n1, n2 и др. буквой k, мы получим верное равенство:

an1·an2·…·ank=an1+n2+…+nk.

Пример 2

Пример с конкретными числами (легко посчитать самостоятельно): (2,1)3·(2,1)3·(2,1)4·(2,1)7=(2,1)3+3+4+7=(2,1)17.

2. Далее нам необходимо доказать следующее свойство, которое называется свойством частного и присуще степеням с одинаковыми основаниями: это равенство am:an=am−n, которое справедливо при любых натуральным m и n (причем m больше n) ) и любом отличном от нуля действительном a.

Для начала поясним, каков именно смысл условий, которые упомянуты в формулировке. Если мы возьмем a, равное нулю, то в итоге у нас получится деление на нуль, чего делать нельзя (ведь 0n=0). Условие, чтобы число m обязательно было больше n, нужно для того, чтобы мы могли удержаться в рамках натуральных показателей степени: вычтя n из m, мы получим натуральное число. Если условие не будет соблюдено, у нас получится отрицательное число или ноль, и опять же мы выйдем за пределы изучения степеней с натуральными показателями.

Теперь мы можем перейти к доказательству. Из ранее изученного вспомним основные свойства дробей и сформулируем равенство так:

am−n·an=a(m−n)+n=am

Из него можно вывести: am−n·an=am

Вспомним про связь деления и умножения. Из него следует, что am−n– частное степеней am и an. Это и есть доказательство второго свойства степени.

Пример 3

Подставим конкретные числа для наглядности в показатели, а основание степени обозначим π: π5:π2=π5−3=π3

3. Следующим мы разберем свойство степени произведения: (a·b)n=an·bn при любых действительных a и b и натуральном n.

Согласно базовому определению степени с натуральным показателем мы можем переформулировать равенство так:

Свойства степени с натуральным показателем

Вспомнив свойства умножения, запишем: Свойства степени с натуральным показателем. Это значит то же самое, что и an·bn.

Пример 4

23·-4254=234·-4254

Если множителей у нас три и больше, то это свойство также распространяется и на этот случай. Введем для числа множителей обозначение k и запишем:

(a1·a2·…·ak)n=a1n·a2n·…·akn

Пример 5

С конкретными числами получим следующее верное равенство: (2·(-2,3)·a)7=27·(-2,3)7·a

4. После этого мы попробуем доказать свойство частного: (a:b)n=an:bn при любых действительных a и b, если b не равно 0, а n – натуральное число.

Для доказательства можно использовать предыдущее свойство степени. Если (a:b)n·bn=((a:b)·b)n=an , а (a:b)n·bn=an, то из этого выходит, что (a:b)n есть частное от деления an на bn.

Пример 6

Подсчитаем пример: 312:-0.53=3123:(-0,5)3

5. Далее мы поговорим о свойстве возведения степени в степень: (am)n=am·n для любого действительного a и любых натуральных n и m.

Пример 7

Начнем сразу с примера: (52)3=52·3=56

А теперь сформулируем цепочку равенств, которая докажет нам верность равенства: Свойства степени с натуральным показателем

Если у нас в примере есть степени степеней, то это свойство справедливо для них также. Если у нас есть любые натуральные числа p, q, r, s, то верно будет:

apqys=ap·q·y·s

Пример 8

Добавим конкретики: (((5,2)3)2)5=(5,2)3·2·5=(5,2)30

6. Еще одно свойство степеней с натуральным показателем, которое нам нужно доказать, – свойство сравнения.

Для начала сравним степень с нулем. Почему an>0 при условии, что а больше 0?

Если умножить одно положительное число на другое, то мы получим также положительное число. Зная этот факт, мы можем сказать, что от числа множителей это не зависит – результат умножения любого числа положительных чисел есть число положительное. А что же такое степень, как не результат умножения чисел? Тогда для любой степени an с положительным основанием и натуральным показателем это будет верно.

Пример 9

 35>0, (0,00201)2>0 и 3491351>0

Также очевидно, что степень с основанием, равным нулю, сама есть ноль. В какую бы степень мы не возводили ноль, он останется им.

Пример 10

03=0 и 0762=0

Если основание степени – отрицательное число, тот тут доказательство немного сложнее, поскольку важным становится понятие четности/нечетности показателя. Возьмем для начала случай, когда показатель степени четный, и обозначим его 2·m, где m – натуральное число.

