Какая структура стали обеспечивает упругие свойства пружин
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 31 мая 2016;
проверки требуют 13 правок.
Витая цилиндрическая пружина растяжения
Пружина — упругий элемент машин и различных механизмов, накапливающий и отдающий, или поглощающий механическую энергию.
История[править | править код]
Исторически первыми упругими элементами применяемыми человеком считаются различные бытовые пинцеты и прищепки-зажимы, луки и удочки.
Теория[править | править код]
С точки зрения классической физики, пружину можно рассматривать как устройство, накапливающее потенциальную энергию путём изменения расстояния между атомами эластичного материала.
В теории упругости законом Гука установлено, что растяжение эластичного стержня пропорционально приложенной к нему силе, направленной вдоль его оси. В реальности этот закон выполняется не точно, а только при малых растяжениях и сжатиях. Если напряжение превышает определённый предел (предел текучести) в материале наступают необратимые нарушения его структуры, и деталь разрушается или получает необратимую деформацию. Следует отметить, что многие реальные материалы не имеют чётко обозначенного предела текучести, и закон Гука к ним неприменим. В таком случае, для материала устанавливается условный предел текучести.
Витые металлические пружины преобразуют деформацию сжатия/растяжения пружины в деформацию кручения материала из которого она изготовлена, и наоборот, деформацию кручения пружины в деформацию растяжения и изгиба металла, многократно усиливая коэффициент упругости за счёт увеличения длины проволоки противостоящей внешнему воздействию. Волновые пружины сжатия подобны множеству последовательно/параллельно соединённых рессор, работающих на изгиб.
Коэффициент жёсткости[править | править код]
Витая цилиндрическая пружина сжатия или растяжения, намотанная из цилиндрической проволоки и упруго деформируемая вдоль оси, имеет коэффициент жёсткости
где
dD — диаметр проволоки;
dF — диаметр намотки (измеряемый от оси проволоки);
n — число витков;
G — модуль сдвига (для обычной стали G ≈ 80 ГПа, для меди ~ 45 ГПа).
Виды пружин[править | править код]
Витая цилиндрическая пружина сжатия
Тарельчатые пружины
Место установки тарельчатых пружин
По виду воспринимаемой нагрузки:
- пружины сжатия;
- пружины растяжения;
- пружины кручения;
- пружины изгиба.
Пружины растяжения — рассчитаны на увеличение длины под нагрузкой. В ненагруженном состоянии обычно имеют сомкнувшиеся витки. На концах для закрепления пружины на конструкции имеются крючки или кольца.
Пружины сжатия — рассчитаны на уменьшение длины под нагрузкой. Витки таких пружин без нагрузки не касаются друг друга. Концевые витки поджимают к соседним и торцы пружины шлифуют. Длинные пружины сжатия, во избежание потери устойчивости, ставят на оправки или стаканы, либо используют менее габаритные волновые пружины.
У пружин растяжения-сжатия под действием постоянной по величине силы витки испытывают напряжения двух видов: изгиба и кручения.
Пружина изгиба — применяется для передачи упругих деформаций при незначительных изменениях геометрических размеров пружины или пакета пружин (рессоры, тарельчатые пружины).Они имеют разнообразную простую форму ( торсионы, стопорные кольца и шайбы, упругие зажимы, элементы реле и т.п.)
Пружины кручения — могут быть двух видов:
- торсионные — стержень, работающий на кручение (имеет большую длину, чем витая пружина)
- витые пружины, работающие на кручение (как в бельевых прищепках, в мышеловках и в канцелярских дыроколах).
В приборостроении известна пружина Бурдона — трубчатая пружина в манометрах для измерения давления, играющая роль чувствительного элемента.
По конструкции:
- витые цилиндрические (винтовые);
- витые конические (амортизаторы);
- спиральные (в балансе часов);
- плоские;
- пластинчатые (например, рессоры);
- тарельчатые;
- волновые
- торсионные;
- жидкостные;
- газовые.
