Какая форма графита обеспечивает наиболее высокие механические свойства чугунов
Графит имеет гексагональную слоистую решетку с небольшой энергией связи между атомами в разных слоях (силы Ван-дер-Ваальса), вследствие чего он обладает очень низкими твердостью, прочностью и пластичностью, значительно более низкими, чем у металлической основы. Графитные включения фактически представляют собой своеобразные трещины или пустоты, заполненные графитом. Чугун в связи с этим можно рассматривать как сталь, испещренную большим количеством таких трещин и пустот (графитных включений), ослабляющих металлическую основу. Чем больше графитных включений, чем они грубее, тем больше они разобщают металлическую основу и тем ниже механические свойства чугуна.
Графитные включения в чугунах имеют пластинчатую, вермикулярную, шаровидную или хлопьевидную форму (рис. 7.2).
Пластинчатый графит, играющий роль острых трещин и надрезов, является резким концентратором напряжений. Под действием нормальных напряжений по концам таких графитных включений легко формируются очаги разруше-
Рис. 7.2. Структуры чугунов с разной металлической основой и формой графитовых включений
ния. По этой причине чугуны с пластинчатым графитом имеют самую низкую прочность при растяжении и изгибе.
Вермикулярный графит отличается от пластинчатого значительно меньшими размерами частиц – это очень мелкие и тонкие прожилки со скругленными концами. Скругленные графитные включения выполняют роль уже не трещин, а пустот и являются менее резкими концентраторами напряжений.
Наименьшая концентрация напряжений отмечается в чугунах с шаровидным графитом. Такие чугуны имеют самую высокую прочность при растяжении и изгибе.
Чугуны с хлопьевидным графитом уступают им по своим прочностным характеристикам, но превосходят чугуны с пластинчатым графитом.
Таким образом, прочность чугунов с графитом определяется строением металлической основы и формой графитных включений. При меньшей степени графитизации (например, в ферритно-перлитном и особенно в перлитном чугунах по сравнению с ферритным) количество (объем) и размеры графитных включений будут меньше.
Уровень пластичности чугунов определяется формой графита (табл. 7.2). Самую низкую пластичность имеет чугун с пластинчатым графитом.
Таблица 7.2
Влияние формы графитных включений на пластичность чугунов
Графит | Пластинчатый | Вермикулярный | Хлопьевидный | Шаровидный |
Относительное удлинение δ, % | <0,5 | 1…3 | 3…12 | 2…17 |
Чугуны с графитом широко применяются в промышленности. Наличие графита в структуре, определяющее низкую прочность чугунов, придает им ряд высоких технологических и эксплуатационных свойств:
- – графит улучшает литейные свойства, уменьшая усадку чугунов при кристаллизации (см. 11.2.1);
- – мягкий и хрупкий графит улучшает обрабатываемость чугунов резанием, способствуя образованию стружки надлома (стружка ломается на графитовых включениях);
- – графит обеспечивает чугунам хорошие антифрикционные свойства, он играет роль смазки в парах трения;
- – графит гасит вибрации и резонансные колебания;
- – чугуны с графитом мало чувствительны к надрезам и другим дефектам поверхности деталей, поскольку подобные дефекты в виде графитных включений уже имеются в самом чугуне.
Структура серого чугуна при получении отливок формируется в процессе медленного охлаждения, поэтому цементит, будучи при высоких температурах неустойчивым химическим соединением, распадается с образованием графита:
Fe3C → А + Г при температуре выше линии PSK и
Fe3C → Ф + Г при температурах ниже линии РSК. Графит имеет форму пластин.
Чем больше скорость охлаждения, тем в меньшей степени успевает произойти процесс графитизации.
Металлическая основа чугуна может состоять:
Ø из перлита (если количество связанного углерода в чугуне составляет 0,8 %), или
Ø из феррита + перлита (если количество связанного углерода меньше 0,8 %), или только
Ø из феррита (Ссвяз ≤ 0,025 %).
В зависимости от структуры металлической основы различают:
Ø перлитный чугун, имеющий структуру П + Г,
Ø ферритно-перлитный чугун, структура которого состоит из Ф +П + Г;
Ø ферритный чугун со структурой Ф + Г.