Тогда:

Свойства степени с натуральным показателем

Вспомним, как правильно умножать отрицательные числа: произведение a·a равно произведению модулей, а, следовательно, оно будет положительным числом. Тогда Свойства степени с натуральным показателем и степень a2·m также положительны.

Пример 11

Например, (−6)4>0, (−2,2)12>0 и -296>0

А если показатель степени с отрицательным основанием – нечетное число? Обозначим его 2·m−1.

Тогда  Свойства степени с натуральным показателем

Все произведения a·a, согласно свойствам умножения, положительны, их произведение тоже. Но если мы его умножим на единственное оставшееся число a, то конечный результат будет отрицателен.

Тогда получим: (−5)3<0, (−0,003)17<0 и -111029<0

7. Далее разберем следующее свойство, формулировка которого такова: из двух степеней, имеющих одинаковый натуральный показатель, больше та, основание которой больше (и наоборот).

Как это доказать?

an<bn– неравенство, представляющее собой произведение левых и правых частей nверных неравенств a<b. Вспомним основные свойства неравенств справедливо и an<bn.

Пример 12

Например, верны неравенства: 37<(2,2)7 и 3511124>(0,75)124

8. Нам осталось доказать последнее свойство: если у нас есть две степени, основания которых одинаковы и положительны, а показатели являются натуральными числами, то та из них больше, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше.

Докажем эти утверждения.

Для начала нам нужно убедиться, что am<an при условии, что m больше, чем n, и а больше 0, но меньше 1.Теперь сравним с нулем разность am−an

Вынесем an за скобки, после чего наша разность примет вид an·(am−n−1). Ее результат будет отрицателен (поскольку отрицателен результат умножения положительного числа на отрицательное). Ведь согласно начальным условиям, m−n>0, тогда am−n−1–отрицательно, а первый множитель положителен, как и любая натуральная степень с положительным основанием.

У нас вышло, что am−an<0 и am<an. Свойство доказано.

Осталось привести доказательство второй части утверждения, сформулированного выше: am>a справедливо при m>n и a>1. Укажем разность и вынесем an за скобки: (am−n−1).Степень an при а, большем единицы, даст положительный результат; а сама разность также окажется положительна в силу изначальных условий, и при a>1 степень am−n больше единицы. Выходит, am−an>0 и am>an, что нам и требовалось доказать.

Пример 13

Пример с конкретными числами: 37>32

Основные свойства степеней с целыми показателями

Для степеней с целыми положительными показателями свойства будут аналогичны, потому что целые положительные числа являются натуральными, а значит, все равенства, доказанные выше, справедливы и для них. Также они подходят и для случаев, когда показатели отрицательны или равны нулю (при условии, что само основание степени ненулевое).

Таким образом, свойства степеней такие же для любых оснований a и b (при условии, что эти числа действительны и не равны 0) и любых показателей m и n (при условии, что они являются целыми числами). Запишем их кратко в виде формул:

Определение 2

1. am·an=am+n 

2. am:an=am−n

3. (a·b)n=an·bn

4. (a:b)n=an:bn

5. (am)n=am·n 

6. an<bn и a−n>b−n при условии целого положительного n, положительных a и b, a<b 

7. am<an, при условии целых m и n, m>n и 0<a<1, при a>1   am>an.

Если основание степени равно нулю, то записи am и an имеют смысл только лишь в случае натуральных и положительных m и n. В итоге получим, что формулировки выше подходят и для случаев со степенью с нулевым основанием, если соблюдаются все остальные условия.

Доказательства этих свойств в данном случае несложные. Нам потребуется вспомнить, что такое степень с натуральным и целым показателем, а также свойства действий с действительными числами.

Разберем свойство степени в степени и докажем, что оно верно и для целых положительных, и для целых неположительных чисел. Начнем с доказательства равенств (ap)q=ap·q, (a−p)q=a(−p)·q, (ap)−q=ap·(−q) и (a−p)−q=a(−p)·(−q)

Условия: p=0 или натуральное число; q– аналогично.

Если значения p и q больше 0, то у нас получится (ap)q=ap·q. Схожее равенство мы уже доказывали раньше. Если p=0, то:

(a0)q=1q=1 a0·q=a0=1

Следовательно, (a0)q=a0·q

Для q=0 все точно так же:

(ap)0=1 ap·0=a0=1

Итог: (ap)0=ap·0.

