Как определить в какой порции вещества содержится больше атомов
Моль, молярная масса
В химических
процессах участвуют мельчайшие частицы – молекулы, атомы, ионы, электроны.
Число таких частиц даже в малой порции вещества очень велико. Поэтому, чтобы
избежать математических операций с большими числами, для характеристики
количества вещества, участвующего в химической реакции, используется
специальная единица – моль.
Моль — это такое количество
вещества, в котором содержится определенное число частиц (молекул, атомов,
ионов), равное постоянной Авогадро
Постоянная
Авогадро NA определяется как число атомов, содержащееся в 12 г
изотопа 12С:
Таким
образом, 1 моль любого вещества содержит 6,02 • 1023 частиц этого вещества.
1 моль кислорода содержит 6,02 • 1023 молекул O2.
1 моль серной кислоты содержит 6,02 • 1023 молекул H2SO4.
1 моль железа содержит 6,02 • 1023 атомов Fe.
1 моль серы содержит 6,02 • 1023 атомов S.
2 моль серы содержит 12,04 • 1023 атомов S.
0,5 моль серы содержит 3,01 • 1023 атомов S.
Исходя из
этого, любое количество вещества можно выразить определенным числом молей ν (ню).
Например, в образце вещества содержится 12,04 • 1023 молекул. Следовательно, количество
вещества в этом образце составляет:
В общем
виде:
где N – число частиц данного
вещества;
Nа – число частиц, которое содержит 1 моль вещества
(постоянная Авогадро).
Молярная
масса вещества (M) – масса,
которую имеет 1 моль данного вещества.
Эта величина, равная отношению массы m вещества к количеству вещества ν,
имеет размерность кг/моль или г/моль. Молярная масса, выраженная
в г/моль, численно равна относительной относительной молекулярной массе Mr
(для веществ атомного строения – относительной атомной массе Ar).
Например, молярная масса метана CH4 определяется следующим образом:
Мr(CH4) = Ar(C) + 4 Ar(H) = 12+4 =16
M(CH4)=16
г/моль, т.е. 16 г CH4 содержат 6,02 • 1023 молекул.
Молярную
массу вещества можно вычислить, если известны его масса m и количество
(число молей) ν, по формуле:
Соответственно,
зная массу и молярную массу вещества, можно рассчитать число его молей:
или найти
массу вещества по числу молей и молярной массе:
m = ν • M
Необходимо
отметить, что значение молярной массы вещества определяется его качественным и
количественным составом, т.е. зависит от Mr и Ar. Поэтому
разные вещества при одинаковом количестве молей имеют различные массы m.
Пример
Вычислить массы метана CH4 и этана С2H6,
взятых в количестве ν = 2 моль каждого.
Решение
Молярная масса метана M(CH4) равна 16 г/моль;
молярная масса этана M(С2Н6) = 2 • 12+6=30 г/моль.
Отсюда:
m(CH4) = 2 моль • 16 г/моль = 32 г;
m(С2Н6) = 2 моль • 30 г/моль = 60 г.
Таким
образом, моль – это порция вещества, содержащая одно и то же число частиц, но
имеющая разную массу для разных веществ, т.к. частицы вещества (атомы и
молекулы) не одинаковы по массе.
n(CH4)
= n(С2Н6),
но m(CH4) < m(С2Н6)
Вычисление ν
используется практически в каждой расчетной задаче.
