Как определить какие продукты реакции образуются

Как определить какие продукты реакции образуются thumbnail

Существует несколько классификаций реакций, протекающих в неорганической и органической химии.

По характеру процесса
  • Соединения
  • Так называют химические реакции, где из нескольких простых или сложных веществ получается одно
    сложное вещество. Примеры:

    4Na + O2 = 2Na2O

    P2O5 + 3H2O = 2H3PO4

  • Разложения
  • В результате реакции разложения сложное вещество распадается на несколько сложных или простых веществ. Примеры:

    2KMnO4 = K2MnO4 + MnO2 + 2O2

    Сa(OH)2 = CaO + H2O

  • Замещения
  • В ходе реакций замещения атом или группа атомов в молекуле замещаются на другой атом или группу атомов. Примеры:

    CuSO4 + Fe = FeSO4 + Cu

    2KI + Cl2 = 2KCl + I2

  • Обмена
  • К реакциям обмена относятся те, которые протекают без изменения степеней окисления и выражаются в обмене компонентов между веществами.
    Часто обмен происходит анионами/катионами:

    2KOH + MgCl2 = Mg(OH)2↓ + 2KCl

    AgF + NaCl = AgCl↓ + NaF

Классификация химических реакций

Окислительно-восстановительные реакции (ОВР)

Это те химические реакции, в процессе которых происходит изменение степеней окисления химических элементов, входящих в состав
исходных веществ. ОВР подразделяются на:

  • Межмолекулярные — атомы окислителя и восстановителя входят в состав разных молекул. Примеры:
  • KMnO4 + HCl → KCl + MnCl2 + Cl2 + H2O

    K2SO3 + K2Cr2O7 + H2SO4 → K2SO4
    + Cr2(SO4)3 + H2O

  • Внутримолекулярные — атомы окислителя и восстановителя в составе одного сложного вещества. Примеры:
  • KMnO4 → K2MnO4 + MnO2 + O2

    KClO3 → KCl + O2

  • Диспропорционирование — один и тот же атом является и окислителем, и восстановителем
  • KOH + Cl2 → (t) KCl + KClO3 + H2O

    KOH + Cl2 → KCl + KClO + H2O

Окислительно-восстановительные реакции

Замечу, что окислителем и восстановителем могут являться только исходные вещества (а не продукты!) Окислитель всегда понижает свою СО,
принимая электроны в процессе восстановления. Восстановитель всегда повышает свою СО, отдавая электроны в процессе окисления.

От обилия информации можно запутаться. Я рекомендую сформулировать четко: «Окислитель — понижает СО, восстановитель — повышает СО». Запомнив
эту информацию таким образом, вы не будете путаться.

Окислитель и восстановитель

ОВР уравнивают методом электронного баланса, с которым мы подробно познакомимся в разделе «Решения задач».

Обратимые и необратимые реакции

Обратимые реакции — такие химические реакции, которые протекают одновременно в двух противоположных направлениях: прямом и обратном.
При записи реакции в таких случаях вместо знака «=» ставят знак обратимости «⇆».

Классическим примером обратимой реакции является синтез аммиака и реакция этерификации (из органической химии):

N2 + 3H2 ⇆ 2NH3

CH3COOH + C2H5OH ⇆ CH3COOC2H5 + H2O

Необратимые реакции протекают только в одном направлении, до полного расходования одного из исходных веществ. Главное отличие их от
обратимых реакций в том, что образовавшиеся продукты реакции не взаимодействуют между собой с образованием исходных веществ.

Иногда сложно бывает отличить обратимую реакцию от необратимой, однако я дам несколько советов, которые советую взять на вооружение.
В результате необратимых реакций:

  • Образуются малодиссоциирующие вещества (например — вода, однако есть исключения — реакция этерификации)
  • Реакция сопровождается выделение большого количества тепла
  • В ходе реакции образуется газ или выпадает осадок

Примеры необратимых реакций:

BaCl2 + H2SO4 = BaSO4↓ + 2HCl (выпадает осадок)

NaOH + HCl = NaCl + H2O (образуется вода)

2Na + 2H2O = 2NaOH + H2 (сопровождается выделением большого количества тепла)

Обратимые и необратимые реакции

Реакции и агрегатное состояние фаз

Фазой в химии называют часть объема равновесной системы, однородную во всех своих точках по химическому
составу и физическим свойствам и отделенную от других частей того же объема поверхностью раздела. Фаза бывает жидкой,
твердой и газообразной.

