Что такое натуральный ряд каким свойством обладает

Что такое натуральный ряд каким свойством обладает thumbnail

Натуральные числа и их свойства

Для счёта предметов в жизни используют натуральные числа. В записи любого натурального числа используются цифры $0,1,2,3,4,5,6,7,8,9$

Последовательность натуральных чисел, каждое следующее число в котором на $1$ больше предыдущего, образует натуральный ряд, который начинается с единицы (т.к. единица- самое маленькое натуральное число) и не имеет наибольшего значения, т.е. бесконечен.

Нуль не относят к натуральным числам.

Свойства отношения следования

Все свойства натуральных чисел и операций над ними следуют из четырех свойств отношений следования, которые были сформулированы в $1891$ г. Д.Пеано:

  1. Единица- натуральное число, которое не следует ни за каким натуральным числом.

  2. За каждым натуральным числом следует одно и только одно число

  3. Каждое натуральное число, отличное от $1$, следует за одним и только одним натуральным числом

  4. Подмножество натуральных чисел, содержащее число $1$, а вместе с каждым числом и следующее за ним число, содержит все натуральные числа.

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Если запись натурального числа состоит из одной цифры его называют однозначным (например, $2,6.9$ и т.д.), если запись состоит из двух цифр-двузначным(например,$12,18,45$) и т.д. по аналогии. Двузначные, трехзначные, четырехзначные и т.д. числа называют в математике многозначными.

Свойство сложения натуральных чисел

  1. Переместительное свойство: $a+b=b+a$

    Сумма не изменяется при перестановке слагаемых

  2. Сочетательное свойство: $a+ (b+c) =(a+b) +c$

    Чтобы прибавить к числу сумму двух чисел, можно сначала прибавить первое слагаемое, а потом, к полученной сумме- второе слагаемое

  3. От прибавления нуля число не измениться и если прибавить к нулю какое- нибудь число, то получится прибавленное число.

Свойства вычитания

  1. Свойство вычитания суммы из числа $a-(b+c) =a-b-c$ если $b+c ≤ a$

    Для того, чтобы вычесть сумму из числа, можно сначала вычесть из этого числа первое слагаемое, а затем из полученной разности- второе слагаемое

  2. Свойство вычитания числа из суммы $(a+b) -c=a+(b-c)$, если $c ≤ b$

    Чтобы из суммы вычесть число, можно вычесть его из одного слагаемого, а к полученной разности прибавить другое слагаемое

  3. Если из числа вычесть нуль, то число не изменится

  4. Если из числа вычесть его само, то получится нуль

Свойства умножения

  1. Переместительное $acdot b=bcdot a$

    Произведение двух чисел не изменяется при перестановке множителей

  2. Сочетательное $acdot (bcdot c)=(acdot b)cdot c$

    Чтобы умножить число на произведение двух чисел,можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель

  3. При умножении на единицу произведение не изменяется $mcdot 1=m$

  4. При умножении на нуль произведение равно нулю

  5. Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо

Свойства умножения относительно сложения и вычитания

  1. Распределительное свойство умножения относительно сложения

    $(a+b)cdot c=ac+bc$

    Для того чтобы умножить сумму на число,можно умножить на это число каждое слагаемое и сложить получившиеся произведения

    Например, $5(x+y)=5x+5y$

  2. Распределительное свойство умножение относительно вычитания

    $(a-b)cdot c=ac-bc$

    Для того,чтобы умножить разность на число,множно умножить на это число уменьшаемое и вычитаемое и из первого произведения вычесть второе

    Например, $5(x-y)=5x-5y$

Сравнение натуральных чисел

  1. Для любых натуральных чисел $a$ и $b$ может выполняться только одно из трех соотношений $a=b$, $a

  2. Меньшим считается число, которое в натуральном ряду появляется раньше, а большим, которое появляется позже. Нуль меньше любого натурального числа.

  3. если $a

    Пример 1

    Сравнить числа $a$ и $555$, если известно, что существует некоторое число $b$, причем выполняются соотношения: $a

    Решение: На основании указанного свойства ,т.к. по условию $a

  4. в любом подмножестве натуральных чисел, содержащем хотя бы одно число, есть наименьшее число

    Подмножеством в математике называют часть множества. Говорят, что множество является подмножеством другого, если каждый элемент подмножества является одновременно и элементом большего множества

  5. если $a

  6. Если $c

Часто для сравнения чисел находят их разность и сравнивают ее с нулем. Если разность больше $0$, но первое число больше второго, если разность меньше $0$, то первое число меньше второго.