Если же оба показателя нулевые, то (a0)0=10=1 и a0·0=a0=1, значит, (a0)0=a0·0.

Далее разберем равенство (a−p)q=a(−p)·q. Согласно определению степени с целым отрицательным показателем имеем a-p=1ap, значит, (a-p)q=1apq.

Вспомним доказанное выше свойство частного в степени и запишем:

1apq=1qapq

Если 1p=1·1·…·1=1 иapq=ap·q, то 1qapq=1ap·q

Эту запись мы можем преобразовать в силу основных правил умножения в a(−p)·q.

Так же: ap-q=1(ap)q=1ap·q=a-(p·q)=ap·(-q).

И (a-p)-q=1ap-q=(ap)q=ap·q=a(-p)·(-q)

Остальные свойства степени можно доказать аналогичным образом, преобразовав имеющиеся неравенства. Подробно останавливаться мы на этом не будем, укажем только сложные моменты.

Доказательство предпоследнего свойства: вспомним, a−n>b−n верно для любых целых отрицательных значений nи любых положительных a и b при условии, что a меньше b.

Тогда неравенство можно преобразовать следующим образом:

1an>1bn

Запишем правую и левую части в виде разности и выполним необходимые преобразования:

1an-1bn=bn-anan·bn

Вспомним, что в условии a меньше b, тогда, согласно определению степени с натуральным показателем: — an<bn, в итоге: bn−an>0.

an·bn в итоге дает положительное число, поскольку его множители положительны. В итоге мы имеем дробь bn-anan·bn, которая в итоге также дает положительный результат. Отсюда 1an>1bn откуда a−n>b−n, что нам и нужно было доказать.

Последнее свойство степеней с целыми показателями доказывается аналогично свойству степеней с показателями натуральными.

Основные свойства степеней с рациональными показателями

В предыдущих статьях мы разбирали, что такое степень с рациональным (дробным) показателем. Их свойства такие же, что и у степеней с целыми показателями. Запишем:

Определение 3

1. am1n1·am2n2=am1n1+m2n2 при a>0, а если m1n1>0 и m2n2>0, то при a≥0 ( свойство произведения степеней с одинаковыми основаниями).

2.am1n1:bm2n2=am1n1-m2n2 , если a>0 (свойство частного).

3. a·bmn=amn·bmn при a>0 и b>0, а если m1n1>0 и m2n2>0, то при a≥0 и (или) b≥0 (свойство произведения в дробной степени).

4. a:bmn=amn:bmn при a>0 и b>0, а если mn>0, то при a≥0 и b>0 (свойство частного в дробной степени).

5. am1n1m2n2=am1n1·m2n2 при a>0, а если m1n1>0 и m2n2>0, то при a≥0 (свойство степени в степени).

6. ap<bp при условии любых положительных a и b, a<b и рациональном p при p>0; если p<0 — ap>bp (свойство сравнения степеней с равными рациональными показателями).

7. ap<aq при условии рациональных чисел p и q, p>q при 0<a<1; если a>0 – ap>aq

Для доказательства указанных положений нам понадобится вспомнить, что такое степень с дробным показателем, каковы свойства арифметического корня n-ной степени и каковы свойства степени с целыми показателем. Разберем каждое свойство.

Согласно тому, что из себя представляет степень с дробным показателем, получим:

am1n1=am1n1 и am2n2=am2n2, следовательно, am1n1·am2n2=am1n1·am2n2

Свойства корня позволят нам вывести равенства:

am1·m2n1·n2·am2·m1n2·n1=am1·n2·am2·n1n1·n2

Из этого получаем:  am1·n2·am2·n1n1·n2=am1·n2+m2·n1n1·n2

Преобразуем:

am1·n2·am2·n1n1·n2=am1·n2+m2·n1n1·n2

Показатель степени можно записать в виде:

m1·n2+m2·n1n1·n2=m1·n2n1·n2+m2·n1n1·n2=m1n1+m2n2

Это и есть доказательство. Второе свойство доказывается абсолютно так же. Запишем цепочку равенств:

am1n1: am2n2=am1n1: am2n2=am1·n2:am2·n1n1·n2==am1·n2-m2·n1n1·n2=am1·n2-m2·n1n1·n2=am1·n2n1·n2-m2·n1n1·n2=am1n1-m2n2