Все реакции можно разделить на гетеро- и гомогенные. Гетерогенные реакции (греч. heterogenes — разнородный) — реакции, протекающие на
границе раздела фаз, в неоднородной среде. Скорость таких реакций зависит от площади соприкосновения реагирующих веществ.

К гетерогенным реакциям относятся следующие реакции (примеры): жидкость + газ, газ + твердое вещество,
твердое вещество + жидкость. Примером такой реакции может послужить взаимодействие твердого цинка и раствора соляной кислоты:

Zn(тв.) + 2HCl(р-р.) = ZnCl2(р-р.) + H2(газ.)↑

Гетерогенная реакция

Гомогенные реакции (греч. homogenes — однородный) — реакции, протекающие между веществами, находящимися в одной фазе.

К гомогенным реакциям относятся (примеры): жидкость + жидкость, газ + газ, твердое вещество + твердое вещество. Примером
такой реакции может служить взаимодействие между растворами уксусной кислоты и едкого натра.

NaOH(р-р.) + CH3COOH(р-р.) = CH3COONa(р-р.) + H2O(р-р.)

Гомогенная реакция

Реакции и их тепловой эффект

Все реакции можно разделить на те, в ходе которых тепло поглощается, или, наоборот, тепло выделяется. Представьте пробирку, охлаждающуюся
или нагревающуюся в вашей руке — это и есть тот самый тепловой эффект. Иногда тепла выделяется так много, что реакции сопровождаются
воспламенением или взрывом (натрий с водой).

  • Экзотермические реакции
  • Экзотермические реакции (греч. exo — вне) — химические реакции, сопровождающиеся потерей энергии системой и выделением тепла (той самой
    энергии) во внешнюю среду. При написании химических реакций в конце экзотермических ставят «+ Q» (Q — тепло), иногда бывает указано точное
    количество выделяющегося тепла. Например:

    2Mg + O2 = 2MgO + Q

    NaOH + HCl = NaCl + H2O + 56 кДж

    Экзотермические реакции

    К экзотермическим реакциям часто относятся реакции горения, соединения. Исключением является взаимодействие азота и кислорода, при
    котором тепло поглощается:

    N2 + O2 ⇄ 2NO — Q

    Как уже было отмечено выше, если тепло выделяется во внешнюю среду, значит, система реагирующих веществ потеряло это тепло. Поэтому
    не должно казаться противоречием, что внутренняя энергия веществ в результате экзотермической реакции уменьшается.

    Энтальпией называют (обозначение Н), количество термодинамической (тепловой) энергии, содержащееся в веществе. Иногда с целью «запутывания»
    в реакции вместо явного +Q при экзотермической реакции могут написать ΔH < 0. Например:

    2Na + 2H2O = 2NaOH + H2; ΔH < 0 (это значит, что тепло выделяется — реакция экзотермическая)

    Экзотермические реакции

  • Эндотермические реакции
  • Эндотермические реакции (греч. ἔνδον — внутри) — химические реакции, сопровождающиеся поглощением тепла, в результате которых образуются
    вещества с более высоким энергетическим уровнем (их внутренняя энергия увеличивается).

    К таким реакциям наиболее часто относятся реакции разложения. При написании эндотермических реакций в конце ставят «-Q», либо указывают точное
    количество поглощенной энергии. Примеры таких реакций:

    2HgO = Hg + O2 — Q

    4NH3 + 5O2 = 4NO + 6H2O — Q

    CaCO3 = CaO + CO2↑ — Q

    С целью «запутывания» может быть дана энтальпия, она при таких реакциях всегда: ΔH > 0, так как внутренняя
    энергия веществ увеличивается. Например:

    CaCO3 = CaO + CO2↑ ; ΔH > 0 (значит реакция эндотермическая, так как внутренняя энергия увеличивается)

    Эндотермические реакции

    Замечу, что не все реакции разложения являются эндотермическими. Широко известная реакция разложения дихромата аммония («вулканчик»)
    является примером экзотермического разложения, при котором тепло выделяется.