Округление натуральных чисел

Когда полная точность не нужна, или не возможна ,числа округляют,т.е заменяют их близкими числами с нулями на конце.

Читайте также:  Какие свойства проявляет цинк взаимодействуя с кислотой

Натуральные числа округляют до десятков, сотен,тысяч и т.д

При округлеии числа до десятков его заменяют ближайшим числом,состоящим из целых десятков; у такого числа в разряде единиц стоит цифра $0$

При округлеии числа до сотен его заменяют ближайшим числом,состоящим из целых сотен; у такого числа в разряде десятков и единиц должна стоять цифра $0$. И т.д

Числа,до которых округляют данное называют приближенным значением числа с точностью до указанных разрядов.Например если округлять число $564$ до десятков то получим, что округлить его можно с недостатком и получить $560$, или с избытком и получить $570$.

Правило округления натуральных чисел

  1. Если справа от разряда, до которого округляют число, стоит цифра $5$ или цифра,большая $5$, то к цифре этого разряда прибавляют $1$; в противном случае эту цифру оставляют без изменения

  2. Все цифры, расположенные правее разряда, до которого округляют число ,заменяют нулями

Источник

Натуральные числа — одно из старейших
математических понятий.

В далёком прошлом люди не знали чисел и,
когда им требовалось пересчитать предметы
(животных, рыбу и т.д.), они делали это не так, как
мы сейчас.

Количество предметов сравнивали с частями тела, например, с
пальцами на руке и говорили: «У меня столько же орехов, сколько пальцев на руке».

Со временем люди поняли, что пять орехов, пять коз и пять зайцев обладают
общим свойством — их количество равно пяти.

Запомните!
!

Натуральные числа — это числа, начиная с 1, получаемые
при счете предметов.

1, 2, 3, 4, 5…

Наименьшее натуральное число — 1.

Наибольшего натурального числа не существует.

При счёте число ноль не используется. Поэтому ноль не
считается натуральным числом.

Записывать числа люди научились гораздо позже, чем считать. Раньше
всего они стали изображать единицу одной палочкой, потом
двумя палочками — число 2, тремя — число 3.

| — 1, || — 2, ||| — 3, ||||| — 5 …

Затем появились и особые знаки для обозначения чисел — предшественники современных
цифр. Цифры, которыми мы пользуемся для записи чисел, родились в Индии примерно 1 500
лет назад. В Европу их привезли арабы, поэтому их называют
арабскими цифрами.

Всего цифр десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С помощью этих
цифр можно записать любое натуральное число.

Запомните!
!

Натуральный ряд — это последовательность всех натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 …

В натуральном ряду каждое число больше предыдущего на 1.

Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.

Систему счёта (счисления), который мы пользуемся,
называют десятичной позиционной.

Десятичной потому, что 10 единиц каждого разряда образуют
1 единицу старшего разряда. Позиционной потому, что значение цифры
зависит от её места в записи числа, то есть от

разряда, в котором
она записана.

Важно!
Галка

Разряды и классы
(включая класс миллионов) подробно разобраны
на нашем сайте в материалах для начальной школы.

Класс миллиардов

Если взять десять сотен миллионов, то получим новую разрядную единицу —
один миллиард или в записи цифрами.

1 000 миллионов = 1 000 000 000 = 1 млрд

Десять таких единиц — десять миллиардов, десять десятков миллиардов образуют
следующую единицу — сто миллиардов.

Запомните!
!

Миллиарды, десятки миллиардов и сотни миллиардов образуют четвёртый
класс — класс миллиардов.

Разряды и классы натурального числа

Рассмотрим натуральное число 783 502 197 048

Название
класса
МиллиардыМиллионыТысячиЕдиницы
Название разрядаСотни миллиардовДесятки миллиардовМиллиардыСотни миллионовДесятки миллионовМиллионыСотни тысячДесятки тысячТысячиСотниДесяткиЕдиницы
Цифра
(символ)
7835219748
Название
класса
МиллиардыМиллионыТысячиЕдиницы
Название разрядаСотни миллиардовДесятки миллиардовМиллиардыСотни миллионовДесятки миллионовМиллионыСотни тысячДесятки тысячТысячиСотниДесяткиЕдиницы
Цифра
(символ)
7835219748

C помощью таблицы разрядов прочитаем это число. Для этого надо слева направо по очереди
называть количество единиц каждого класса и добавлять название класса.