Доказательства остальных равенств:

a·bmn=(a·b)mn=am·bmn=amn·bmn=amn·bmn;(a:b)mn=(a:b)mn=am:bmn==amn:bmn=amn:bmn;am1n1m2n2=am1n1m2n2=am1n1m2n2==am1m2n1n2=am1·m2n1n2==am1·m2n2·n1=am1·m2n2·n1=am1n1·m2n2

Следующее свойство: докажем, что для любых значений a и b больше 0, если а меньше b, будет выполняться ap<bp, а для p больше 0 — ap>bp

Представим рациональное число p как mn. При этом m–целое число, n–натуральное. Тогда условия p<0 и p>0 будут распространяться на m<0 и m>0. При m>0 и a<b имеем (согласно свойству степени с целым положительным показателем), что должно выполняться неравенство am<bm.

Используем свойство корней и выведем: amn<bmn

Учитывая положительность значений a и b, перепишем неравенство как amn<bmn. Оно эквивалентно ap<bp.

Таким же образом при m<0 имеем a am>bm, получаем amn>bmn значит, amn>bmn и ap>bp.

Нам осталось привести доказательство последнего свойства. Докажем, что для рациональных чисел p и q, p>q при 0<a<1 ap<aq, а при a>0 будет верно ap>aq.

Рациональные числа p и q можно привести к общему знаменателю и получить дроби m1n и m2n

Здесь m1 и m2 – целые числа, а n – натуральное. Если p>q, то m1>m2 (учитывая правило сравнения дробей). Тогда при 0<a<1 будет верно am1<am2, а при a>1 – неравенство a1m>a2m.

Их можно переписать в следующем виде:

am1n<am2nam1n>am2n

Тогда можно сделать преобразования и получить в итоге:

am1n<am2nam1n>am2n

Подводим итог: при p>q и 0<a<1 верно ap<aq, а при a>0– ap>aq.

Основные свойства степеней с иррациональными показателями

На такую степень можно распространить все описанные выше свойства, которыми обладает степень с рациональными показателями. Это следует из самого ее определения, которое мы давали в одной из предыдущих статей. Сформулируем кратко эти свойства (условия: a>0, b>0, показатели p и q– иррациональные числа):

Определение 4

1. ap·aq=ap+q 

2. ap:aq=ap−q 

3. (a·b)p=ap·bp

4. (a:b)p=ap:bp 

5. (ap)q=ap·q

6. ap<bp верно при любых положительных a и b, если a<b и p – иррациональное число больше 0; если p меньше 0, то ap>bp 

7. ap<aq верно, если p и q– иррациональные числа, p<q, 0<a<1; если a>0, то ap>aq.

Таким образом, все степени, показатели которых p и q являются действительными числами, при условии a>0 обладают теми же свойствами.

Источник

Возведе́ние в сте́пень — арифметическая операция, первоначально определяемая как результат многократного умножения числа на себя. Степень с основанием и натуральным показателем обозначается как

где  — количество множителей (умножаемых чисел)[1][К 1].

Например,

В языках программирования, где написание невозможно, применяются альтернативные обозначения[⇨].

Возведение в степень может быть определено также для отрицательных[⇨], рациональных[⇨], вещественных[⇨] и комплексных[⇨] степеней[1].

Извлечение корня — одна из операций, обратных возведению в степень, она по известным значениям степени и показателя находит неизвестное основание . Вторая обратная операция — логарифмирование, она по известным значениям степени и основания находит неизвестный показатель . Задача нахождения числа по известному его логарифму (потенцирование, антилогарифм) решается с помощью операции возведения в степень[⇨]).

Существует алгоритм быстрого возведения в степень, выполняющий возведение в степень за меньшее, чем в определении, число умножений.

Употребление в устной речи[править | править код]

Запись обычно читается как «a в -й степени» или «a в степени n». Например, читается как «десять в четвёртой степени», читается как «десять в степени три вторых (или: полтора)».

Для второй и третьей степени существуют специальные названия: возведение в квадрат и в куб соответственно. Так, например, читается как «десять в квадрате», читается как «десять в кубе». Такая терминология возникла из древнегреческой математики. Древние греки формулировали алгебраические конструкции на языке геометрической алгебры. В частности, вместо употребления слова «умножение» они говорили о площади прямоугольника или об объёме параллелепипеда: вместо , древние греки говорили «квадрат на отрезке a», «куб на a». По этой причине четвёртую степень и выше древние греки избегали[2].