    Экзотермические реакции

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Характеристика химических реакций

  • Химические реакции в природе и быту
  • Типы химических реакций
  • Химическая реакция соединения
  • Химическая реакция разложения
  • Химическая реакция замещения
  • Химическая реакция обмена
  • Признаки химических реакций
  • Как определить признак химической реакции
  • Скорость химической реакции
  • Равновесие химической реакции
  • Условия возникновения химических реакций
  • Тепловой эффект химической реакции
  • Химические реакции, видео
  • Характеристика химических реакций

    Химические реакции, их свойства, типы, условия протекания и прочая, являются одним из краеугольных столпов интересной науки под названием химия. Попробуем же разобрать что такое химическая реакция, и какова ее роль. Итак, химической реакцией в химии принято считать превращение одного либо нескольких веществ, в другие вещества. При этом ядра атомов у них не меняются (в отличие от реакций ядерных), зато происходит перераспределение электронов и ядер, и, разумеется, появляются новые химические элементы.

    Химические реакции в природе и быту

    Мы с вами окружены химическими реакциями, более того мы сами их регулярно осуществляем различными бытовыми действиями, когда например, зажигаем спичку. Особенно много химических реакций сами того не подозревая (а может и подозревая) делают повара, когда готовят еду.

    Разумеется, и в природных условиях проходит множество химических реакций: извержение вулкана, фотосинтез листвы и деревьев, да что там говорить, практически любой биологический процесс можно отнести к примерам химических реакций.

    вулкан

    Типы химических реакций

    Все химические реакции можно условно разделить на простые и сложные. Простые химические реакции, в свою очередь, разделяются на:

    • реакции соединения,
    • реакции разложения,
    • реакции замещения,
    • реакции обмена.

    Далее мы подробно остановимся на каждом из этих видов химических реакций, известных химии.

    Химическая реакция соединения

    По весьма меткому определению великого химика Д. И. Менделеева реакция соединения имеет место быть когда «их двух веществ происходит одно». Примером химической реакции соединения может быть нагревание порошков железа и серы, при которой из них образуется сульфид железа – Fe+S=FeS. Другим ярким примеров этой реакции является горение простых веществ, таких как сера или фосфор на воздухе (пожалуй, подобную реакцию можно также назвать тепловой химической реакцией).

    Химическая реакция разложения

    Тут все просто, реакция разложения является противоположностью реакции соединения. При ней из одного вещества получается два или более веществ. Простым примером химической реакции разложения может быть реакция разложение мела, в ходе которой из собственно мела образуется негашеная известь и углекислый газ.

    Химическая реакция замещения

    Реакция замещения осуществляется при взаимодействии простого вещества со сложным. Приведем пример химической реакции замещения: если опустить стальной гвоздь в раствор с медным купоросом, то в ходе этого простого химического опыта мы получим железный купорос (железо вытеснит медь из соли). Уравнение такой химической реакции будет выглядеть так:

    Fe+CuSO4→ FeSO4+Cu

    Химическая реакция обмена

    Реакции обмена проходят исключительно между сложными химическими веществами, в ходе которых они меняются своими частями. Очень много таких реакций имеют место быть в различных растворах. Нейтрализация кислоты желчью – вот хороший пример химической реакции обмена.

    NaOH+HCl→ NaCl+Н2О

    Так выглядит химическое уравнение этой реакции, при ней ион водорода из соединения HCl обменивается ионом натрия из соединения NaOH. Следствием этой химической реакции является образование раствора поваренной соли.

    Признаки химических реакций

    По признакам протекания химических реакций можно судить прошла ли химическая реакция между реагентами или нет. Приведем примеры признаков химических реакций:

    • Изменение цвета (светлое железо, к примеру, во влажном воздухе покрывается бурым налетом, как результат химической реакции взаимодействия железа и кислорода).
    • Выпадение осадка (если вдруг через известковый раствор пропустить углекислый газ, то получим выпадение белого нерастворимого осадка карбоната кальция).
    • Выделение газа (если Вы капнете на пищевую соду лимонной кислотой, то получите выделение углекислого газа).
    • Образование слабодиссоциированных веществ (все реакции, в результате которых образуется вода).
    • Свечение раствора (примером тут могут служить реакции, происходящие с раствором люминола, излучающего при химических реакциях свет).

    В целом, трудно выделить какие признаки химических реакций являются основными, для разных веществ и разных реакций характерны свои признаки.

    Как определить признак химической реакции

    Определить признак химической реакции можно визуально (при изменении цвета, свечении), или по результатам этой самой реакции.

    Скорость химической реакции

    Под скоростью химической реакции обычно понимают изменение количества одного из реагирующих веществ за единицу времени. Притом, скорость химической реакции всегда положительная величина. В 1865 году химиком Н. Н. Бекетовым был сформулирован закон действия масс гласящий, что «скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным в степени, равные их стехиометрическим коэффициентам».

    К факторам скорости химической реакции можно отнести:

    • природу реагирующих веществ,
    • наличие катализатора,
    • температуру,
    • давление,
    • площадь поверхности реагирующих веществ.

    Все они имеют самое прямое влияние на скорость протекания химической реакции.

    Равновесие химической реакции

    Химическим равновесием называют такое состояние химической системы, при котором протекает несколько химических реакций и скорости в каждой паре прямой и обратной реакции равны между собой. Таким образом, выделяется константа равновесия химической реакции – это та величина, которая определяет для данной химической реакции соотношение между термодинамическими активностями исходных веществ и продуктов в состоянии химического равновесия. Зная константу равновесия можно определить направление протекания химической реакции.

    Условия возникновения химических реакций

    Чтобы положить начало химических реакций, необходимо для этого создать соответствующие условия:

    • приведение веществ в тесное соприкосновение.
    • нагревание веществ до определенной температуры (температура химической реакции должна быть подходящей).

    Тепловой эффект химической реакции

    Так называют изменение внутренней энергии системы как результат протекания химической реакции и превращения исходных веществ (реактантов) в продукты реакции в количествах, соответствующих уравнению химической реакции при следующих условиях:

    • единственно возможной работой при этом есть только лишь работа против внешнего давления.
    • исходные вещества и продукты, полученные в результате химической реакции, имеют одинаковую температуру.

    Химические реакции, видео

    И в завершение интересно видео про самые удивительные химические реакции.

    Как определить какие продукты реакции образуются

    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Эта статья доступна на английском языке – Chemical Reactions.

    Источник

    Классификация реакций

    Химические реакции — явления, при которых происходит разрыв одних и образование других химических связей. При этом из одних химических веществ получаются другие вещества (или другое вещество).

    По изменению состава веществ реакции делятся на

    1. Реакции, при которых не происходит изменение состава веществ

      а) аллотропные превращения: С(графит) С(алмаз); O2 O3 и др.
      б) реакции изомеризация: NH4OCN (NH2)2CO; CH3—CH2—CH2—CH3 CH3—CH(CH3)—CH3 и др.

    2. Реакции, при которых происходит изменение состава веществ — все остальные реакции.

      а) реакции соединения: S + O2 = SO2; CaO + CO2 = CaCO3; C2H4 + Br2 = C2H4Br2 и т. п.
      б) реакции разложения: 2HgO = 2Hg + O2; MgCO3 = MgO + CO2; C2H5OH = C2H4 + H2O и т. п.
      в) реакции замещения: Zn + 2HCl = ZnCl2 + H2; CaCO3 + SiO2 = CaSiO3 + CO2; CH4 + Cl2 = CH3Cl + HCl и др.

      г) реакции обмена: CuO + H2SO4 = CuSO4 + H2O; NaOH + HCl = NaCl + H2O; HCOOH + CH3OH = HCOOCH3 + H2O; и другие, более сложные, реакции.

    По изменению степени окисления реакции делятся на реакции, протекающие с изменением степени окисления (окислительно-восстановительные реакции, ОВР):

    Fe0 + S0 = Fe+IIS-II;

    и реакции, протекающие без изменения степени окисления.

    По изменению внутренней энергии (по тепловому эффекту реакции) реакции делятся на
    экзотермические: 2Mg + O2 = 2MgO + Q; CH4 + 2O2 = CO2 + 2H2O + Q (тепло выделяется);
    эндотермические: CaCO3 = CaO + CO2 — Q; C8H18 C4H10 + C4H8 — Q. (тепло поглощается)

    По направлению протекания реакции делятся на
    необратимые: AgNO3 + NaCl = AgCl + NaNO3; CH4 + Cl2 = CH3Cl + HCl (протекают в одном направлении)
    обратимые: K2SO3 + H2O KHSO3 + KOH; C2H6 C2H4 + H2 (протекают в двух направлениях)

    По числу фаз в реагирующей смеси различают
    гомофазные («гомогенные») реакции:

    2CO(г) + O2(г) = 2CO2(г) (одна фаза — газ);

    CH3NH2(р-р)+ HCl(р-р) = [CH3NH3]Cl(р-р) (одна фаза — водный раствор);

    гетерофазные («гетерогенные») реакции:

    Fe(т) + CuSO4(р-р) = Cu(т) + FeSO4(р-р) (три фазы — две твердых фазы и водный раствор);
    2Na(т) + 2C2H5OH(ж) = 2C2H5ONa(р-р) + H2(г) (три фазы — газ, твердая фаза и спиртовой раствор).

    По участию в реакции катализатора выделяют каталитические реакции:

    2H2O2 2H2O + O2; C2H4 + H2 C2H6

    Есть и другие классификационные признаки: скорость, механизм и т. д.

    Одну и ту же реакцию по разным признакам можно отнести одновременно к нескольким типам, например, реакция

    N2 + 3H2 2NH3 + Q

    является экзотермической обратимой гомофазной (формально) каталитической окислительно-восстановительной реакцией соединения.

    Реакции обмена, протекающие в растворах, идут до конца, если образуется осадок, газ или малодиссоциированное вещество (в частности, вода)

    BaCl2 + Na2SO4 = BaSO4 + 2NaCl
    NH4Cl + NaOH = NaCl + NH3 + H2O

    KNO2 + HCl = KCl + HNO2 (молекулярное уравнение)
    K+ + NO2- + H+ + Cl- = K+ + Cl- + HNO2 (полное ионное уравнение)
    H+ + NO2- = HNO2 (сокращенное ионное уравнение, ионное уравнение)

    Скорость химической реакции

    Скорость гомофазной реакции — отношение изменения концентрации реагента или продукта реакции ко времени протекания реакции.

    Скорость гетерофазной реакции — отношение изменения количества вещества реагента или продукта реакции ко времени протекания реакции и площади соприкосновения реагирующих веществ.

    Факторы, влияющие на скорость реакции.
    1. Природа реагирующих веществ (состав, строение, энергия активации).

    Энергия активации (Ea) — избыточная энергия (по сравнению со средней), необходимая для эффективного соударения реагирующих частиц.

    Чем меньше энергия активации, тем больше скорость реакции, и, чем больше энергия активации, тем меньше скорость реакции. Например, реакции обмена в водных растворах, приводящие к образованию осадка протекают очень быстро, так как у них очень маленькая энергия активации. Напротив, реакция получения аммиака из водорода и азота при комнатной температуре практически не идет, так как у нее очень большая энергия активации.

    2. Температура. При увеличении температуры увеличивается скорость движения молекул и их кинетическая энергия, уменьшается прочность связей, все это приводит к возрастанию числа частиц с энергией, равной энергии активации, и увеличению скорости реакции.

    Правило Вант-Гоффа. При увеличении температуры на 10oС скорость реакции возрастает в 2 … 4 раза.

    3. Концентрации реагентов. Чем больше концентрация реагирующих веществ, тем чаще их частицы соударяются, и тем больше скорость реакции. Для реакции aA + bB = dD, протекающей в одну стадию, скорость реакции v = k·(cA)a·(cB)b. Это выражение называется законом действующих масс для скорости реакции. Постоянная (при постоянной температуре) величина k называется константой скорости реакции. Она равна скорости реакции при единичных концентрациях реагентов.

    4. Наличие катализатора. Катализаторы — вещества, с помощью которых медленная реакция заменяется последовательностью более быстрых реакций с меньшими энергиями активации. Катализаторы вступают в первую реакцию этой последовательности и выделяются в химически неизменном виде в результате последней реакции. Поэтому создается впечатление, что катализаторы увеличивают скорость реакции.

    Ингибиторы — вещества, уменьшающие скорость реакции; ингибиторы, в отличие от катализаторов, в ходе реакции расходуются.

    5. Скорость гетерофазных реакций зависит также от состояния поверхности (например, чистая или загрязненная), характера образующихся продуктов (например, растворимы продукты или нет), условий подвода реагентов и отвода продуктов реакции (например, используется перемешивание, или нет).

    Если реакция протекает на границе газовой фазы и твёрдой (или жидкой) фазы, то на скорость реакции не влияют концентрации жидких и твердых веществ, а если на границе жидкой и твёрдой фазы, то — концентрации твердых веществ.

    Обратимые реакции. Химическое равновесие.

    Необратимые реакции протекают только в одном направлении.

    Обратимые реакции — реакции, которые при одних и тех же условиях протекают как в прямом, так и в обратном направлениях.

    H2 + I22HI
    реагентыпродукт

    Состояние обратимой реакции, при котором скорость прямой реакции равна скорости обратной реакции называется химическим равновесием. Химическое равновесие — равновесие динамическое.

    Принцип Ле Шателье: если на систему, находящуюся в равновесии оказать внешнее воздействие, то равновесие в системе сместится в том направлении, в котором происходит частичная компенсация этого воздействия.

    • при увеличении концентрации исходного вещества равновесие смещается в сторону продуктов реакции;
    • при увеличении концентрации продуктов реакции — в сторону реагентов (исходных веществ);
    • при увеличении давления (если в системе есть газы) — в сторону меньшего объема;
    • при уменьшении давления — в сторону большего объема;
    • при увеличении температуры — в сторону продуктов эндотермической реакции;
    • при уменьшении температуры — в сторону продуктов экзотермической реакции.

    Введение катализатора не смещает равновесия, но ускоряет его достижение.

    Тепловой эффект реакции.

    Тепловой эффект реакции — количество теплоты, выделяющейся, или поглощающейся при протекании реакции с теми количествами вещества реагентов, которые задаются коэффициентами в термохимическом уравнении.

    C2H4 + 3O2 = 2CO2 + 2H2O + 1400 кДжЭкзотермическая реакция;
    CaCO3 = CaO + CO2 — 157 кДжЭндотермическая реакция.

    Тепловой эффект возникает прежде всего из-за разницы в энергиях связей в исходных веществах (реагентах) и продуктах реакции (см. вышеприведенный рис.)

    Теория электролитической диссоциации

    Вещества с ионой или сильно полярной ковалентной связью могут при растворении или плавлении (только ионные вещества) образовывать подвижные ионы, за счет которых эти растворы или расплавы проводят электрический ток. Такие вещества называют электролитами, а процесс образования ионов — электролитической диссоциацией.

      Электролитами являются:

    • соли NaCl = Na+ + Cl-
    • основания NaOH = Na+ + OH-
    • кислоты HCl = H+ + Cl-

    Сильные электролиты — электролиты, которые в разбавленном растворе полностью (необратимо) диссоциируют.

    Слабые электролиты — электролиты, которые в разбавленном растворе диссоциируют частично (обратимо) и незначительно.

    Степень диссоциации — отношение числа продиссоциировавших в растворе молекул к числу исходных молекул (молекул, попавших в раствор). Степень диссоциации зависит от концентрации и температуры. С увеличением концентрации степень диссоциации уменьшается, а с увеличением температуры — возрастает.

    Некоторые электролиты диссоциируют ступенчато:

    H2S H+ + HS- (первая ступень); HS- H+ + S2- (вторая ступень).

    Степень диссоциации по второй ступени всегда меньше, чем по первой ступени.

    Свойства разбавленных растворов сильных электролитов определяются свойствами ионов, находящихся в этих растворах (молекул в них нет): свойства кислот — свойствами ионов водорода, свойства щелочей — свойствами гидорксидных ионов, свойства солей — свойствами ионов, входящих в состав данной соли.

    Источник