Название класса
единиц не произносят, также не произносят название класса, если все три
цифры в его разрядах — нули.

Читайте также:  Каким свойством обладает слово перетереть

Теперь прочтем число 783 502 197 048 из таблицы:
783 миллиарда 502 миллиона 197 тысяч
48.

Числа 1, 10, 100, 1000… называются разрядными единицами. С их помощью натуральное число
записывается в виде разрядных слагаемых. Так, например, число 307 898 будет выглядеть
в виде разрядных слагаемых.

307 898 = 300 000 + 7 000 + 800 + 90 + 8

Проверить свои вычисления
вы можете с помощью нашего

калькулятора разложения числа на разряды онлайн.

Следующие за миллиардом классы названы в соответствии с латинскими
наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.

  • 1 000 миллиардов = 1 000 000 000 000 = 1 триллион («три» — по латыни «три»)
  • 1 000 триллионов = 1 000 000 000 000 000 = 1 квадриллион («квадра» — по латыни «четыре»)
  • 1 000 квадриллионов = 1 000 000 000 000 000 000 = 1 квинтиллион («квинта» — по латыни «пять»)

Все числа пересчитать невозможно, поскольку за каждым числом следует число на единицу большее,
но очень большие числа в повседневной жизни не нужны.

Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества)
во всей Вселенной.

Это число получило специальное название — гугол. Гугол — число, у которого
100 нулей.

Источник

Натуральные числа и нуль

Этапы развития понятия натурального числа

Числа, которые используются при счете: 1, 2, 3, …, называются натуральными. Понятие натурального числа является одним из основных математических понятий. К возникновению понятия числа человека привели два вида деятельности: счет и измерение. Понятие числа возникло из практической потребности человека и прошло длительный путь в своем развитии.

Чтобы прийти к современному представлению о числе, человек прошел несколько этапов.

I этап.

Множества сравниваются непосредственно путем установления взаимно однозначного соответствия между их элементами. («Яблок столько, сколько человек за столом»). Аналогично дошкольники сравнивают множества способом наложения и приложения.

Неудобство заключается в том, что оба множества должны быть одновременно обозримы.

II этап.

Вводятся множества-посредники (камешки, зарубки, узелки, пальцы и др.). Человек не отвлекается от конкретных предметов, но уже выделяет общие свойства рассматриваемых множеств (например, «иметь поровну элементов»). Для ответа на вопрос «сколько?» малыши часто используют пальцы на руках как множества-посредники.

III этап.

Происходит отвлечение от природы множеств-посредников, возникает понятие натурального числа. При счете человек уже не говорит: «Один камешек, два камешка, …», а называет числа: «Один, два, три, …». Это важнейший этап в развитии понятия числа. Человек научился абстрагироваться от других свойств множества, выделяя только количество элементов в нем.

IV этап.

Числа стали не только называть, но записывать и выполнять с ними действия. Появились различные системы счисления. Создание десятичной системы, понятия нуля в Древней Индии (V – VI вв. н.э.) решило многие проблемы в этой области и получило всемирное распространение.

V этап.

Числа становятся предметом изучения, и зарождается наука арифметика (от греческого arithmos – число). Арифметика возникла в странах Древнего Востока: Вавилоне, Китае, Индии, Египте, развивалась учеными Древней Греции, стран арабского мира, европейскими учеными. Термин «натуральное число» впервые употребил римский ученый А. Боэций (около 480 – 524).

В настоящее время свойства натуральных чисел, действия над ними изучаются в разделе математики, который называется теорией чисел.

Задание 62

Проведите аналогию между этапами развития понятия натурального числа и деятельностью детей при формировании количественных представлений.

Процесс формирования представлений о числе у дошкольников в общих чертах повторяет основные этапы исторического развития этого понятия. Сначала дети сравнивают множества приемами наложения и приложения, затем соотносят с числом пальцев на руке, потом используют натуральные числа при счете, учатся их записывать и выполнять арифметические действия.

Примечание.

Заслушиваются сообщения, предварительно подготовленные студентами на тему: «Как люди научились считать».

Натуральный ряд и его свойства. Счет

Натуральное число имеет много функций, с некоторыми из них дети знакомятся довольно рано.

