В соединениях каких химических элементов содержатся минеральные соли

В соединениях каких химических элементов содержатся минеральные соли thumbnail

Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В таблице 1 представлены основные химические элементы, обнаруженные в клетках живых организмов.

Таблица 1. Содержание химических элементов в клетке

ЭлементКоличество, %ЭлементКоличество, %
Кислород65-75Кальций0,04-2,00
Углерод15-18Магний0,02-0,03
Водород8-10Натрий0,02-0,03
Азот1,5-3,0Железо0,01-0,015
Фосфор0,2-1,0Цинк0,0003
Калий0,15-0,4Медь0,0002
Сера0,15-0,2Иод0,0001
Хлор0,05-0,10Фтор0,0001

По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. макрос — большой).

Остальные элементы, представ ленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. микро — малый).

Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечисленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров — белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор — в состав нуклеиновых кислот, железо — в состав гемоглобина, а магний — в состав хлорофилла. Кальций играет важную роль в обмене веществ.

Часть химических элементов, содержащихся в клетке, входит в со став неорганических веществ — минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов ( HPO2-/4, H2PO-/4, СI-, НСО3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.

(У многих клеток среда слабощелочная и ее рН почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)

Из неорганических веществ в живой природе огромную роль играет вода.

Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани — всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.

Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды — потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?

В молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет

частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.

Вода — хороший растворитель. Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. гидро — вода и филео — люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).

Гидрофобными (от греч. гидро — вода и фобос — страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость. Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества — вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи.

НЕОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).

К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.
К микроэлеметам относятся марганец, медь, цинк, йод, фтор.
К ультрамикроэлементам относятся серебро, золото, бром, селен.

ЭЛЕМЕНТЫСОДЕРЖАНИЕ В ОРГАНИЗМЕ (%)БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ
Макроэлементы:
O.C.H.N62-3Входят в состав всех органических веществ клетки, воды
Фосфор Р1,0Входят в состав нуклеиновых кислот, АТФ (образует макроэргические связи), ферментов, костной ткани и эмали зубов
Кальций Са+22,5У растений входит в состав оболочки клетки, у животных — в состав костей и зубов, активизирует свертываемость крови
Микроэлементы:1-0,01
Сера S0,25Входит в состав белков, витаминов и ферментов
Калий К+0,25Обуславливает проведение нервных импульсов; активатор ферментов белкового синтеза, процессов фотосинтеза, роста растений
Хлор CI-0,2Является компонентом желудочного сока в виде соляной кислоты, активизирует ферменты
Натрий Na+0,1Обеспечивает проведение нервных импульсов, поддерживает осмотическое давление в клетке, стимулирует синтез гормонов
Магний Мg+20,07Входит в состав молекулы хлорофилла, содержится в костях и зубах, активизирует синтез ДНК, энергетический обмен
Йод I-0,1Входит в состав гормона щитовидной железы — тироксина, влияет на обмен веществ
Железо Fе+30,01Входит в состав гемоглобина, миоглобина, хрусталика и роговицы глаза, активатор ферментов, участвует в синтезе хлорофилла. Обеспечивает транспорт кислорода к тканям и органам
Ультрамикроэлементы:менее 0,01, следовые количества
Медь Си+2Участвует в процессах кроветворения, фотосинтеза, катализирует внутриклеточные окислительные процессы
Марганец МnПовышает урожайность растений, активизирует процесс фотосинтеза, влияет на процессы кроветворения
Бор ВВлияет на ростовые процессы растений
Фтор FВходит в состав эмали зубов, при недостатке развивается кариес, при избытке — флюороз
Вещества :
Н2060-98Составляет внутреннюю среду организма, участвует в процессах гидролиза, структурирует клетку. Универсальный растворитель, катализатор, участник химических реакций

ОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

ВЕЩЕСТВАСТРОЕНИЕ И СВОЙСТВАФУНКЦИИ
Липиды
Сложные эфиры высших жирных кислот и глицерина. В состав фосфолипидов входит дополнительно остаток Н3РО4.Обладают гидрофобными или гидрофильно-гидрофобными свойствами, высокой энергоемкостью Строительная — образует билипидный слой всех мембранных.
Энергетическая.
Терморегуляторная.
Защитная.
Гормональная (кортикостероиды, половые гормоны).
Компоненты витаминов D,E. Источник воды в организме.Запасное питательное вещество
Углеводы
Моносахариды:
глюкоза,
фруктоза,
рибоза,
дезоксирибоза
Хорошо растворимы в водеЭнергетическая
Дисахариды:
сахароза,
мальтоза (солодовый сахар)
Растворимы в водеКомпоненты ДНК, РНК, АТФ
Полисахариды:
крахмал,
гликоген,
целлюлоза
Плохо растворимы или нерастворимы в водеЗапасное питательное вещество. Строительная — оболочка растительной клетки
БелкиПолимеры. Мономеры — 20 аминокислот.Ферменты — биокатализаторы.
I структура — последовательность аминокислот в полипептидной цепи. Связь — пептидная — СО- NH-Строительная — входят в состав мембранных структур, рибосом.
II структура — a -спираль, связь — водороднаяДвигательная (сократительные белки мышц).
III структура — пространственная конфигурация  a -спирали (глобула). Связи — ионные, ковалентные, гидрофобные, водородныеТранспортная (гемоглобин). Защитная (антитела).Регуляторная (гормоны, инсулин)
IV структура характерна не для всех белков. Соединение нескольких полипептидных цепей в единую суперструктуруВ воде плохо растворимы. Действие высоких температур, концентрированных кислот и щелочей, солей тяжелых металлов вызывает денатурацию
Нуклеиновые кислоты:Биополимеры. Состоят из нуклеотидов
ДНК — дезокси-рибонуклеино-вая кислота.Состав нуклеотида: дезоксирибоза, азотистые основания — аденин, гуанин, цитозин, тимин, остаток Н3РО4. Комплементарность азотистых оснований А = Т, Г = Ц. Двойная спираль. Способна к самоудвоениюОбразуют хромосомы. Хранение и передача наследственной информации, генетического кода. Биосинтез РНК, белков. Кодирует первичную структуру белка. Содержится в ядре, митохондриях, пластидах
РНК — рибонуклеиновая кислота.Состав нуклеотида: рибоза, азотистые основания — аденин, гуанин, цитозин, урацил, остаток Н3РО4 Комплементарность азотистых оснований А = У, Г = Ц. Одна цепь
Информационная РНКПередача информации о первичной структуре белка, участвует в биосинтезе белка
Рибосомальная РНКСтроит тело рибосомы
Транспортная РНККодирует и переносит аминокислоты к месту синтеза белка — рибосомам
Вирусная РНК и ДНКГенетический аппарат вирусов
Читайте также:  Какой витамин содержатся в рыбьем жире

Ферменты.

Важнейшая функция белков — каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакции в клетке, называют ферментами. Ни один биохимический процесс в организме не происходит без участия ферментов.

В настоящее время обнаружено свыше 2000 ферментов. Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве. Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа. Каталаза увеличивает скорость разложения пероксида водорода (Н2О2) в 1011 раз. Фермент, катализирующий реакцию образования угольной кислоты (СО2+Н2О = Н2СО3), ускоряет реакцию в 107 раз.
Важным свойством ферментов является специфичность их действия, каждый фермент катализирует только одну или небольшую группу сходных реакций.

Вещество, на которое воздействует фермент, называют субстратом. Структуры молекулы фермента и субстрата должны точно соответствовать друг другу. Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.

Последовательность взаимодействия фермента и субстрата можно изобразить схематично:

Субстрат+Фермент — Фермент-субстратный комплекс — Фермент+Продукт.

Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса. При этом субстрат превращается в новое вещество — продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата.

Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а, следовательно, и к подавлению активности фермента. Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром. Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.

Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра, и фермент теряет свою активность.

Ферменты — это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов — специфичность действия в определенных условиях.

Нуклеиновые кислоты.

Нуклеиновые кислоты были от крыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его «нуклеином» (от лат. нуклеус — ядро).

В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле. Существует два типа нуклеиновых кислот — ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.

Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.

Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин — А, тимин — Т, гуанин — Г или цитозин — Ц), а также угле вод дезоксирибоза и остаток фосфорной кислоты.

Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.

Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.

Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц. Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации обо всех признаках организмов.

В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.

Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениновых нуклеотидов в любой молекуле ДНК равно числу тимидиновых нуклеотидов (А-Т), а число цитозиновых нуклеотидов равно числу гуаниновых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с Тимином другой цепи, а гуанин — тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга.