Таким образом структура серого чугуна представляет собой стальную основу, пронизанную графитовыми включениями. Прочность графита по сравнению с металлической основой ничтожна, его присутствие в чугуне равносильно пустоте. Наличие графита снижает механические свойства чугуна, но повышает его износоустойчивость и способность поглощать вибрации.
В зависимости от формы графита серые чугуны подразделяются на:
Ø серый литейный чугун, в котором графит выделяется в пластинчатой форме;
Ø высокопрочный чугун, в котором графит находится в шаровидной форме;
Ø ковкий чугун, в котором графит находится в хлопьевидной форме.
Следовательно, структура этих чугунов отличается от структуры стали только наличием свободного графита.
Наименьшую прочность имеет ферритный чугун. Твердость чугуна с различной структурой металлической основы имеет следующие значения:
Металлическая основа чугуна | Ферритная | Ферритно-перлитная | Перлитная |
Твердость, HВ |
Пластичность чугунов мало зависит от структуры металлической основы.
Форма графитных включений мало влияет на твердость чугуна, однако на прочность и пластические свойства она оказывает значительное влияние. Наиболее благоприятной формой графита является шаровидная, а пластинчатый графит снижает прочность и пластичность чугуна.
Пластичность чугуна очень заметно зависит от формы включений графита:
Графит Пластинчатый Хлопьевидный Шаровидный
δ, % … 0,2—0,5 5-10 10—15
Кроме снижения прочности и пластичности включения графита заметно понижают также модуль упругости чугуна, значения которого оказываются значительно ниже, чем у стали.
Следует отметить, что в определенных случаях наличие графита в структуре полезно и дает чугуну преимущества перед сталью: включения графита облегчают обрабатываемость чугуна резанием (стружка делается ломкой); благодаря смазывающему действию графита чугун обладает хорошими антифрикционными свойствами, т. е. хорошо работает на трение; чугун с включениями графита обладает способностью быстро гасить вибрации, колебания; графит делает чугун практически нечувствительным к поверхностным надрезам и другим дополнительным дефектам на поверхности.
Следует также отметить хорошие литейные свойства чугуна, дающие ему преимущество по сравнению со сталью.
Названия чугунов | Форма графитных включений | |||
пластинчатые | хлопьевидные | шаровидные | ||
Название чугуна по форме графитных включений | ||||
серый | ковкий | высокопрочный | ||
Название чугуна по строению металлической основы | Перлитный | |||
Феррито –перлитный Перлитный | ||||
Феррит-ный |
Рис. 2. Классификация серых чугунов по строению металлической основы и форме графитовых включений
В промышленности широкое применение нашли чугуны с графитом. Чугуны — литейные сплавы, их используют для производства отливок. Чугуны обладают хорошей жидкотекучестью, а также малой усадкой за счет наличия в структуре свободного углерода — графита (см. разд. 18.1), температура их затвердевания ниже, чем у сталей.
Процесс образования графита в чугунах называется графитизацией. Образование графита может происходить при его непосредственном выделении из жидкой фазы при очень медленном охлаждении, когда степень переохлаждения не превышает 5 °С (при более быстром охлаждении образуется цементит), или в результате распада цементита при длительных выдержках.
Цементит (Ц) распадается на свободный углерод в виде графита (Г) и твердый раствор углерода в железе:
• при температуре свыше 727 °С — на аустенит (А) и графит (Г):
• при температуре ниже 727 °С — на феррит (Ф) и графит (Г):
В зависимости от формы графитовых включений различают несколько видов чугунов (рис. 13.1, а):
- • серые — графит имеет пластинчатую форму;
- • высокопрочные — форма графита шаровидная (глобулярная);
- • ковкие — графит имеет хлопьевидную форму.
Распад цементита может проходить полностью или частично. При неполном распаде цементита он присутствует в структуре наряду с графитом. В зависимости от количества углерода, связанного в цементите (Ссвяз), меняется структура металлической основы чугуна:
- • при ССВяз до 0,02 % — матрица ферритная. Это чугуны на ферритной основе, их структура феррит + графит;
- • при Ссвяз = 0,8 % структура матрицы —- перлит. Это перлитные чугуны со структурой перлит + графит;
- • при Ссвяз от 0,02 до 0,8 % ферритно-перлитовые — чугуны, со структурой феррит + перлит + графит.
Таким образом, по структурному признаку различают девять видов чугу- нов: три по форме графита — серый, высокопрочный и ковкий, причем каждый из них может иметь ферритную, ферритно-перлитную или перлитную матрицу (рис. 13.1). Твердость и прочность перлита выше, чем феррита. Поэтому наибольшей прочностью и износостойкостью обладают чугуны (с одинаковой формой графита) на перлитной основе, наименьшей — на ферритовой.
Серый чугун получил название по виду излома, имеющего серый цвет. Серые чугуны получают непосредственно литьем. Это доэвтектические чугуны, содержащие 2,4.. .3,8 % углерода, 1.. .4 % кремния (графитизатор), 1,25… 1,4 % марганца (повышает прочность).
Структура металлической основы определяется химическим составом чугуна и скоростью охлаждения отливки (рис. 13.1, б, в). Увеличение в чугуне содержания кремния и углерода способствует более полной графитизации. Аналогично влияние замедленного охлаждения. Графитизация — процесс диффузионный, поэтому он развивается тем полнее, чем дольше отливка находится при высоких температурах, т. е. чем медленнее она охлаждается. Скорость охлаждения отливки определяется ее сечением — чем больше сечение (толщина), тем больше время охлаждения.
Серые чугуны обладают меньшей прочностью, чем ковкие и высокопрочные. Чем крупнее пластинки графита (они играют роль трещин) и менее равномерно они распределены по объему, тем ниже прочность чугуна при растяжении. Минимальной прочностью обладает серый чугун на ферритовой основе. Вместе с тем включения графита не оказывают практического влияния на прочность при сжатии (при сжатии трещины закрываются). Предел прочности при сжатии в 3-5 раз больше, чем при растяжении (примерно такой же, как у низкоуглеродистой стали, например, Ст. 3).
Вместе с тем наличие в структуре свободного графита определяет ряд преимуществ чугуна перед сталью:
- • лучшая обрабатываемость резанием; обеспечивается хорошее стружкоот- деление — стружка при обработке чугуна сыпучая, а не сливная, как у стали;
- • более высокие антифрикционные свойства благодаря смазывающему действию графита;
- • наличие демпфирующих свойств, поскольку графитовые включения гасят вибрации;
Рис. 13.1. Структуры чугунов с графитом: а — по форме графита и металлической основе; б — по химическому составу; в — по скорости охлаждения; I — белый чугун; II — отбеленный чугун;
III — перлитный чугун; VI — перлито-ферритный; V — ферритный
• практически отсутствие чувствительности к поверхностным дефектам (надрезам и т. п.);
Серые чугуны обозначаются буквами СЧ (серый чугун) и цифрами, которые указывают предел прочности при растяжении в кгс/мм2. Например, СЧ20 — серый чугун с пределом прочности при растяжении 20 кгс/мм2 (200 МПа).
Серые чугуны применяют для изготовления отливок станин, поршней цилиндров, зубчатых колес и др.; ферритные (СЧ10, СЧ15) и ферритно-перлитные (СЧ20, СЧ25), обладающие меньшей прочностью, — для менее нагруженных деталей; перлитные (СЧ30, СЧ35) — для более нагруженных.
Серый чугун с повышенным содержанием фосфора (до 1,6%), обладающий хорошей жидкотекучестью, используют при производстве художественного литья.
Высокопрочный чугун получают при модифицировании магнием или церием перед его заливкой в формы. Под воздействием магния графит приобретает шаровидную (глобулярную) форму. Шаровидная форма графита обеспечивает высокие механические свойства чугуна (прочность на растяжение и пластичность). Это объясняется тем, что шаровидный графит значительно меньше, чем пластинчатый, ослабляет металлическую основу. Среди всех чугунов максимальная прочность у высокопрочного на перлитной основе.
Маркируют чугуны буквами ВЧ — высокопрочный чугун и цифрами, которые указывают предел прочности при растяжении в кгс/мм2. Например, ВЧ60 — высокопрочный чугун с пределом прочности при растяжении 60 кгс/мм2 (600 МПа).
Наибольшую прочность имеют чугуны на перлитной основе (ВЧ80, ВЧ60), она снижается у чугунов с ферритно-перлитной основой (ВЧ50, ВЧ45) и минимальна у чугунов с ферритной основой (ВЧ42, ВЧ38).