Взаимосвязь:
Образцы решения задач
Задача №1. Вычислите массу (г) железа, 0, 5 моль? Дано: ν(Fe)=0,5 моль Найти: Решение: m = M · ν M(Fe) = Ar(Fe) = 56 г/моль m (Fe) = 56 г/моль Ответ: |
Задача №2. Вычислите массу (г) 12,04 · 1023молекул оксида кальция CaО? Дано: Найти: Решение: m = M · ν, ν= N/Na, следовательно, формула для расчёта m = M · (N/Na) M(CaO) = Ar(Ca) + Ar(O) = 40 + 16 = 56 г/моль m= 56 г/моль · (12,04 Ответ: |
ТРЕНАЖЁРЫ
Тренажёр
№1 — Взаимосвязь количества вещества, числа частиц и постоянной Авогадро
Тренажёр
№2 — Взаимосвязь массы, количества вещества и молярной массы
Тренажёр
№3 — Вычисление количества вещества по известной массе вещества
Тренажёр
№4 — Вычисление массы вещества по известному количеству вещества
Тренажёр
№5 — Вычисление массы вещества по известному числу частиц вещества
Тренажёр
№6 — Вычисление молярной массы вещества
Тренажёр
№7 — Вычисление числа частиц вещества по известной массе вещества
Тренажёр
№8 — Вычисления числа частиц вещества по известному количеству вещества
Интерактивны тесты
«Упражнения
для контроля и самопроверки по вычислению количества вещества»
«Упражнения
для контроля и самопроверки по вычислению молярной массы вещества «
Задания для закрепления
Задача 1. Вычислите массу воды (г), взятой количеством вещества 5 моль?
Задача 2. Вычислите массу 24,08 *1023 молекул серной кислоты H2SO4?
Задача
3. Определите число атомов в 56 г железа Fe?
В сентябре, когда я начинаю работать с новыми учениками, всегда волнуюсь. Первые занятия — самые важные, поскольку происходит построение «призмы», через которую я буду передавать знания и опыт, а ученик — воспринимать информацию и учиться работать с ней.
Я преподаю химию как точный предмет, в основе которого лежит строгая математическая логика. Я учу строить систему в любой поступающей информации, видеть главные узлы системы и связи между ними. Только так можно изучить такой сложный предмет, каким является химия. Ребята учатся грамотно учиться, затем свои знания и опыт работы они переносят в высшую школу, изучая более сложные медицинские предметы.
Не все проходит гладко. Накопление информации и опыта всегда индивидуально и связано с формированием сложной системы условных рефлексов. Но даже в самых тяжелых и запущенных случаях я не опускаю руки, использую современные технологии нейрофизиологии для ускорения процесса образования и повышения его качества.
Вспоминаю 2008 год. Это был последний год без ЕГЭ. Тяжелые задания на письменных вступительных экзаменах подразумевали серьезную подготовку, особенно по решению сложных задач. В тот год у меня были очень сильные ученики. Все как на подбор, быстро схватывали материал, набирались опыта и решали сложные задачи. И только Дима резко отставал от всех остальных. На занятиях он работал отлично, но как только покидал стены кабинета, весь изученный материал и накопленный опыт исчезали бесследно. На следующем занятии приходилось начинать все с начала. Так продолжалось несколько месяцев. Я понимала, что это не вина, а беда мальчика, а ключ к решению проблемы спрятан в индивидуальных особенностях физиологии высшей нервной деятельности. Пришлось обратиться за советом к своим бывшим ученикам, профессиональным нейрофизиологам. Как решилась проблема Димы и кем он стал теперь, я расскажу позже. А мы продолжим изучать химию. Тема сегодняшней статьи — количество вещества (моль).
Количество вещества (моль)
Количество вещества (моль) — важная расчетная величина в химии. Это именно тот золотой ключик, которым открывают любую, даже самую потайную дверь химической задачи. Термины «моль» и «молекула» — однокоренные, они произошли от латинского слова «moles». В XVII в. появился термин «молекула» («маленькая масса»). Понятие «моль» («большая масса», «порция») появилось в начале XX века. Автор термина «моль» — немецкий химик и физик Вильгельм Оствальд.
Количество вещества определяется числом частиц, из которых состоит данное вещество (атомов, молекул, ионов), и обозначается греческой буквой «ню». Для характеристики количества вещества в химии используют особую единицу измерения — моль.
Моль — это количество вещества, которое содержит столько структурных единиц (атомов, молекул, ионов), сколько атомов углерода содержится в 12 г изотопа углерода 12С. Экспериментально установлено, что один моль любого вещества содержит число Авогадро структурных единиц. В настоящее время известно более 60 независимых экспериментальных методов определения значения числа Авогадро.
Молярная масса — это масса 1 моля вещества, то есть отношение массы вещества к его количеству, выраженное в г/моль.
Абсолютная масса одной молекулы (атома) определяется делением молярной массы на число Авогадро
Итак, мы освоили первые математические формулы для химических расчетов. Попробуем закрепить наши знания и умение пользоваться этими формулами на решении простейших задач по химии.
Задача 1
Определите массу карбоната натрия и воды, которые содержатся в 0,8 моль кристаллической соды
Задача 2
Вычислите абсолютную массу одной молекулы углекислого газа в граммах
Задача 3
Образец вещества, массой 5,6 г содержит десятую часть числа Авогадро молекул. Определите молярную массу вещества
Задача 4
Эквимолярная смесь оксида фосфора (V) и диоксида кремния имеет массу 60,6 г. Определите массу оксида фосфора (V)
Вот мы и освоили первые, самые важные расчетные величины и поучились с ними работать. Но это еще не все. С количеством вещества можно вытворять такие замечательные трюки, которые вы даже представить не можете! Об этом скоро в следующих статьях.
А теперь о Диме и его проблеме с изучением химии. Тайна лежала в индивидуальных особенностях бета-тета активности головного мозга. Мои бывшие ученики, а теперь — ведущие нейрофизиологи МГУ работают с ритмами мозга. Они определили, что бета-тета ритмы мозга находится под влиянием гиппокампа, который играет ключевую роль в ускоренной переработке информации и активации долговременной памяти. Стимуляция бета-тета волновой активности способствует изучению иностранных языков, усвоению новых терминов, более быстрому и конструктивному получению фундаментальных знаний. Дима прошел курс БОС терапии по стимуляции мозговой активности в одной из лабораторий МГУ. Уже через месяц он не только достиг уровня своих товарищей, но и даже превзошел их. Как показали исследования, после трех часов решения задач по химии также происходил невероятный всплеск бета-тета волн, а через три месяца регулярных занятий формировался высокий уровень бета-тета потенциала! Дима блестяще сдал вступительные экзамены и в 2008 году поступил в РГМУ им. Н.И.Пирогова (РНИМУ им. Н.И. Пирогова). Сегодня Дима работает врачом-педиатром в одной из центральных клиник Москвы.
Вы готовитесь к ЕГЭ и хотите поступить в медицинский? Обязательно посетите мой сайт Репетитор по химии и биологии https://repetitor-him.ru. Здесь вы найдете огромное количество задач, заданий и теоретического материала, познакомитесь с моими учениками, многие из которых уже давно работают врачами. Звоните мне +7(903) 186-74-55. Приходите ко мне на курс, на Мастер-классы «Решение задач по химии» — и вы сдадите ЕГЭ с высочайшими баллами, и станете студентом престижного ВУЗа!
PS! Если вы не можете со мной связаться из-за большого количества звонков от моих читателей, пишите мне в личку ВКонтакте, или на Facebook. Я обязательно отвечу вам.
Репетитор по химии и биологии кбн В.Богунова
Все вещества состоят из атомов. Атом – это мельчайшая, химически неделимая частица вещества. Все типы химических элементов объединены в Периодической системе химических элементов. Атомы одного типа называются химическими элементами. Количество атомов может меняться. Количество атомов одного типа обозначается коэффициентом.
Например, запись 6K означает 6 атомов калия. Запись 7P – это 7 атомов фосфора.
Атомы образуют молекулы. Здесь полезно упомянуть закон постоянства состава: любое определенное химически чистое соединение, состоит из одних и тех же химических элементов, причём отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами. Закон постоянства состава не выполняется для бертоллидов (соединений переменного состава). Однако условно состав многих бертоллидов записывают, как постоянный.
Например, молекула серной кислоты выглядит так: H2SO4. Она состоит из двух атомов водорода, одного атома серы и четырех атомов кислорода.
Количество молекул также обозначается коэффициентом перед формулой молекулы.
Количество любых частиц обозначается, как N.
Например, 7 молекул воды записывается так: 7H2O.
6 молекул углекислого газа: 6CO2. При этом в 6 молекулах углекислого газа содержится 6 атомов углерода C и 12 атомов кислорода O.
Задача. Определите, сколько атомов водорода содержится в 15 молекулах фосфорной кислоты.
N(H3PO4) = 15
В каждой молекуле фосфорной кислоты содержится по 3 атома водорода. Следовательно, атомов водорода в 3 раза больше, чем молекул фосфорной кислоты:
N(H) = 45.