Читайте также:  Кортикостероиды в каких мазях содержатся

ДНК содержат все бактерии, подавляющее большинство вирусов. Она обнаружена в ядрах клеток животных, грибов и растений, а также в митохондриях и хлоропластах. В ядре каждой клетки человеческого организма содержится 6,6 х 10-12 г ДНК, а в ядре половых клеток — в два раза меньше — 3,3 х 10-12 г.

Молекулы нуклеиновых кислот — ДНК и РНК состоят из нуклеотидов. В состав нуклеотидов ДНК входит азотистое основание (А, Т, Г, Ц), углевод дезоксирибоза и остаток молекулы фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, состоящую из двух цепей, соединенных водородными связями по принципу комплементарности. Функция ДНК — хранение наследственной информации.

АТФ.

В клетках всех организмов имеются молекулы АТФ — аденозинтрифосфорной кислоты. АТФ — универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ — это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания — аденина, углевода — рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты (рис. 12). Связи, обозначенные на рисунке значком, — богаты энергией и называются макроэргическими. Каждая молекула АТФ содержит две макроэргические связи.

При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ — аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ — аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может пре вращаться в АДФ, АДФ — в АТФ.

Молекулы АТФ не только расщепляются, но и синтезируются, по этому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.

Рис. 12. Схема строения АТФ.

аденин –

Молекула РНК, как правило, одиночная цепь, состоящая из четырех типов нуклеотидов — А, У, Г, Ц. Известны три основных вида РНК: иРНК, рРНК, тРНК. Содержание молекул РНК в клетке непостоянно, они участвуют в биосинтезе белка. АТФ — универсальное энергетическое вещество клетки, в котором имеются богатые энергией связи. АТФ играет центральную роль в обмене энергии в клетке. РНК и АТФ содержатся как в ядре, так и в цитоплазме клетки.

Источник

Все мы знаем, что для поддержания здоровья нашего организма нужны белки, углеводы, жиры и, конечно, вода. Минеральные соли также являются важным компонентом пищи, исполняя роль участников обменных процессов, катализаторов биохимических реакций.

минеральные соли

Существенную часть полезных веществ составляют хлористые, углекислые, фосфорнокислые соли натрия, кальция, калия и магния. Кроме них в организме присутствуют соединения меди, цинка, железа, марганца, йода, кобальта и других элементов. Полезные вещества в водной среде растворяются и существуют в виде ионов.

Виды минеральных солей

минеральные соли в клетке

Соли способны распадаться на положительные и отрицательные ионы. Первые называются катионами (заряженные частицы различных металлов), вторые — анионами. Отрицательно заряженные ионы фосфорной кислоты образуют фосфатную буферную систему, основное значение которой заключается в регуляции рН мочи и интерстициальной жидкости. Анионы угольной кислоты образуют бикарбонатную буферную систему, которая отвечает за деятельность легких и поддерживает pH плазмы крови на нужном уровне. Таким образом, минеральные соли, состав которых представлен различными ионами, имеют свое неповторимое значение. Например, участвуют в синтезе фосфолипидов, нуклеотидов, гемоглобина, АТФ, хлорофилла и так далее.

К группе макроэлементов относятся ионы натрия, магния, калия, фосфора, кальция и хлора. Эти элементы должны употребляться в пищу в достаточных количествах. Каково значение минеральных солей группы макроэлементов? Будем разбираться.

Соли натрия и хлора

Одно из самых распространенных соединений, которое человек употребляет каждый день, – поваренная соль. Вещество состоит из натрия и хлора. Первый регулирует количество жидкости в организме, а второй, соединяясь с ионом водорода, образует соляную кислоту желудка. Натрий оказывает влияние на рост организма и на работу сердца. Нехватка элемента может привести к апатии и слабости, способна вызвать отвердение стенок артерий, образование желчных камней, а также непроизвольное подергивание мышц. Избыток хлорида натрия приводит к образованию отеков. За сутки необходимо съедать не больше 2 граммов соли.