Основные параметры пружин[править | править код]
Силовые характеристики пружин: 1 — растущая, 2 — линейная, 3 — падающая, 4 — постоянная, 5 — ступенчатая
Для витых цилиндрических и конических:
- количество витков
- шаг витка
- диаметр проволоки
- предельно воспринимаемая нагрузка
- линейная зависимость между деформацией (осадкой) пружины и нагрузкой, приложенной к ней
Для волновых:
- сечение ленты
- число витков
- число волн на виток
- коэффициент жёсткости
- предельная нагрузка
также усталостные характеристики материалов.
Материал и технология изготовления[править | править код]
Пружина может быть изготовлена из любого материала, имеющего достаточно высокие прочностные и упругие свойства (сталь, пластмасса, дерево, фанера, даже картон).
Материал различных резин имеет упругие свойства не требующие придания ей особой формы и часто применяется в прямом виде, однако из-за менее определённых характеристик в точных машинах используется реже.
Стальные пружины общего назначения изготавливают из высокоуглеродистых сталей (У9А-У12А, 65, 70), легированных марганцем, кремнием, ванадием (65Г, 60С2А, 65С2ВА). Для пружин, работающих в агрессивных средах, применяют нержавеющую сталь (12Х18Н10Т), бериллиевую бронзу (БрБ-2), кремнемарганцевую бронзу (БрКМц3-1), оловянноцинковую бронзу (БрОЦ-4-3), титановые (ВТ-16) и никелевые сплавы (A-286, INCONEL, ELGILOY).
Небольшие пружины можно навивать из готовой проволоки, в то время как мощные изготавливаются из отожжённой стали и закаляются уже после формовки.
Применение пружин[править | править код]
Одна из самых известных пружин — кольцо для ключей
Пружина — один из самых широко применяемых элементов механизмов, конструкций, приборов. Используется для компенсации размерных неточностей, износа, снятия вибраций, как накопитель энергии, для простого измерения давления, веса, усилий и ускорений; предохранения от ударов и перегрузок.
В мягкой мебели и мебельных петлях и лифтах, в кнопках-застёжках, в карабинах, пружинных булавках, пружинных весах, отбойных молотках, в современных рельсовых скреплениях, в сцеплении, в механизмах часов, простых механических автоматах. Гидравлическая аппаратура не мыслима без пружин, упругость необходима для работы кнопок и клавиш управляющих устройств, спусковых механизмов и взрывателей.
В канцелярских товарах[править | править код]
- скрепки и канцелярские прищепки
- авторучки и механические карандаши
- степлеры и дыроколы
В строительстве[править | править код]
- Простейшие доводчики без гасителей для калиток и дверей интенсивного пользования, в холодном климате для тамбуров.
- В возвратных механизмах ручных жалюзи, роликовых ставен и тяжелых секционных ворот.
- В клапанах направления движения в общественных местах.
- В лифтовых буферах.
- В строениях и конструкциях на неустойчивых грунтах, в геологически активных местностях, как гаситель сейсмических волн.
В пресс-формах и штампах[править | править код]
В пресс-формах и штампах применяются пружины сжатия с прямоугольным сечением проволоки, они называются инструментальными пружинами. Благодаря прямоугольному сечению проволоки, пружина имеет более жесткие пружинные свойства при относительно небольших размерах, что очень удобно для размещения их в пресс-формы и штампы.
В огнестрельном оружии[править | править код]
- Боевая пружина, возвратная пружина, пружина магазина
- В симуляции оружия, оружие для страйкбола — пружина обычно используется для выталкивания снаряда в пружинно-поршневых винтовках.
В механизмах постоянной силы[править | править код]
Конструкция механизма или самой пружины обеспечивает постоянное усилие на грузонесущем элементе в определенном диапазоне перемещения.
- Опоры постоянного усилия для трубопроводов
- Роликовые пружины постоянного усилия или момента
- Уплотнения трубопроводной арматуры
- Заданная нагрузка для плавающих подшипников
См. также[править | править код]
Примечания[править | править код]
Литература[править | править код]
- Справочные таблицы по деталям машин. — М.: Машиностроение, 1956.
- Техническая энциклопедия / Л. К. Мартенс. — М.: Советская энциклопедия, 1932. — Т. 18. — С. 424-464. — 898 с.
- Л. Е. Андреева. Упругие элементы приборов / В. И. Феодосьев. — М.: Машиностроение, 1962. — 456 с.
Механические, а соответственно эксплуатационные свойства пружин — очень серьезный вопрос из-за того, что ни один механизм в технике не может работать без упругих элементов и деталей.
К таким деталям относятся не только пружины. Это могут быть распорные прокладки, контакты, растяжки. Самым знаменитым представителем пружинных изделий наверное являются шайбы Гровера, которые применяются в качестве прокладок в болтовых соединениях и благодаря упругим свойствам которых, создается некоторый перекос гайки, предотвращающий ее от саморазвинчивания. Такое название шайб происходит от фамилии Джона Гровера — английского инженера, который изобрел этот тип шайб.
Для того, чтобы эти изделия отлично справлялись со своей работой, они должны обладать рядом особых свойств.
- Высокая релаксационная стойкость — это стойкость против перераспределения напряжений путем микропластических сдвигов в условиях длительного нагружения. Проба на релаксационную стойкость – заневоливание, т.е. сжатие до соприкосновения витков и выдержка в этом состоянии определенное время. После снятия нагрузки пружина не должна изменять свои размеры. Как правило, требования по времени выдержки в заневоленном состоянии рагламентируются отраслевыми стандартами.
- Сопротивление микропластическим и малым пластическим деформациям — важнейшая характеристика качества пружинных сплавов, так как чем выше это сопротивление, тем меньше при данном приложенном напряжении неупругие и остаточные деформации и, следовательно, ниже все неупругие эффекты, определяющие свойства пружины. Как показывает практика, для получения высокого сопротивления малым пластическим деформациям стали должны иметь определенную микроструктуру. Хотя для разных пружинных сплавов используются различные методы обработки, все они имеют одну цель — обеспечение мелкозернистой микроструктуры, при которй все дислокации будут заблокированы.
- Материал для изготовления пружинных изделий должен обладать достаточной циклической стойкостью. Циклическая стойкость — способность материала сопротивляться действию знакопеременных циклических нагрузок. Характеристикой этой величины является предел выносливости, под которым понимают максимальное напряжение, которое не вызывает разрушения образца при любом числе циклов (физический предел выносливости) или заданном числе циклов (ограниченный предел выносливости). Предел выносливости при симметричном числе циклов обозначается σ-1.
- Определенный комплекс стандартных механических свойств в условиях статического нагружения, при испытаниях на растяжение, кручение, изгиб. Должна обеспечиваться высокая прочность, твердость и одновременно достаточная вязкость, во избежание хрупкого разрушения. Требуемые свойства обеспечиваются определенной микроструктурой и субструктурой. В микроструктуре пружинной стали должно присутствовать как можно больше препятствий для перемещения практически всех дислокаций, что создается мелкозернистым трением и равномерным распределением высоко дисперсных фаз, что характерно для структуры сорбита.
Методы торможения и блокировки дислокации в сплавах:
1) легирование твердого раствора, приводящее к повышению сопротивления кристаллической решетки движению дислокации;
2) дислокационный и фазовый наклеп, повышающие плотность дислокации;
3) создание сегрегаций на дислокациях, т.е. повышенная концентрация элементов внедрения и образование частиц выделения;
4) частицы карбидной фазы в повышенном количестве;
5) измельчение зерна.
Наиболее эффективный способ создания необходимых вышеперечисленных свойств это сочетание различных способов упрочнения:
— создание определенного химического состава сплава;
— создание определенной степени деформации, создающей благоприятную дислокационную структуру (ячеистую), но не вызывающую перенаклепа;
— проведение определенной термической обработки, которая сохранит определенную дислокационную структуру.
К конструкционным углеродистым или высокоуглеродистым относят сталь рессорно — пружинную. Для придания ей узконаправленных свойств легируется в небольших количествах 2-3 элементами, в общей сумме до 2,5 %. Но применение этих марок сталей не ограничивается только изготовлением пружин. Называют эту группу так, из-за того, что название это наиболее сильно отражает их главную особенность — упругость.
Характеристики пружинных сталей
Пружинные стали характеризуются повышенным пределом текучести (δВ) и упругости. Это важнейшая характеристика металла — выдерживать механические нагрузки без изменений своей первоначальной формы. Т.е. металл, подвергающийся растяжению или наоборот сжатию (упругой деформации), после снятия с него действующих сил, должен оставаться в первоначальной форме (без остаточной деформации).
Марки и область применения пружинной стали
По наличию дополнительных свойств пружинная сталь подразделяется на легированную (нержавеющую) и углеродистую. За основу легированной стали берется углеродистая с содержанием С 65-85 % и легируется 4 основными элементами, всеми или выборочно, каждый из которых вносит свои особенности:
- хром;
- марганец;
- кремний;
- вольфрам.
Хром — при концентрации более 13 % работает на обеспечение коррозионной стойкости металла. При концентрации хрома около 30 % изделие может работать в агрессивных средах: кислотной (кроме серной кислоты), щелочной, водной. Коррозионная пружинная сталь всегда легируется вторым сопутствующим элементом — вольфрамом и/ или марганцем. Рабочая t до 250 °C.
Вольфрам — тугоплавкое вещество. При попадании его порошка в расплав, образует многочисленные центры кристаллизации, измельчая зерно, что приводит к повышению пластичности без потери прочности. Это привносит свои плюсы: качество такой структуры остается очень высоким при нагреве и интенсивном истирании поверхности. При термической обработке этот элемент сохраняет мелкозернистую структуру, исключает разупрочнение стали при нагреве (в процессе эксплуатации) и дислокацию. Во время закалки увеличивает прокаливаемость, в результате чего структура получает однородность на большую глубину, что в свою очередь увеличивает эксплуатационный срок изделия.
Марганец и кремний — обычно участвуют в легировании обоюдно, причем соотношение всегда увеличивается в пользу марганца, примерно до 1,5 раз. Т. е. если содержание кремния 1 %, то марганец добавляется в количестве 1,1-1,5 %.
Тугоплавкий кремний является не карбидообразующим элементом. При попадании его в расплав одним из первых принимает участие в кристаллизации, выталкивая при этом карбиды углерода к границам зерен, что соответственно приводит к упрочнению металла.
Марганец можно назвать стабилизатором структуры. Одновременно искажая решетку металла и упрочняя его, марганец устраняет излишнюю прочность кремния.
В некоторые марки сталей (при работе изделия в высокотемпературных условиях, при t выше 300 ºC) в сталь присаживают никель. Он исключает образование карбидов хрома по границам зерен, которые приводят к разрушению матрицы.
Ванадий также может являться легирующим элементом, его функция похожа на действие вольфрама.
В пружинных марках оговаривается такой элемент как медь, содержание ее не должно превышать 0,15 %. Т. к. являясь легкоплавким веществом, медь концентрируется на границах зерен, снижая прочность.
К пружинным маркам относят: 50ХГ, 3К-7, 65Г, 65ГА, 50ХГФА, 50ХФА, 51ХФА, 50ХСА, 55С2, 55С2А, 55С2ГФ, 55ХГР, 60Г, 60С2, 60С2А, 605, 70, 70Г ,75, 80, 85, 60С2ХА, 60С2ХФА, 65С2ВА, 68А, 68ГА, 70Г2, 70С2ХА, 70С3А, 70ХГФА, SH, SL, SM, ДМ, ДН, КТ-2.
Марки такой стали используются для изготовления не только пружин и рессор, хотя это основное их назначение, которое характеризует основное свойство. Их применяют везде, где есть необходимость предать изделию упругость, одновременно пластичность и прочность. Все детали, которые изготавливают из этих марок, подвержены: растяжению и сжатию. Многие их них испытывают нагрузки, периодически сменяющие друг друга, причем с огромной циклической частотой. Это:
- корпуса подшипников, которые испытывают в каждой точке сжатие и растяжение с высокой периодичностью;
- фрикционные диски, испытывающие динамические нагрузки и сжатие;
- упорные шайбы, основное время они испытывают нагрузки на сжатие, но к ним можно присовокупить и резкое изменение на растяжение;
- тормозные ленты, для которых одним из главнейших задач является упругость при многократно повторяющемся растяжении. При такой динамике с усиленным старением и износом более прочная сталь (с меньшей упругостью) подвержена быстрому старению и внезапному разрушению.
Тоже касается и шестерней, фланцев, шайб, цанг и т. д.
Маркировка
Пружинно-рессорные стали можно сгруппировать по позициям:
- нелегированные с содержанием углерода 65-85 % — недорогая сталь общего назначения;
- марганцево-кремниевые — наиболее дешевая с высокими физико-химическими показателями;
- хромо-марганцевые — нержавеющая сталь, работает в агрессивных средах при t -250 +250 C;
- дополнительно легированные и/или вольфрамом, ванадием, бором — представляют собой стали с повышенным ресурсом работы благодаря однородной структуре, отличным соотношением прочности и пластичности благодаря измельченному зерну и выдерживает высокие механические нагрузки. Используются на таких объектах как ЖД транспорт.
Маркировка пружинных сталей проводиться следующим образом. Разберем на примере 60С2ХФА:
- 60 — процентное содержание углерода в десятых долях (углерод не указывается в буквенном значении);
- С2 — буквенное обозначение кремния с индексом 2, обозначает увеличенное стандартное содержание (1-1,5 %) в 2 раза;
- Х — наличие хрома до 0,9-1 %;
- Ф — содержание вольфрама до 1 %;
- А — добавленный буквенный индекс А в конце маркировки обозначает минимальное содержание вредных примесей фосфора и серы, не более 0,015 %.
Производство
В зависимости от дальнейшей обработки и окончательно вида детали, сталь поставляется в листах, проволоке, шестигранниках, квадратах. Высокие эксплуатационные качества изделия обеспечиваются 2 составляющими:
- структурой металла, которая определяется химическим составом и последующей обработкой;
- наличием в структуре неметаллических включений, точнее минимальным количеством и размерами, что устраняется на этапе выплавки и разливки;
- формой детали (спираль, дуга) и ее размерами, что определяется расчетным методом.
При растягивании пружины, внутренние и наружные стороны витков испытывают различные степени нагрузки: внешние меньше подвержены растяжению, в то время как внутренние испытывают наибольшую степень деформации. Тоже касается и концов пружины: они служат местом крепления, что увеличивает нагрузку в этих и граничащих местах. Поэтому разработаны марки стали, которые предпочтительно используются на сжатие либо растяжение.
Термомеханическая обработка
Все без исключения пружинные стали повергаются термомеханической обработке. После нее прочность и износостойкость способна увеличиться в 2 раза. Форму изделию придают в отожженном состоянии, когда сталь имеет максимально возможную мягкость, после чего нагревают до 830-870 С и охлаждают в масляной или водной среде (только для марки 60 СА). Полученный мартенсит отпускают при температуре 480 ºC.
Все требования и рекомендации к этому виду стали описаны в ГОСТ 14959-79. На их основании предприятием разрабатываются более детальные технологические листы, которые отвечают узким параметрам.
Оцените статью:
Рейтинг: 5/5 — 1
голосов