Некоторые функции натурального числа

количественная характеристика множества (при ответе на вопрос «сколько?»);

характеристика порядка (при ответе на вопрос «который?»);

численное значение величины (при измерении);

компонент вычислений.

Читайте также:  Какой конец катушки приобретает свойство

Множество натуральных чисел называют натуральным рядом.

Свойство натурального ряда рассматриваются в курсе математики. Некоторые из них доступны уже дошкольникам.

Некоторые свойства натурального ряда

натуральный ряд начинается с единицы;

за каждым натуральным числом непосредственно следует только одно натуральное число;

элемент натурального ряда;

каждое последующее число на 1 больше предыдущего, а каждое предыдущее на 1 меньше последующего п ± 1).

При счете используются не все натуральные числа, а только их часть, достаточная для определения числа элементов в множестве.

Например, чтобы определить число элементов в множестве {a , b , c , d , e}, нужен отрезок натурального ряда {1, 2, 3, 4, 5}.

Отрезок натурального ряда Na называется множество натуральных чисел, не превосходящих натурального числа а.

Например: N 5= {1, 2, 3, 4, 5}.

Множество называется конечным, если оно равномощно некоторому отрезку натурального ряда N а .

Для определения числа элементов в конечном множестве используется счет. Во время счета следуют некоторым правилам: считают каждый элемент только один раз, не пропуская ни одного, числа называют последовательно, начиная с единицы, не пропуская ни одного и не используя дважды.

Счетом элементов множества А называется установление взаимно однозначного соответствия между множеством А и отрезком натурального числа N а .

Число а называют числом элементов в множестве А, оно единственное для данного множества и является количественной характеристикой элементов в множестве А или, короче, количественным натуральным числом.

В процессе счета происходит также упорядочивание элементов множества А (первый элемент, второй, третий, …), то есть натуральное число можно рассматривать и как характеристику порядка элементов в множестве А или, короче, как порядковое число. В этой роли натуральное число выступает, когда, хотят узнать, каким по счету является тот или иной элемент множества.

Количественные и порядковые числа тесно связаны, и возможен переход от одного к другому, в зависимости от цели счета. Сам счет служит для упорядочивания элементов множества и для определения их количества.

Задание 63

1. запишите все элементы множества N7. Приведите пример множества, для счета элементов которого можно использовать данный отрезок натурального ряда.

2. Являются ли данные множества отрезками натурального ряда:{0, 1, 2, 3, 4, 5}, {2, 4, 6, 8}, {1, 2, 3}, {3, 4, 5}?

3. Предложите правила счета для дошкольника, которые помогут сформировать счетную деятельность у ребенка и избежать ошибок.

4. Приведите примеры заданий для детей, в процессе выполнения которых они будут использовать количественные и порядковые числа.

Натуральное число как результат счета не зависит от того, в каком порядке пересчитывались элементы множества, важно, чтобы соблюдались правила счета.

Многие родители заблуждаются, говоря, что их ребенок умеет считать до ста, когда тот может только называть числа от 1 до 100, то есть запомнил последовательность чисел. При обучении дошкольника счету необходимо научить его устанавливать взаимно однозначное соответствие между предметами и числами, выделять итоговое число. Специальные правила (счет вслух, прикасание к каждому предмету рукой слева направо, обобщающий жест) помогут избежать ошибок (пропуск предметов, сосчитывание одного предмета несколько раз, непонимание, сколько же всего предметов, и др.).

Специальные упражнения дают возможность понять ребенку закон сохранения количества (независимость количества элементов множества от их расположения и от направления счета) и зависимость порядкового номера элемента множества от направления счета.

При построении теории натуральных чисел одним и основных понятий принято отношение «непосредственно следовать за», также используются теоретико-множественные понятия и правила логики.

При изучении числового ряда детей учат называть следующее число, предшествующее число, соединение числа.

Если натуральное число b непосредственно следует за натуральным числом а, то число а называется непосредственно предшествующим числу b .

Числа a и b называются соседними числами.

Если к числу прибавить 1, то получится следующее число.

Старшие дошкольники знакомятся с отношениями между числами «больше» и «меньше», операциями над натуральными числами сложением и вычитанием, а младшие школьники – с названиями компонентов этих действий.

Дата добавления: 2018-10-15; просмотров: 758 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник