Что такое голография на каком свойстве света она базируется

Что такое голография на каком свойстве света она базируется thumbnail

Голограмма

Первым на вопрос «Что такое голограмма?» попытался ответить венгерский физик Денеш Габор в конце 40-х годов. Ему и суждено было стать основоположником голографии и одновременно создателем первой голограммы (он же и придумал этот термин), за что впоследствии получил Нобелевскую премию.

Однако качество первых голограмм было невысоким по причине использования для их создания примитивных газоразрядных ламп. Все изменилось в 60-е годы с изобретением лазеров, что поспособствовало стремительному развитию голографических технологий. Первые высококачественные лазерные голограммы были получены советским физиком Ю. Н. Денисюком в 1968 году, а спустя 11 лет, его американский коллега Ллойд Кросс создал еще более сложную мультиплексную голограмму.

Денеш Габор

Принцип формирования голограммы

Голография — это особая технология фотографирования, с помощью которой получаются трехмерные (объемные) изображения объектов. Это стало возможным благодаря двум свойствам световых волн – дифракции (преломление, огибание) и интерференции (перераспределение интенсивности света при наложении нескольких волн).

Формирование голограммы

В процессе визуализации голограммы в определенной точке пространства происходит сложение двух волн – опорной и объектной, образовавшихся в результате разделения лазерного луча. Опорную волну формирует непосредственно источник света, а объектная отражается от записываемого объекта. Здесь же размещается фотопластина, на которой «отпечатываются» темные полосы в зависимости от распределения электромагнитной энергии (интерференции) в данном месте.

3D-голограмма

Аналогичный процесс происходит и на обычной фотопленке. Однако для воспроизведения изображения с нее требуется распечатка на фотобумаге, тогда как с голограммой все происходит несколько иначе. В данном случае для воспроизведения «портрета» объекта достаточно «осветить» фотопластину волной, близкой к опорной, которая преобразует ее в близкую к объектной волну. В результате мы увидим почти что точное отражение самого объекта при отсутствии его в пространстве.

3D-голограмма и ее применение

Современная голограмма – это по сути трехмерная проекция объемного изображения конкретного предмета. 3D-голограмма уверенно осваивает самые различные сферы человеческой деятельности. Примеров тому множество. Один из них – голограммы в воздухе. Это голографические модели (масштаб 1:1) и 3D-пирамиды. На презентациях, конференциях, выставках и прочих мероприятиях различного уровня все чаще используются пространственные голограммы, которые создаются с помощью голографических проекторов. Простейший 3D-проектор можно сделать своими руками из обычного смартфона.

Как работают голографические проекторы

Современные модели проекторов способны создавать огромное число 3D-эффектов. Среди них голографические видеопроекции, создаваемые благодаря использованию прозрачных пленок обратной видеопроекции. Видеопоток, проходя через них, создает изображение, буквально «парящее» в воздухе.

голограмма в воздухе

В ряду новейших технологий передачи информации – видеоконференции и интерактивная голография, формирующая эффект висящей в воздухе прозрачной поверхности.

проектор голограмм

Возможности голографических проекторов по мере развития современных технологий постоянно расширяются, а качество изображений улучшается. Они становятся доступнее и компактнее. Сегодня на вечеринках и в ночных клубах можно встретить лазерные голографические мини-проекторы, создающие сложные лазерные «рисунки», которые сочетаются с дымовыми эффектами.

Голограмма человека

Первым человеком в виде голограммы стала героиня «Звездных войн» (эпизод IV) принцесса Лея. С тех пор — а прошло уже более 40 лет – голография прочно прописалась на киноэкранах наряду с другими спецэффектами в многочисленных голливудских блокбастерах.

О том, что с тех пор голография совершила головокружительный технологический рывок, стало ясно 19 мая 2014 года в Лас-Вегасе при вручении премии Billboard Music Awards, когда перед потрясенными зрителями, как в старые добрые времена спел и станцевал… покойный Майкл Джексон. Чудесное «воскресение» стало возможным, благодаря великолепной голограмме, которую сотворила компания Pulse Evolution.

Голография на дисплее смартфона

голограмма на смартфоне

С появлением мобильных телефонов, а позже смартфонов, стало ясно, что однажды пути этих двух знаковых технологий XXI века пересекутся. Так и случилось. И вот уже YouTube переполнен советами пользователей по превращению смартфона в голографический мини-проектор.

RED Hydrogen One

Свежую идею подхватил один из лидеров по производству цифровых фото- и видеокамер компания RED. В июле прошлого года она представила первый в мире смартфон с 5,7 дюймовым голографическим экраном – RED Hydrogen One. Кроме привычных 2D-изображений он воспроизводит трехмерный контент без помощи специальных очков, а также контент для виртуальной и дополненной реальностей.

Голограммы из будущего

Уже к 2020 году японские инженеры обещают представить первые модели голографических телевизоров на основе технологии, разработанной Дэниэлом Смолли из MIT. А с помощью технологии псевдоголографии TeleHuman люди смогут разговаривать с голографическими образами.

Свою лепту внесла Microsoft, разработав технологию голопортации. Она предполагает передачу объемного отсканированного изображения собеседника в режиме онлайн и создания его трехмерной модели.

Специалисты лаборатории Digital Nature Group из Японии научились с помощью фемтосекундных лазеров создавать голограммы, которые к тому же можно потрогать руками, не опасаясь нежелательных последствий. Это стало возможным за счет сокращения длительности лазерных импульсов с нано- до фемтосекунд.

Источник

                                                                                                         Назад
4.05.2016

                                            Коломийчук Вероника Григорьевна

                                                      Голография

    Оптика — раздел физики, в котором изучаются оптическое излучение (свет), его распространение и явления, наблюдаемые при взаимодействии света с веществом. Примерно до середины XX столетия казалось, что оптика как наука закончила развитие. Однако в последние десятилетия в этой области физики произошли революционные изменения, связанные как с открытием новых закономерностей (принципы квантового усиления, лазеры), так и с развитием идей, основанных на классических и хорошо проверенных представлениях. Здесь прежде всего имеется в виду голография, которая значительно расширяет область практического использования волновых явлений и дает толчок теоретическим исследованиям.
Как средство отображения реальной действительности, голограмма обладает уникальным свойством: в отличие от фотографии, создающей плоское изображение, голографическое изображение может воспроизводить точную трехмерную копию оригинального объекта. Такое изображение со множеством ракурсов, изменяющихся с изменением точки наблюдения, обладает удивительной реалистичностью и зачастую неотличимо от реального объекта.
    Голография – метод получения объемного изображения объекта, путем регистрации и последующего восстановления волн. Волны могут быть любые – световые, рентгеновкие, акустические и т.п. Голограмма является записью интерференционной картины.

 

Что такое голография на каком свойстве света она базируется

    Идеи и принципы голографии сформулировал в 1948 г. Денис Габор. Как это иногда бывает в науке, идея голографии родилась при разработке совсем другой проблемы – усовершенствования электронного микроскопа. В 1971 году «за изобретение и развитие голографического принципа» Д.Габор получил Нобелевскую премию в области физики.
    Сущность идеи состояла в фиксации полной информации о предмете, причем информации не только об амплитуде световой волны, но и о ее фазе. Это объясняет название голографии (от греч. holos –полный и grapho — пишу).
    До изобретения лазера голография практически не развивалась (первые попытки получения голограмм предпринимались Д. Габором и его сотрудниками с использованием ртутной лампы и были низкого качества), поскольку именно голографический метод записи информации использовал важнейшее свойство лазерного излучения – его когерентность.
    В 1962 году была создана классическая схема Эммета Лейта и Юриса Упатниекса из Мичиганского Технологического Института (голограммы Лейта-Упатниекса). Ученые записали первую объемную пропускающую голограмму, восстанавливаемую в лазерном свете. Схема записи голограмм, предложенная этими учеными, теперь используется в голографических лабораториях во всем в мире.

 

Читайте также:  На каком свойстве аминокислот основан синтез белков

Что такое голография на каком свойстве света она базируется

    В  этой  схеме  записи луч  лазера  делится  специальным  устройством,  делителем  (в простейшем случае в роли делителя может выступать любой кусок стекла), на два. После этого лучи с помощью линз расширяются и с помощью зеркал направляются на объект и регистрирующую среду  (например,  фотопластинку).  Обе  волны  (объектная  и  опорная) падают  на  пластинку  с  одной  стороны.  При  такой  схеме  записи  формируется пропускающая голограмма, требующая для своего восстановления источника света с той же длиной волны, на которой производилась запись, в идеале — лазера.
    Существуют различные способы получения голограмм. Один из самых интересных – способ, предложенный советским ученым Юрием Николаевичем Денисюком. В 1962 Денисюк изобрёл способ записи изображения в трехмерных средах, позволяющий сохранить информацию о фазе, амплитуде и спектральном составе волны, пришедшей от объекта. Такие  голограммы, названные отражательными, могут быть воспроизведены при освещении пучком обычного белого света.

 

Что такое голография на каком свойстве света она базируется

    В этой схеме луч лазера расширяется линзой и направляется  зеркалом  на  фотопластинку. Часть луча, прошедшая  через нее, освещает объект. Отраженный от объекта свет формирует объектную волну. Как видно, объектная и опорная волны падают на пластинку с разных сторон. В этой  схеме  записывается  отражающая  голограмма,  которая  самостоятельно  вырезает  из сплошного  спектра  узкий  участок   и  отражает  только  его (выполняя  роль светофильтра).
    В 1969 году Стивен Бентон из Polaroid Recearch Laboratories (США) изготовил пропускающую голограмму, видимую в обычном белом свете. Голограммы, изобретенные Бентоном, были названы радужными, так как они переливаются всеми цветами радуги, из которых состоит белый свет.
Голограмма Бентона —  голограмма сфокусированного  изображения,  допускающая  восстановление  объектной волны  источником  излучения  со  сплошным  спектром (лампа  накаливания, Солнце) за счет ограничения пространственного спектра объекта в одном (как правило,  вертикальном)  направлении. При  этом  цвет  изображения  зависит  от  положения  глаз  наблюдателя  и  не связан  с  цветом  объекта. 
    Открытие Бентона позволило начать массовое производство недорогих голограмм путем «штамповки» интерференционных картин на пластик. Голограммы именно такого типа применяются сегодня для защиты от подделок документов, банковских карточек. Благодаря Бентону голография обрела популярность в широких слоях общества.
    В 1977 году Ллойд Кросс получил мультиплексную голограмму, состоящую из множества обычных фотографий объекта, снятых с множества точек зрения, лежащих в горизонтальной плоскости. При перемещении такой голограммы в поле зрения можно увидеть все запечатленные кадры.

Любой голографический метод состоит из двух этапов.

1.  Вначале получают (записывают) голограмму – интерференционную картину, возникающую на фотопластинке при сложении двух когерентных пучков света. На фотопластинке образуется интерференционная картина, представляющая собой чередование светлых и темных пятен. Голографическое изображение не соответствует его внешнему виду.
2. Для восстановления голограммы  ее освещают таким же когерентным излучением. Поскольку голограмма представляет сложную интерференционную картину, то на ее прозрачных и непрозрачных участках происходит дифракция когерентного излучения, и в результате получается изображение.

                                                                             Основные свойства голограмм

    Эти свойства связаны именно с тем, что на голограммах фиксируются не только амплитуды, но и фазы волн. Практически на каждую точку поверхности пластинки падает излучение, отраженное от всех точек предмета. Это означает, что любая, даже маленькая часть содержит зрительную информацию о всем предмете.

1. Изображение предмета можно получить на любой, даже небольшой части голограммы. Но качество изображения, полученного от кусочка голограммы, хуже изображения, полученного от всей голограммы. Голограмму можно разбить на несколько кусков, и каждый будет полностью воспроизводить первоначальное изображение. Отпечаток голограммы, где черные полосы стали прозрачными и наоборот, дает то же изображение, что исходная голограмма. (Ни фотография, ни голограмма «по Денисюку» таким свойством не обладает.)

2. Голографическое изображение можно увеличить на стадии восстановления. Когда голограмму записывают параллельным световым пучком, а восстанавливают расходящимся, изображение увеличивается пропорционально углу расхождения. (Это свойство используется в рентгеновских голографических микроскопах).

3. Если на одну пластинку записать несколько голограмм, используя разные, но не кратные, длины волн, все они могут быть считаны независимо при помощи лазеров с соответствующим излучением. Таким же образом можно записать и полноцветное изображение.

4. Голограмму можно рассчитать и нарисовать при помощи компьютера и даже вручную. Можно создавать голограммы, на которых изображены предметы, не существующие в реальности. Достаточно компьютеру задать форму объекта и длину волны падающего на него света. По этим данным компьютер рисует картину интерференции отраженных лучей. Пропустив световой пучок сквозь искусственную голограмму, можно увидеть объемное изображение придуманного предмета.

    Следовательно, голография позволяет записывать, хранить, обрабатывать и быстро преобразовывать огромное количество данных. Эти особенности голографии используют для решения многих технических и научных проблем. 

                                                                                                     Применение

    Хотя мы считаем, что голография интересна больше возможностями для 3D-дисплеев, в целом у нее есть возможность применения во многих сферах. Вот несколько примеров:

  • Электронная съемка: наблюдая за фазовым смещением интерференции электронов, когда они проходят через тонкие пленки материалов, можно определять состав материалов.
  • Хранение данных: традиционные оптические диски хранят информацию на поверхности. С помощь голографии есть возможность записывать информацию в объемный материал под разными углами — следовательно, можно хранить больше информации, чем позволяют традиционные методики хранения данных.
  • Голографические оптические пинцеты: оптические пинцеты используют силу света, чтобы перемещать небольшие частицы (в основном в области биологии) и создавать оптические ловушки. Используя генерируемые на компьютерах голограммы, ученые могут манипулировать крупными массивами частиц на малых расстояниях.
  • Безопасность: голограммы уже используются на банкнотах и кредитных картах. Используются по большей части из-за того, что технологии для их создания довольно сложны.
  • Голография также используется на предприятиях для контроля качества в течение производства. Это так называемый голографический неразрушающий контроль. 
  • Голограммы используются в некоторых самолетах гражданской и военной авиации. Эти голограммы дают пилоту возможность оценки критической информации, когда он смотрит в окно кабины.
  • Художники используют голографию для артистического выражения. Многие художники чувствуют, что трехмерное пространство и чистый свет, которые предлагает голография, позволит им передавать образы, которые никогда не были столь возможны с традиционными средствами отображения.
  • Другое  применение  голограммы  – использование ее в качестве линзы. Фокусирующие  свойства  зонных решеток известны давно. Однако применение решеток ограничивалось  трудностями  их  изготовлении. 
  • Перспективный метод акустической голографии ― воздействие на воду звуком высокой частоты. При этом на поверхности воды возникает рябь, заменяющая собой интерференционную решетку оптической голограммы. Ее освещают лазером и получают изображение предмета, «освещаемого» звуковой волной.
  • В медицине давно используются аппараты УЗИ, позволяющие при помощи звука увидеть внутренние органы человека. Однако изображение, полученное таким образом, будет двумерным. А при использовании голограммы ― трехмерным. 
  • Возможные применения звуковой голографии: дефектоскопия, изучение рельефа морского дна, звуколокация, звуконавигация, поиск полезных ископаемых, исследование структуры земной коры и т.д.  Особое значение имеет ультразвуковая голография для медицинской диагностики.
Читайте также:  Какие свойства проявляет сернистая кислота в окислительно

Хотя сейчас раскрыт не весь потенциал голографии, но огромные перспективы, скорее всего, со временем привлекут множество учёных и инвесторов к развитию этого интересного предмета

Источник

Голографическое изображение сегодня находит все большее применение. Некоторые даже считают, что оно может со временем заменить известные нам средства связи. Так это или нет, но уже сейчас оно активно используется в самых разных отраслях. К примеру, всем нам знакомы голографические наклейки. Множество производителей использует их как средство защиты от подделки. На фото ниже представлены некоторые голографические наклейки. Их применение — очень эффективный способ защиты товаров или документов от подделки.

голография это

История изучения голографии

Объемное изображение, получаемое в результате преломления лучей, начало изучаться относительно недавно. Однако мы уже можем говорить о существовании истории его изучения. Деннис Габор, английский ученый, в 1948 году впервые определил, что такое голография. Это открытие было очень важным, но его большое значение в то время не было еще очевидным. Работавшие в 1950-е годы исследователи страдали от отсутствия источника света, обладающего когерентностью, – очень важным свойством для развития голографии. Первый лазер был изготовлен в 1960 году. С помощью этого прибора можно получить свет, имеющий достаточную когерентность. Юрис Упатниекс и Иммет Лейт, американские ученые, использовали его для создания первых голограмм. С их помощью получались трехмерные изображения предметов.

В последующие годы исследования продолжались. Сотни научных статей, в которых изучалось понятие о голографии, с тех пор были опубликованы, а также издано множество книг, посвященных этому методу. Однако эти труды адресованы специалистам, а не широкому читателю. В данной статье мы постараемся рассказать обо всем доступным языком.

Что такое голография

Можно предложить следующее определение: голография — это получаемая с помощью лазера объемная фотография. Однако данное определение не совсем удовлетворительно, так как есть множество иных видов трехмерной фотографии. Тем не менее в нем отражено наиболее существенное: голография — это технический метод, который позволяет «записывать» внешний вид того или иного объекта; с ее помощью получается трехмерное изображение, выглядящее так, как реальный предмет; применение лазеров сыграло решающую роль для ее развития.

Голография и ее применение

лазерный луч

Исследование голографии позволяет прояснить многие вопросы, связанные с обычной фотографией. В качестве изобразительного искусства объемное изображение может даже бросить вызов последней, поскольку оно позволяет отражать окружающий мир более точно и правильно.

Ученые иногда выделяют эпохи в истории человечества по средствам связи, которые были известны в те или иные столетия. Можно говорить, к примеру, о существовавших в Древнем Египте иероглифах, об изобретении в 1450 году печатного станка. В связи с наблюдаемым в наше время техническим прогрессом новые средства связи, такие как телевидение и телефон, заняли господствующее положение. Хотя голографический принцип находится еще в младенческом состоянии, если говорить о его использовании в средствах информации, существуют основания предполагать, что основанные на нем устройства в будущем смогут заменить известные нам средства связи или хотя бы расширить область их применения.

голографический проектор

Научно-фантастическая литература и массовая печать нередко преподносят голографию в неверном, искаженном свете. Они часто создают неправильное представление о данном методе. Объемное изображение, увиденное впервые, завораживает. Однако не меньшее впечатление производит физическое объяснение принципа его устройства.

Интерференционная картина

Способность видеть предметы основана на том, что световые волны, преломляясь ими или отражаясь от них, попадают в наш глаз. Отраженные от некоторого объекта световые волны характеризуются формой волнового фронта, соответствующей форме этого объекта. Картину темных и светлых полос (или линий) создают две группы световых когерентных волн, которые интерферируют. Так образуется объемная голография. При этом данные полосы в каждом конкретном случае составляют комбинацию, зависящую лишь от формы волновых фронтов волн, которые взаимодействуют друг с другом. Такую картину именуют интерференционной. Ее можно зафиксировать, к примеру, на фотографической пластинке, если поместить ее в место, где наблюдается интерференция волн.

Многообразие голограмм

Способом, позволяющим записывать (регистрировать) отраженный от предмета волновой фронт, после чего восстанавливать его так, что наблюдателю кажется, что он видит реальный предмет, и является голография. Это эффект, который объясняется тем, что получаемое изображение трехмерно в такой же мере, что и реальный предмет.

голографическое изображение

Есть множество различных типов голограмм, в которых легко запутаться. Чтобы однозначно определить тот или иной вид, следует употребить четыре или даже пять прилагательных. Из всего их множества мы рассмотрим только основные классы, которые использует современная голография. Однако сначала нужно рассказать немного о таком волновом явлении, как дифракция. Именно она позволяет нам конструировать (вернее, реконструировать) волновой фронт.

Дифракция

Если какой-либо предмет оказывается на пути света, он отбрасывает тень. Свет огибает этот предмет, заходя частично в область тени. Этот эффект именуют дифракцией. Он объясняется волновой природой света, но объяснить его строго достаточно сложно.

Только в очень малом угле проникает свет в область тени, поэтому мы почти не замечаем этого. Однако если на его пути есть множество мелких препятствий, расстояния между которыми составляют только несколько длин световой волны, данный эффект становится достаточно заметным.

Если падение волнового фронта приходится на большое единичное препятствие, «выпадает» соответствующая его часть, что практически не влияет на оставшуюся область данного волнового фронта. Если же множество мелких препятствий находится на его пути, он изменяется в результате дифракции так, что распространяющийся за препятствием свет будет обладать качественно иным волновым фронтом.

Читайте также:  Какие физические явления доказывают квантовые свойства света

Трансформация настолько сильна, что свет начинает даже распространяться в другом направлении. Выходит, что дифракция позволяет нам преобразовать исходный волновой фронт в совершенно отличный от него. Таким образом, дифракция – механизм, с помощью которого мы получаем новый волновой фронт. Устройство, формирующее его вышеописанным путем, именуется дифракционной решеткой. Расскажем о ней подробнее.

Дифракционная решетка

понятие о голографии

Это небольшая пластинка с нанесенными на ней тонкими прямыми параллельными штрихами (линиями). Они отстоят друг от друга на сотую или даже тысячную часть миллиметра. Что происходит, если лазерный луч на своем пути встречает решетку, которая состоит из нескольких размытых темных и ярких полос? Его часть будет прямо проходить через решетку, а часть – загибаться. Так образуются два новых пучка, которые выходят из решетки под определенным углом к исходному лучу и находятся по обе стороны от него. В случае если один лазерный пучок обладает, к примеру, плоским волновым фронтом, два образовавшихся по бокам от него новых пучка также будут иметь плоские волновые фронты. Таким образом, пропуская через дифракционную решетку лазерный луч, мы формируем два новых волновых фронта (плоских). По-видимому, дифракционную решетку можно рассматривать как самый простой пример голограммы.

Регистрация голограммы

Знакомство с основными принципами голографии следует начать с изучения двух плоских волновых фронтов. Взаимодействуя, они образуют интерференционную картину, которую регистрируют на помещенной там же, где находился экран, фотографической пластинке. Эта стадия процесса (первая) в голографии называется записью (или регистрацией) голограммы.

Восстановление изображения

Будем считать, что одна из плоских волн – А, а вторая – В. Волна А именуется опорной, а В – предметной, то есть отраженной от того предмета, изображение которого фиксируется. Она может не отличаться ничем от опорной волны. Однако при создании голограммы трехмерного реального объекта формируется значительно более сложный волновой фронт света, отраженного от предмета.

Интерференционная картина, представленная на фотографической пленке (то есть изображение дифракционной решетки), – это и есть голограмма. Ее можно поместить на пути опорного первичного пучка (пучка лазерного света, обладающего плоским волновым фронтом). В этом случае по обе стороны формируются 2 новых волновых фронта. Первый из них представляет собой точную копию волнового предметного фронта, который распространяется в том же направлении, что и волна В. Вышеописанная стадия именуется восстановлением изображения.

Голографический процесс

Интерференционная картина, которую создают две плоские когерентные волны, после ее записи на фотопластинке представляет собой устройство, позволяющее в случае освещения одной из этих волн восстановить другую плоскую волну. Голографический процесс, таким образом, имеет следующие стадии: регистрацию и последующее «хранение» волнового предметного фронта в виде голограммы (интерференционной картины), и его восстановление спустя любое время при прохождении опорной волны через голограмму.

Предметный волновой фронт в действительности может быть любым. К примеру, он может отражаться от некоторого реального предмета, если он при этом является когерентным опорной волне. Образованная двумя любыми волновыми фронтами, обладающими когерентностью, интерференционная картина – это и есть устройство, позволяющее благодаря дифракции преобразовать один из данных фронтов в другой. Именно здесь и спрятан ключ к такому явлению, как голография. Деннис Габор первым обнаружил это свойство.

Наблюдение формируемого голограммой изображения

В наше время для чтения голограмм начинает использоваться особое устройство — голографический проектор. Он позволяет преобразовать картинку из двух- в трехмерную. Однако для того чтобы просматривать простые голограммы, голографический проектор вовсе не требуется. Вкратце расскажем о том, как рассматривать такие изображения.

Чтобы наблюдать формируемое простейшей голограммой изображение, нужно поместить ее примерно на расстоянии 1 метра от глаза. Сквозь дифракционную решетку нужно смотреть в том направлении, в котором плоские волны (восстановленные) выходят из нее. Так как именно плоские волны попадают в глаз наблюдателя, голографическое изображение также является плоским. Оно предстает перед нами будто «глухая стена», которую равномерно освещает свет, имеющий тот же цвет, что и соответствующее лазерное излучение. Так как специфических признаков эта «стена» лишена, невозможно определить, насколько далеко она находится. Кажется, будто смотришь на расположенную в бесконечности протяженную стену, но при этом видишь лишь ее часть, которую удается разглядеть сквозь небольшое «окно», то есть голограмму. Следовательно, голограмма – это равномерно светящаяся поверхность, на которой мы не замечаем ничего достойного внимания.

голографические наклейки

Дифракционная решетка (голограмма) позволяет нам наблюдать несколько простейших эффектов. Их можно продемонстрировать и с использованием голограмм иного типа. Проходя сквозь дифракционную решетку, пучок света расщепляется, формируются два новых пучка. С помощью пучков лазерного излучения можно освещать любую дифракционную решетку. При этом излучение должно отличаться цветом от использованного при ее записи. Угол изгиба пучка цвета зависит от того, какой цвет он имеет. Если он красный (самый длинноволновой), то такой пучок изгибается под большим углом, нежели пучок синего цвета, который имеет наименьшую длину волны.

Сквозь дифракционную решетку можно пропустить смесь всех цветов, то есть белый. В этом случае каждая цветовая компонента этой голограммы искривляется под своим собственным углом. На выходе формируется спектр, аналогичный создаваемому призмой.

Размещение штрихов дифракционной решетки

Штрихи дифракционной решетки следует делать очень близкими друг к другу, чтобы было заметно искривление лучей. К примеру, для искривления красного луча на 20° нужно, чтобы расстояние между штрихами не превышало 0,002 мм. Если их разместить более тесно, луч света начинает изгибаться еще сильнее. Для «записи» данной решетки нужна фотопластинка, которая способна регистрировать настолько тонкие детали. Кроме того, необходимо, чтобы пластинка в процессе экспозиции, а также при регистрации оставалась совершенно неподвижной.

Картина может значительно смазаться даже при малейшем движении, причем настолько, что будет вовсе неразличимой. В этом случае мы увидим не интерференционную картину, а просто стеклянную пластинку, по всей своей поверхности однородно черную или серую. Конечно, в этом случае не будут воспроизводиться эффекты дифракции, формируемые дифракционной решеткой.

Пропускающие и отражательные голограммы

объемное изображение

Рассмотренная нами дифракционная решетка именуется пропускающей, поскольку она действует в свете, проходящем сквозь нее. Если же нанести линии решетки не на прозрачную пластинку, а на поверхность зеркала, мы получим дифракционную решетку отражательную. Она отражает под разными углами свет различных цветов. Соответственно, есть два больших класса голограмм – отражательные и пропускающие. Первые наблюдаются в отраженном свете, а вторые – в проходящем.

Источник