Свойства[править | править код]

Основные свойства[править | править код]

Все приведенные ниже основные свойства возведения в степень выполняются для натуральных, целых, рациональных и вещественных чисел[3]. Для комплексных чисел, в силу многозначности комплексной операции, они выполняются только в случае натурального показателя степени[⇨].

Запись не обладает свойством ассоциативности (сочетательности), то есть, в общем случае, Например, , а . В математике принято считать запись равнозначной , а вместо можно писать просто , пользуясь предыдущим свойством. Впрочем, некоторые языки программирования не придерживаются этого соглашения.

Возведение в степень не обладает свойством коммутативности (переместительности): вообще говоря, , например, , но

Таблица натуральных степеней небольших чисел[править | править код]

n n2 n3 n4 n5 n6 n7 n8 n9 n10
2481632641282565121024
3927812437292 1876 56119 68359 049
4166425610244 09616 38465 536262 1441 048 576
525125625312515 62578 125390 6251 953 1259 765 625
63621612967 77646 656279 9361 679 61610 077 69660 466 176
749343240116 807117 649823 5435 764 80140 353 607282 475 249
864512409632 768262 1442 097 15216 777 216134 217 7281 073 741 824
981729656159 049531 4414 782 96943 046 721387 420 4893 486 784 401
10100100010 000100 0001 000 00010 000 000100 000 0001 000 000 00010 000 000 000

Расширения[править | править код]

Целая степень[править | править код]

Операция обобщается на произвольные целые числа, включая отрицательные и ноль[4]::

Результат не определён при и .

Рациональная степень[править | править код]

Возведение в рациональную степени где  — целое число, а  — натуральное, определяется следующим образом[4]:

.

Результат не определён при и Для отрицательных в случае нечётного и чётного в результате вычисления степени получаются комплексные числа.

Следствие: Таким образом, понятие рациональной степени объединяет возведение в целочисленную степень и извлечение корня в единую операцию.

Вещественная степень[править | править код]

Если  — вещественные числа, причём  — иррациональное число, возможно определить следующим образом: поскольку любое вещественное число можно приблизить, сверху и снизу, двумя рациональными числами, то есть можно подобрать для рациональный интервал с любой степенью точности, то общая часть всех соответствующих интервалов состоит из одной точки, которая и принимается за .

Полезные формулы:

Последние две формулы используют для возведения положительных чисел в произвольную степень на электронных калькуляторах (включая компьютерные программы), не имеющих встроенной функции , и для приближённого возведения в нецелую степень или для целочисленного возведения в степень, когда числа слишком велики для того, чтобы записать результат полностью.

Комплексная степень[править | править код]

Возведение комплексного числа в натуральную степень выполняется обычным умножением, и результат однозначен (см. формулу Муавра). Основой для более общего определения комплексной степени служит экспонента , где  — число Эйлера,  — произвольное комплексное число[5].

Определим комплексную экспоненту с помощью такого же ряда, как и вещественную:

Этот ряд абсолютно сходится для любого комплексного поэтому его члены можно как угодно перегруппировывать. В частности, отделим от него часть для :

В скобках получились известные из вещественного анализа ряды для косинуса и синуса, и мы получили формулу Эйлера:

Общий случай , где  — комплексные числа, определяется через представление в показательной форме: согласно определяющей формуле[5]:

Здесь  — комплексный логарифм,  — его главное значение.

При этом комплексный логарифм — многозначная функция, так что, вообще говоря, комплексная степень определена неоднозначно[5]. Неучёт этого обстоятельства может привести к ошибкам. Пример: возведём известное тождество в степень Слева получится справа, очевидно, 1. В итоге: что, как легко проверить, неверно. Причина ошибки: возведение в степень даёт и слева, и справа бесконечное множество значений (при разных ), поэтому правило здесь неприменимо. Аккуратное применение формул определения комплексной степени даёт слева и справа отсюда видно, что корень ошибки — путаница значений этого выражения при и при

Потенцирование и антилогарифм[править | править код]

Потенцирование (от нем. potenzieren[К 2]) — нахождение числа по известному значению его логарифма, то есть решение уравнения . Из определения логарифма вытекает, что , таким образом, возведение в степень может быть названо другими словами «потенцированием по основанию ».

Антилогарифм — результат потенцирования, то есть нахождения числа по известному значению его логарифма[6]. Как самостоятельное понятие используется в логарифмических таблицах, логарифмических линейках, микрокалькуляторах.

Согласно сказанному выше, антилогарифм по основанию для числа равен :

Степень как функция[править | править код]

Разновидности[править | править код]

Поскольку в выражении используются два символа ( и ), то его можно рассматривать как одну из трёх функций.

Ноль в степени ноль[править | править код]

Выражение (ноль в нулевой степени) многие учебники считают неопределённым и лишённым смысла, поскольку, как указано выше, функция в точке (0, 0) разрывна. Некоторые авторы предлагают принять соглашение о том, что это выражение равно 1. В частности, тогда разложение в ряд экспоненты:

можно записать короче:

Следует предостеречь, что соглашение чисто символическое, и оно не может использоваться ни в алгебраических, ни в аналитических преобразованиях из-за разрывности функции в этой точке.

История[править | править код]

Обозначение[править | править код]

В Европе сначала степень величины записывали словесными сокращениями (q или Q обозначало квадрат, c или C — куб, bq или qq — биквадрат, то есть 4-я степень и т. д.) или как произведение — например, изображалось как Отред записывал следующим образом: (если неизвестная всего одна, ей часто не присваивался буквенный значок)[7]. Немецкая школа коссистов для каждой степени неизвестной предлагала особый готический значок.

В XVII веке постепенно стала преобладать идея явно указывать показатель степени. Жирар (1629 год) для возведения в степень числа ставил показатель в круглых скобках перед этим числом, а если числа правее показателя не было, то это значило, что подразумевается наличие неизвестного в указанной степени[8]; например, у него означало . Варианты размещения показателя степени предлагали Пьер Эригон и шотландский математик Джеймс Юм, они записывали в виде и соответственно[9].

Современная запись показателя степени — правее и выше основания — введена Декартом в его «Геометрии» (1637), правда, только для натуральных степеней, больших 2 (возведение в квадрат ещё долгое время обозначалось по-старому, произведением). Позднее Валлис и Ньютон (1676) распространили декартову форму записи степени на отрицательные и дробные показатели, трактовка которых к этому времени уже была известна из трудов Орема, Шюке, Стевина, Жирара и самого Валлиса. К началу XVIII столетия альтернативы для записи степеней «по Декарту», как выразился Ньютон в «Универсальной арифметике», «вышли из моды» (out of fashion). Показательная функция, то есть возведение в переменную степень, появилась сначала в письмах, а потом и в трудах Лейбница (1679). Возведение в мнимую степень обосновал Эйлер (1743)[9][10].

Запись возведения в степень в языках программирования[править | править код]

С появлением компьютеров и компьютерных программ возникла проблема, состоящая в том, что в тексте компьютерных программ невозможно записать степень в «двухэтажном» виде. В связи с этим изобрели особые значки для обозначения операции возведения в степень. Первым таким значком были две звёздочки: «**», используемые в языке Фортран. В появившемся несколько позже языке Алгол использовался значок стрелки: «↑» (стрелки Кну́та). В языке Бейсик предложен символ «^» («циркумфлекс»), который приобрёл наибольшую популярность; его часто используют при написании формул и математических выражений не только в языках программирования и компьютерных системах, но и в простом тексте. Примеры:

3^2 = 9; 5^2 = 25; 2^3 = 8; 5^3 = 125.

Иногда в компьютерных системах и языках программирования значок возведения в степень имеет левую ассоциативность, в отличие от принятого в математике соглашения о правой ассоциативности возведения в степень.
То есть некоторые языки программирования (например, программа Excel) могут воспринимать запись a^b^c, как (a^b)^c, тогда как другие системы и языки (например, Haskell, Perl, Wolfram|Alpha и многие другие) обработают эту запись справа налево: a^(b^c), как это принято в математике: .

Некоторые знаки возведения в степень в языках программирования и компьютерных системах:

  • x ↑ y: Алгол, некоторые диалекты Бейсика;
  • x ^ y: Бейсик, J, MATLAB, R, Microsoft Excel, TeX, bc[К 3], Haskell[К 4], Lua, MathML и большинство систем компьютерной алгебры;
  • x ^^ y: Haskell[К 5], D;
  • x ** y: Ада, Bash, Кобол, Фортран, FoxPro, Gnuplot, OCaml, Perl, PL/I, PHP[К 6], Python, REXX, Ruby, SAS, Seed7, Tcl, ABAP, Haskell[К 7], Turing[en], VHDL, ECMAScript[К 8][К 9], AutoHotkey[К 9], JavaScript;
  • x⋆y: APL.

Во многих языках программирования (например, в Java, Си и Паскале) отсутствует операция возведения в степень, и для этой цели используют стандартные функции.

Вариации и обобщения[править | править код]

Возведение в степень с натуральным показателем можно определить не только для чисел, но и для нечисловых объектов, для которых определено умножение — например, к матрицам, линейным операторам, множествам (относительно декартова произведения, см. декартова степень).

Обычно эта операция рассматривается в некотором мультипликативном моноиде (полугруппе с единицей) и определяется индуктивно[11] для любого :

Особенную ценность представляет применение возведения в степень к группам и полям, где возникает прямой аналог отрицательных степеней.

Гипероператор возведения в степень — тетрация.

Примечания[править | править код]

  1. 1 2 Степень // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1985. — Т. 5. — С. 221.
  2. Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции / Пер. с голл. И. Н. Веселовского. — М., 1959. — С. 165—167. — 456 с.
  3. ↑ Справочник по элементарной математике, 1978, с. 140—141.
  4. 1 2 Справочник по элементарной математике, 1978, с. 182—184.
  5. 1 2 3 Выгодский М. Я. Справочник по высшей математике. — 12-е изд.. — М.: Наука, 1977. — С. 597 (подстрочное примечание 3). — 872 с.
  6. ↑ Антилогарифм / Математический энциклопедический словарь, М.: Советская энциклопедия, 1988, стр. 73.
  7. ↑ History of Mathematical Notations, vol. 1, 2007, §290—297.
  8. ↑ History of Mathematical Notations, vol. 1, 2007, §164.
  9. 1 2 Александрова Н. В., 2008, с. 130—131.
  10. ↑ History of Mathematical Notations, vol. 1, 2007, §298—301, 307—309.
  11. David M. Bloom. Linear Algebra and Geometry (англ.). — 1979. — P. 45. — ISBN 978-0-521-29324-2.

Комментарии

  1. ↑ В разговорной речи иногда говорят, например, что  — «a умноженное само на себя три раза», имея в виду, что берётся три множителя . Это не совсем точно и может привести к двусмысленности, так как количество операций умножения будет на одну меньше: (три множителя, но две операции умножения). Часто, когда говорят «a умноженное само на себя три раза», имеют в виду количество умножений, а не множителей, то есть См. Август Давидов. Начальная алгебра. — Типографія Э. Лисслер и Ю. Роман, 1883-01-01. — С. 6. — 534 с.. Чтобы избежать двусмысленности, можно говорить, к примеру: третья степень — это когда «число три раза входит в умножение».
  2. ↑ Термин впервые встречается у швейцарского математика Иоганна Рана (1659 год).
  3. ↑ Для целой степени.
  4. ↑ Для неотрицательной целой степени.
  5. ↑ Поддерживает отрицательные степени, в отличие от ^, реализованной только как последовательное умножение.
  6. ↑ Начиная с версии 5.6 (см. Руководство по PHP › Appendices › Миграция с PHP 5.5.x на PHP 5.6.x › Новые возможности).
  7. ↑ Для степени, представленной числом с плавающей запятой — реализовано через логарифм.
  8. ↑ Описан в стандарте EcmaScript 7 (ECMA-262, 7th edition), принятом в июне 2016 года.
  9. 1 2 В JavaScript изначально присутствует метод Math.pow(x, y).

Литература[править | править код]

  • Александрова Н. В. История математических терминов, понятий, обозначений: Словарь-справочник. — 3-е изд. — СПб.: ЛКИ, 2008. — 248 с. — ISBN 978-5-382-00839-4.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978. — 509 с.

    • Переиздание: М.: АСТ, 2006, ISBN 5-17-009554-6, 509 стр.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
  • Степенная функция // Большая советская энциклопедия. — М.: Советская энциклопедия, 1969—1978.
  • Cajori F. A History of Mathematical Notations. Vol. 1 (1929 reprint). — NY: Cosimo, Inc., 2007. — xvi + 456 p. — ISBN 978-1-60206-684-7.

Ссылки[править | править код]

  • Возведение в степень: правила, примеры. Дата обращения 2 февраля 2020.

Источник