Ответ: в 15 молекулах фосфорной кислоты содержится 45 атомов водорода.
Задача. Определите, какое число молекул сероводорода H2S содержит 300 атомов водорода H.
В каждой молекуле сероводорода содержится по 2 атома водорода. Следовательно, число атомов водорода в 2 раза меньше, чем число молекул сероводорода:
N(H2S) = 1/2*N(H) = 1/2*300 = 150.
Ответ: 300 атомов водорода содержится в 150 молекулах сероводорода.
Задача 1. Определите количество атомов водорода в 12 молекулах аммиака NH3?
Задача 2. Определите количество атомов кислорода, если число молекул хлорангидрида серной кислоты SO2Cl2 равно 6000?
Задача 3. Определите число атомов кислорода в порции, содержащей 6 миллионов частиц медного купороса CuSO4•5H2O.
Задача 4. Определите число молекул в порции метана CH4, если известно, в этой порции содержится 3•106 атомов водорода.
Задача 5. В некоторой порции карбида алюминия Al4C3 содержится 300000 атомов алюминия. Определите число молекул.
Задача 6. Известно, что в некоторой порции серной кислоты H2SO4 всего содержится 350 атомов. Определите число молекул серной кислоты в этой порции.
Задача 7. В некоторой порции содержится смесь углекислого газа СO2 и оксида фосфора (V) P2O5 в соотношении 1:2. Известно, что число молекул углекислого газа в этой смеси равно 42. Определите число атомов кислорода в этой порции.
Задача 8. Известно, что в порции содержится 300 молекул угарного газа CO и 400 молекул сернистого газа SO2. Определите, какое число атомов кислорода содержится в этой порции.
Задача 9. Известно, что в водном растворе фосфорной кислоты на каждую молекулу фосфорной кислоты H3PO4 приходится 20 молекул воды H2O. Общее количество атомов водорода в этом растворе равно 8600. Определите количество атомов кислорода в этом растворе.
Задача 10. Известно, что порции медного купороса CuSO4•5H2O содержится 2700 атомов кислорода. Определите количество атомов водорода в этой порции.
В уроке 8 «Химическое количество вещества и моль» из курса «Химия для чайников» выясним, что такое химическое количество вещества; рассмотрим моль в качестве единицы количества вещества, а также познакомимся с постоянной Авогадро. Напоминаю, что в прошлом уроке «Относительная молекулярная и относительная формульная массы» мы научились вычислять относительную молекулярную массу, а также относительную формульную массу веществ; кроме того, выяснили что такое массовая доля и привели формулу для ее вычисления.
Любое чистое вещество имеет свою химическую формулу, т. е. характеризуется определенным качественным и количественным составом.
Если необходима какая-то порция твердого вещества, то для этого следует взять нужную его массу, т. е. взвесить вещество (рис. 43). Нужный объем жидкого вещества обычно отмеряют с помощью мензурки или мерного цилиндра (рис. 44). Для отбора необходимой порции (объема) газообразных веществ применяют специальные емкости — газометры (рис. 45).
Следовательно, объем и масса — это величины, характеризующие данную порцию вещества.
Химическое количество вещества
В жизни мы часто не различаем понятия «масса» и «количество». А это разные понятия. Когда вы говорите: «Я купил 2 кг груш», то здесь речь идет о массе груш. Но если вы говорите: «Я купил 10 груш», то в этом случае речь идет о количестве груш. Массу вещества измеряют в граммах, килограммах, тоннах, а количество — в штуках.
Груши можно пересчитать поштучно, а если это, например, зерна? Тут уже посчитать каждое зернышко даже в небольшой емкости сложно. Поэтому зерно обычно продают мешками, т. е. определенными порциями. В каждой такой порции — мешке (если они равны по массе и все зерна одинаковы) — будет находиться практически одно и то же число зерен. Подобным образом продают многие товары. Например, яйца — десятками, спички — спичечными коробками, в каждом из которых находится по 45 спичек (рис. 46).
В химической практике, помимо массы или объема, необходимо знать число структурных единиц (атомов, молекул, формульных единиц), которые содержатся в данной порции вещества, поскольку именно они участвуют в химических реакциях. Поэтому в химии, как и в других естественных науках, используют физическую величину, характеризующую число частиц в рассматриваемой порции вещества. Эта физическая величина называется количеством вещества или, как следует называть ее при химических расчетах, — химическое количество вещества.
Химическое количество вещества — физическая величина, пропорциональная числу структурных единиц, содержащихся в данной порции вещества.
Другими словами, химическое количество вещества — это порция данного вещества, содержащая определенное число его структурных единиц. Химическое количество вещества обозначают латинской буквой n. Это одна из семи основных физических величин Международной системы единиц (СИ).
Моль — единица химического количества вещества
Каждая из основных физических величин имеет свою единицу. Например, единица длины — метр (м), массы — килограмм (кг), времени — секунда (с). Единицей химического количества вещества является моль.
Моль — порция вещества (т. е. такое его химическое количество), которая содержит столько же структурных единиц, сколько атомов содержится в углероде массой 0,012 кг.
Сокращенное обозначение единицы химического количества записывается, как и полное, — моль. Поэтому, если слово «моль» стоит после числа, то оно не склоняется, так же, как и другие сокращенные единицы величин: 3 кг, 5 л, 8 моль. При чтении вслух и при записи числительного буквами слово «моль» склоняется: три килограмма, пять литров, восемь молей.
На заметку. Термины «молекула» и «моль», как нетрудно заметить, однокоренные. Они действительно произошли от одного и того же латинского слова «moles». Но это слово имеет, по крайней мере, два значения. Первое — «маленькая масса». Именно в этом смысле в XVII в. оно превратилось в термин «молекула». А понятие «моль» (в смысле кучка, порция) появилось значительно позже, в начале ХХ в. Автор этого термина известный немецкий химик и физик Оствальд толковал его смысл как «большая масса», как бы противопоставляя термину «молекула».
Число (N) атомов в порции углерода массой 0,012 кг легко определить, зная массу одного атома углерода (19,94·10-27 кг):
Следовательно, в углероде массой 0,012 кг содержатся 6,02·1023 атомов углерода и эта порция составляет 1 моль. Столько же структурных единиц содержится в 1 моль любого вещества.
Величина, равная:
получила название постоянной Авогадро. Она является одной из важнейших универсальных постоянных и обозначается символом NA:
Единица в числителе дроби (1/моль) заменяет название структурной единицы.
Если структурной единицей вещества (например, меди, углерода) является атом, то в порции этого вещества количеством 1 моль содержатся 6,02·1023атомов. В случае веществ молекулярного строения (вода, углекислый газ) их порции количеством 1 моль содержат по 6,02·1023молекул. Если структурными единицами веществ немолекулярного строения (например, NaCl или CuSO4) являются их формульные единицы, то в порциях этих веществ количеством 1 моль содержатся по 6,02·1023формульных единиц.
На заметку. Численное значение постоянной Авогадро огромно. О том, насколько велико это число, можно судить по следующему сравнению. Поверхность Земли, включая и водную, равна 510 000 000 км2. Если равномерно рассыпать по всей этой поверхности 6,02·1023 песчинок диаметром 1 мм, то они образуют слой песка толщиной более 1 м.
Зная химическое количество n данного вещества Х, легко рассчитать число молекул (атомов, формульных единиц) N(Х) в этой порции:
если 1 моль вещества содержит 6,02·1023 молекул, то n моль вещества содержат N(Х) молекул.
Отсюда:
И наоборот, по числу структурных единиц можно рассчитать химическое количество вещества:
Пример 1. Определите число молекул, содержащихся в серной кислоте химическим количеством 3 моль.
Спойлер
[свернуть]
Пример 2. Рассчитайте химическое количество CuSO4 в порции, содержащей 36,12·1023 формульных единиц (ФЕ).
Спойлер
[свернуть]
Краткие выводы урока:
- Химическое количество вещества — физическая величина, пропорциональная числу структурных единиц, содержащихся в данной порции вещества.
- Моль — единица химического количества вещества, т. е. такое его количество, которое содержит 6,02·1023 структурных единиц.
Надеюсь урок 8 «Химическое количество вещества и моль» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.