В целях получения особых свойств (жаростойкости, антифрикционнности, коррозионной стойкости) высокопрочные чугуны легируют хромом, никелем, молибденом, титаном, алюминием.
Высокопрочные чугуны эффективно заменяют сталь. Из них изготавливают валки прокатных станов, коленчатые валы автомобилей и др.
Ковкий чугун получают из белого чугуна путем графитизирующего отжига. Его проводят в две стадии (рис. 13.2), что обеспечивает необходимый распад цементита.
Рис. 13.2. Режим отжига белого чугуна для получения ковкого чугуна
Первая стадия отжига заключается в нагреве отливок до температуры
950… 1000 °С и длительной изотермической выдержке при этой температуре (10… 15 ч). При этом цементит распадется на аустенит и графит (Ц —? А -ь Г). Затем осуществляется медленное охлаждение (5… 12 ч) до температуры, лежащей немного ниже линии PSK (см. рис. 10.1), в процессе которого происходит выделение из аустенита вторичного цементита (линия SE на диаграмме Fe — Fe3C, см. рис. 10.1) и его распад (Ц —» А + Г) с образованием хлопьевидного графита.
Вторая стадия отжига—изотермическая выдержка при температуре немного ниже температуры эвтектоидного превращения в течение 25.. .30 ч. При этом происходит эвтектоидное превращение аустенита в перлит (А —» П[Ф + Ц]) и распад цементита, входящего в перлит, на феррит и графит (Ц —> Ф + Г).
В результате такого отжига, когда распался весь цементит, получают ковкий ферритный чугун (излом бархатисто-черный). При сокращении выдержки на второй стадии графитизация происходит не до конца, и получают ковкий феррито-перлитный чугун, а если исключить вторую стадию, — ковкий перлитный чугун (излом светлый).
Хлопьевидный графит ослабляет металлическую основу в меньшей степени, чем пластинчатый. Отсутствие литейных напряжений, которые полностью устраняются во время отжига, обусловливает высокие механические свойства ковких чугунов. Они, уступая высокопрочным чугунам в прочности, существенно превосходят по прочности серые чугуны, а по пластичности — серые чугуны. Именно благодаря своей высокой (для чугунов) пластичности они получили название — ковкие. Однако, это название является условным. Пластичность ковких чугунов недостаточна для проведения пластической деформации. Ковкие чугуны не куют.
Маркируют ковкие чугуны буквами КЧ — ковкий чугун и цифрами. Первые цифры это предел прочности при растяжении (кгс/мм2), вторые — относительное удлинение (%). Например: КЧ45-6 означает — ковкий чугун, с пределом прочности при растяжении а„ = 45 кгс/мм2 (450 МПа) и относительным удлинением при испытаниях на растяжение 5 = 6%.
Из ковкого чугуна можно получить заготовки только небольших размеров — толщиной не более 40.. .50 мм. Это связано с тем, что получение крупногабаритных отливок из белого чугуна невозможно (при их замедленном охлаждении будет происходить графитизация), а именно отжигом белого чугуна получают ковкий.
Из ковких чугунов изготавливают детали относительно небольших размеров, работающие при статических и динамических нагрузках (картер заднего моста, чашки дифференциала, тормозные колодки, ступицы колес для автомобилей и др.).
У белого чугуна весь углерод находится в виде цементита, поэтому при медленном нагревании до 1300о С весь цементит перейдет в жидкое состояние.
1. Чугуны: классификация, маркировка, химический состав, механические и технологические свойства, применение.
Чугуны нашли широкое применение в качестве машиностроительных материалов благодаря сочетанию высоких литейных свойств, достаточной прочности, износостойкости, а так же относительной дешевизны. Чугуны используются для производства качественных отливок сложной формы (станины станков, корпуса приборов и т.д.). Чугунами называются сплавы железа с углеродом и некоторыми другими элементами (Si, Mn, S, P), причем содержание углерода в чугунах более 2,14 %. Свойства чугунов определяются металлической основой (матрицей), а также количеством, формой и расположением в ней графитовых включений. В зависимости от того, в какой форме присутствует углерод в сплаве, чугуны подразделяются на: белый, серый, ковкий, высокопрочный и легированный, обладающий особыми свойствами (жаропрочностью, антифрикционностью).
Белые литейные чугуны. Белыми называются чугуны, в которых весь углерод находится в связанном состоянии в виде цементитаFe3C. Из-за большого количества цементита белые чугуны имеют высокую твердость (НВ 450-550) и хрупкость, поэтому используются только для изготовления износостойких деталей типа шаров мельниц, звездочек в галтовочных барабанах, облицовочных плит для щековых дробилок, прокатных валков с отбеленной поверхностью и т. д. В связи с высокой хрупкостью белые чугуны имеют очень ограниченное применение и поэтому не маркируются.
Серые литейные чугуны. Серыми называются чугуны с пластичной формой графита. Чугуны являются сплавами со сложным химическим составом, содержащими C, Si, Mn, S, P. Содержание этих элементов колеблется в следующих пределах C = 2,2 — 3,7 % , Si = 1-3% , Mn = 0,2-1,1%, P = 0,12-0,3%, S =0,02- 0,15 %. По структуре серый чугун делится на три вида: — серый ферритный со структурой феррит + графит, в этом чугуне весь углерод находится в виде графита;
— серый феррито — перлитный со структурой феррит + перлит + графит; в этом чугуне количество связанного графита менее 0.8%;.-серый перлитный со структурой перлит + графит; в этом чугуне количество связанного графита составляет ~ 0.8%; Наиболее высокими механическими свойствами обладает серый чугун с перлитной структурой.
В обозначениях марки чугуна буквы “СЧ” обозначают “серый чугун”, а число после букв — предел прочности при растяжении.
Так как относительное удлинение у серых чугунов составляет<0,3%,то маркировке оно не указывается.
Из перлитных серых чугунов наивысшими механическими свойствами обладают чугуны, модифицированные ферросилицием или силикокальцием. При модифицировании измельчаются графитовые включения, в результате достигается прочность уB = 1000—1200 МПа.
Высокопрочные чугуны. 1. Высокопрочными называются чугуны, в которых графит имеет шаровидную форму. Получение в чугуне шаровидной формы графита достигается при модифицировании серого чугуна некоторыми химическими элементами Mq, Ca, Ce и т.д. в количестве 0,05—0,1 %. Чугун после модифицирования имеет следующий химический состав: С=3,0-3,6 %, Si =1,1—2.9 %, Mn =0.3—0.7 %, S<0.02 %, P<0.01 %. По структуре металлической основы (матрицы) высокопрочный чугун может быть ферритным, феррито — перлитным и перлитным. Шаровидный графит является менее сильным концентратором напряжений, поэтому имеет более высокие механические свойства, чем серый чугун. Чугуны с шаровидным графитом обладают более высокой прочностью и некоторой пластичностью. Так же как и у серых чугунов, наиболее высокими свойствами обладает высокопрочный чугун с перлитной структурой.
Высокопрочный чугун эффективно заменяет сталь во многих изделиях и конструкциях, так как обладает не только прочностью, но и пластичностью. В некоторых случаях для улучшения механических свойств, применяют термическую обработку отливок (закалку, отпуск, отжиг).
В обозначении марки чугуна буквы «ВЧ» обозначают «высокопрочный чугун», а число после букв — предел прочности при растяжении уB в кг/мм2.
Ковкие чугуны. Ковкими называются чугуны, в которых графит имеет хлопьевидную форму. Такие чугуны получаются путем длительного отжига белого доэвтектического чугуна. Хлопьевидный графит, в отличие от пластинчатого, меньше снижает механические свойства металлической основы, в следствии чего ковкий чугун обладает более высокой прочностью и пластинчатостью, чем серый чугун.
Для обеспечения получения хлопьевидного графита после отжига исходные белые чугуны должны иметь пониженное содержание углерода и кремния. Химический состав исходного белого чугуна находится в пределах: С=2,4-2,9% ,Si=1,0-1,6% , Mn=0,2-1,05% , S<0,2%, P<0,18.%.
По структуре металлической основы ковкие чугуны бывают ферритными и перлитными. Перлитные ковкие чугуны имеют более высокий предел прочности, но пониженную пластичность.
Ковкий чугун во многих случаях заменяет детали из стали, так как по механическим свойствам детали приближаются к стальным, а по цене получаются на 20-30% дешевле. Недостатком технологии получения ковких чугунов является сложность и большая энергоёмкость процесса, поэтому ковкий чугун ни в Советском Союзе, ни в странах СНГ распространения не получил. В основном ковкий чугун используется для изготовления ответственных отливок, испытывающих при эксплуатации значительные динамические и знакопеременные нагрузки (например, коленчатые валы, ступицы грузовиков, приводные цепи конвейеров и др.)
В обозначении марки ковкого чугуна буквы «КЧ» означают «ковкий чугун». Первая пара цифр — предел прочности в МПа, вторая пара цифр -относительное удлинение в %.
Легированные чугуны. Легированные чугуны получаются при введении в их состав легирующих компонентов (Cr, Si, Al, Ni, Mn и др.) Легирование производится для получения каких либо особых свойств: износостойкости, жаростойкости, коррозионной стойкости и др.
Из легированных чугунов можно выделить следующие группы:
износостойкие чугуны;
жаростойкие чугуны;
жаропрочные чугуны;
коррозионностойкие чугуны;
антифрикционные чугуны.
Легированные чугуны маркируются по типу сталей: первые буквы означают вид чугуна: Ж-жаростойкий, А-антифрикционный, Ч-жаропрочный или коррозионностойкий. Следующие буквы обозначают наличие легирующих элементов (Х-хром, С-кремний, Ю-алюминий, Д-медь, Н-никель, Г-марганец, М-молибден, В-вольфрам). Цифры после букв указывают примерное содержание легирующего элемента в процентах. Если цифры нет, то содержание легирующего элемента соответствует ~1 %.
Например, ЖЧЮ 7Х2- жаростойкий чугун, алюминия -7 %, хрома -2 %.
Износостойкие чугуны. Износостойкость чугуна повышается при увеличении в структуре количества карбидов как простых (цементита), так и специальных (карбидов хрома, вольфрама, ванадия и т.д.). Металлическая матрица должна прочно удерживать твердую составляющую (карбиды) и предотвращать ее хрупкое разрушение. Характерным представителем износостойких чугунов является высокохромистый износостойкий чугун ИЧХ20М2Г3Н2. Средний химический состав высокохромистого чугуна: С = 2,6-3 %, Si = 0,3-1,4%, Mn = 0,5-5,5% Cr = 12-30%, Mo=0,4-4%, Ni = 0-3% , S?0,08% , P?0,1%.
Износостойкость высокохромистого чугуна превышает сталь Ст20 от 6 до 14 раз. В условиях гидрообразивного износа стойкость высокохромистого чугуна превышает, износостойкость высокомарганцевой стали Г13Л в 6 раз.
Существуют и другие виды износостойких чугунов (белый низколегированный, ОИ-1, ИЧХ4Г7Д, нихард и т.д.), но они уступают высокохромистому по износостойкости и поэтому применяются реже.
Жаростойкие чугуны. Жаростойкие чугуны используются для изготовления деталей работающих в газовой, воздушной, щелочной средах при температурах 500-1100°С. Жаростойкостью чугуна по ГОСТ 7769-85 называется способность сопротивляться росту и окалинообразованию при заданной температуре. Сопротивление окислению чугуна обусловлено наличием на поверхности плотных защитных окисных пленок (окислы Al , Si , Cr) , которые предохраняют металл от последующего окисления при высоких температурах. Жаростойкие чугуны бывают хромистые, кремнистые и алюминиевые. Средний химический состав жаростойких чугунов:
С=2,0-3,9%, Si=1,5-6,0%, Mn=0,4-1,0%, Cr=0,5-32%, Al=19-25%.
Структура хромистого чугуна состоит из ферроидизированного перлита, отдельных включений карбидов и графита. В высокохромистом сплаве (26-30% Cr ) структура состоит из твердого раствора хрома в б-железе и карбидов в виде карбидной эвтектики ( при С>2% ) .
Механические свойства и назначение некоторых марок жаростойкого чугуна
При содержании Cr от 3-10% отливки получаются с высокой хрупкостью и твердостью, делающей невозможной обработку резанием. Поэтому такие чугуны находят ограниченное применение. Кремнистые чугуны отличаются хорошей обрабатываемостью резанием, так как получается ферритная структура металлической матрицы. Алюминиевые чугуны даже с содержанием алюминия 8% имеют такое же сопротивление окислению, как нихром- сплав с 80% Ni и 20% Сr и жаростойкостью 800°С. При легировании алюминиевого чугуна хромом (~30% )и кремнием (~6%) жаростойкость возрастает до 1200° С при одновременном повышении прочности и сохранении литейных свойств.
Жаропрочные чугуны. Жаропрочные чугуны применяются для изготовления деталей, работающих под нагрузкой при повышенных температурах ( до 600°С ). Марки жаропрочных чугунов обозначаются буквой «Ч», остальные обозначения такие же, как у всех остальных. Буква «Ш» в конце обозначения означает «с шаровидным графитом». Наиболее высоким уровнем жаропрочных свойств обладает аустенитный чугун с шаровидной формой графита. Отличительной особенностью структуры аустенитного чугуна, легированного хромом и магнием, является наличие в структуре карбидной составляющей, количество которой составляет 50%. Мелкодисперсные структуры показывают более высокую жаропрочность, поэтому жаропрочные чугуны подвергают специальной термообработке — гомогенизирующему отжигу. (1050° С- 4 часа)
Аустенитный жаропрочный чугун имеет следующий состав:
С=2,5-3,0%, Si=1,8-2,5%, Mn=1,0-8,0%, Cr=1,0-3,5% ,Ni=10-20%, S?0,05%, P?0,03%.
Механические свойства и назначение некоторых марок жаропрочного
Коррозионностойкие чугуны. Коррозионностойкие чугуны применяются для изготовления деталей с высокой коррозионной стойкостью в различных рабочих средах (морской воде, растворах кислот, расплавах солей, в перегретом водяном паре, в сернистых газах и т. д.). Для повышения коррозионной стойкости чугун легируется в основном Cr , Ni, Cu и другими элементами, которые создают на поверхности чугуна защитные (пассивирующие) пленки, а так же легируют металлическую матрицу (преимущественно, феррит) образуя химические соединения с высоким химическим потенциалом. Происходящее при этом измельчение структуры понижает число микропор и уменьшает разность потенциалов между отдельными структурными составляющими.
Коррозионностойкие чугуны делятся на следующие группы:
низколегированные чугуны (Cr до 1%, Ni до 1%);
высококремнистые чугуны (ферросилиды);
кремнемолибденовые чугуны (антихлоры);
аустенитные никелевые чугуны (нирезист);
высокохромистые чугуны.
Каждая группа чугунов применяется в особых, специфических условиях, для которых и была специально разработана.
Коррозионностойкие чугуны широко применяются в химическом машиностроении, на железнодорожном транспорте для перевозки продуктов химической промышленности , в металлургическом машиностроении и др.
Антифрикционные чугуны. Антифрикционные чугуны (ГОСТ 1585-85) применяются для изготовления подшипников скольжения, работающих в присутствии смазки. Из антифрикционного чугуна изготавливаются цилиндры, поршни, станины, зубчатые колеса, втулки, вкладыши подшипников и т.д. Наиболее важными свойствами антифрикционного чугуна являются высокая износостойкость, хорошие литейные свойства и низкая стоимость. Главный недостаток антифрикционного чугуна — пониженная по сравнению с бронзой прирабатываемость. Средний химический состав антифрикционного чугуна: С=2,5-3,8 %, Si=0,8-2,7 %, Мп=0,3-1,2 %, Р<0,15 %, S<0,03 %, Cr=0,2-0,4 %, Ni=0,2-0,4 %, Ti=0,1 %, Cu=0,3-0,7 %. (ГОСТ 1585-85).
Антифрикционные чугуны легируются хромом, никелем, титаном и медью, что позволяет получить мелкодисперсную структуру перлит+феррит.
Маркируется антифрикционный чугун буквами АСЧ, АВЧ, АКЧ, что означает антифрикционный серый, антифрикционный высокопрочный или антифрикционный ковкий. Последний (АКЧ) применяется с термообработкой, остальные без термообработки. Для нормальной работы деталей из антифрикционного чугуна ГОСТ 1585-85 устанавливает режим работы в узлах трения.