Соли калия

значение минеральных солей

За активность головного мозга отвечает данный ион. Элемент способствует увеличению концентрации внимания, развитию памяти. Он поддерживает возбудимость мышечных и нервных тканей, водно-солевой баланс, артериальное давление. Также ион катализирует образование ацетилхолина и регулирует осмотическое давление. При дефиците солей калия человек чувствует дезориентацию, сонливость, нарушаются рефлексы, снижается умственная деятельность. Элемент содержится во многих продуктах, например, в овощах, фруктах, орехах.

Соли кальция и фосфора

Ион кальция участвует в стабилизации оболочек клеток головного мозга, а также нервных клеток. Элемент отвечает за нормальное развитие костей, необходим для свертываемости крови, помогает выведению свинца и тяжелых металлов из организма. Ион является основным источником насыщения крови щелочными солями, что способствует поддержанию жизнедеятельности. Железы человека, выделяющие гормоны, в норме должны всегда содержать достаточное количество ионов кальция, иначе организм начнет преждевременно стареть. Детям требуется данный ион в три раза больше, чем взрослым. Избыток кальция может привести к появлению камней в почках. Недостаток его вызывает прекращение дыхания, а также значительное ухудшение работы сердца.

За производство энергии из питательных веществ отвечает ион фосфора. При его взаимодействии с кальцием и витамином Д активизируются функции головного мозга и нервных тканей. Дефицит ионов фосфора может задержать развитие костей. В сутки его необходимо употреблять не больше 1 грамма. Для организма благоприятным соотношением данного элемента и кальция является один к одному. Избыток ионов фосфора может вызвать различные опухоли.

Соли магния

функции минеральных солей

Минеральные соли в клетке распадаются на различные ионы, одним из них является магний. Элемент незаменим в белковом, углеводном и жировом обмене. Ион магния участвует в проводимости импульсов по нервным волокнам, стабилизирует клеточные оболочки нервных клеток, тем самым защищает организм от влияния стресса. Элемент регулирует работу кишечника. При недостатке магния человек страдает ухудшением памяти, теряет способность долго концентрировать свое внимание, становится раздражительным и нервозным. В сутки достаточно употреблять 400 миллиграммов магния.

Читайте также:  В каких продуктах содержатся стволовые клетки

Группа микроэлементов включает в себя ионы кобальта, меди, железа, хрома, фтора, цинка, йода, селена, марганца и кремния. Перечисленные элементы необходимы организму в минимальных количествах.

Соли железа, фтора, йода

Суточная потребность иона железа составляет всего 15 миллиграммов. Данный элемент входит в состав гемоглобина, который транспортирует кислород к тканям и клеткам из легких. При недостатке железа появляется анемия.

В составе зубной эмали, костях, мускулах, крови и головном мозге присутствуют ионы фтора. При недостатке данного элемента зубы теряют свою прочность, начинают разрушаться. На данный момент проблема дефицита фтора решается использованием зубных паст с его содержанием, а также употреблением достаточного количества продуктов, богатых фтором (орехи, злаки, фрукты и другие).

Йод отвечает за правильную работу щитовидной железы, тем самым регулирует обмен веществ. При его дефиците развивается зоб и снижается иммунитет. При нехватке ионов йода у детей наблюдается задержка роста и развития. Избыток ионов элемента вызывает Базедову болезнь, также наблюдается общая слабость, раздражительность, потеря веса, атрофия мышц.

Соли меди и цинка

Медь при сотрудничестве с ионом железа насыщает организм кислородом. Поэтому дефицит меди вызывает нарушения синтеза гемоглобина, развитие анемии. Нехватка элемента может привести к различным заболеваниям сердечно-сосудистой системы, появлению бронхиальной астмы и психических расстройств. Избыток ионов меди провоцирует нарушения ЦНС. Больной жалуется на депрессию, снижение памяти, бессонницу. Избыток элемента чаще встречается в организме работников производств по получению меди. В этом случае ионы попадают в тело путем вдыхания паров, что приводит к такому феномену, как медная лихорадка. Медь способна накапливаться в тканях головного мозга, а также в печени, коже, поджелудочной железе, вызывая различные расстройства организма. Человеку требуется 2,5 миллиграмма элемента в сутки.

минеральные соли в организме

Ряд свойств ионов меди связан с ионами цинка. В паре они участвуют в деятельности фермента супероксиддисмутазы, который оказывает антиоксидантное, антивирусное, противоаллергическое и противовоспалительное действия. Ионы цинка участвуют в белковом и жировом обменах. Он входит в состав большинства гормонов и ферментов, управляет биохимическими связями между клетками головного мозга. Ионы цинка борются с алкогольной интоксикацией.

По мнению некоторых ученых, дефицит элемента способен вызвать страх, депрессию, нарушение речи, трудности в движении. Избыток иона образуется путем неконтролируемого использования препаратов с содержанием цинка, в том числе мазей, а также при работе на производстве данного элемента. Большое количество вещества приводит к снижению иммунитета, нарушениям функций печени, простаты, поджелудочной железы.

Значение минеральных солей, содержащих ионы меди и цинка, трудно переоценить. И, соблюдая правила питания, перечисленных проблем, связанных с избытком или недостатком элементов, всегда можно избежать.

Соли кобальта и хрома

минеральные соли состав

Минеральные соли, содержащие ионы хрома, играют важную роль в регуляции инсулина. Элемент участвует в синтезе жирных кислот, протеинов, а также в процессе обмена глюкозы. Недостаток хрома может вызвать увеличение количества холестерина в крови, а значит, повысить опасность инсульта.

Одним из компонентов витамина В12 является ион кобальта. Он принимает участие в производстве гормонов щитовидной железы, а также жиров, белков и углеводов, активизирует ферменты. Кобальт борется с образованием атеросклеротических бляшек, выводя холестерин из сосудов. Данный элемент отвечает за выработку РНК и ДНК, способствует росту костной ткани, активизирует синтез гемоглобина, способен тормозить развитие раковых клеток.

У спортсменов и вегетарианцев часто наблюдается дефицит ионов кобальта, что может привести к различным нарушениям в организме: малокровию, аритмии, вегетососудистой дистонии, расстройствам памяти и др. При злоупотреблении витамином В12 или при контакте с данным элементом на производстве возникает избыток кобальта в организме.

Соли марганца, кремния и селена

Три элемента, которые входят в группу микроэлементов, также играют важную роль в поддержании здоровья организма. Так, марганец участвует в иммунных реакциях, улучшает процессы мышления, стимулирует тканевое дыхание и кроветворение. Функции минеральных солей, в которых присутствует кремний, заключаются в придании прочности и эластичности стенкам сосудов. Элемент селен в микродозах приносит огромную пользу человеку. Он способен защитить от рака, поддерживает рост организма, укрепляет иммунитет. При недостатке селена образуются воспаления в суставах, слабость в мышцах, нарушается работа щитовидной железы, теряется мужская сила, снижается острота зрения. Суточная потребность в данном элементе составляет 400 микрограммов.

Минеральный обмен

Что входит в данное понятие? Это объединение процессов всасывания, усвоения, распределения, преобразования и выделения различных веществ. Минеральные соли в организме создают внутреннюю среду с постоянными физико-химическими свойствами, благодаря чему обеспечивается нормальная деятельность клеток и тканей.

Поступая с едой в пищеварительную систему, ионы переходят в кровь и лимфу. Функции минеральных солей заключаются в поддержании кислотно-щелочного постоянства крови, в регуляции осмотического давления в клетках, а также в межклеточной жидкости. Полезные вещества принимают участие в образовании ферментов и в процессе свертываемости крови. Соли регулируют общее количество жидкости в организме. Основой осморегуляции является калий-натриевый насос. Ионы калия накапливаются внутри клеток, а в окружающей их среде – ионы натрия. За счет разницы потенциалов происходит перераспределение жидкостей и тем самым поддерживается постоянство осмотического давления.

Соли выводятся тремя путями:

  1. Через почки. Таким способом удаляются ионы калия, йода, натрия и хлора.
  2. Через кишечник. С калом уходят из организма соли магния, кальция, железа и меди.
  3. Через кожу (вместе с потом).

Во избежание задержки солей в организме необходимо употреблять достаточное количество жидкости.

Нарушения минерального обмена

Основными причинами отклонений являются:

  1. Наследственные факторы. В этом случае обмен минеральных солей может выразиться в таком феномене, как соль-чувствительность. Почки и надпочечники при этом нарушении вырабатывают вещества, которые способны нарушить содержание калия и натрия в стенках сосудов, тем самым вызывая водно-солевой дисбаланс.
  2. Неблагоприятная экология.
  3. Употребление с пищей избытка солей.
  4. Некачественная пища.
  5. Профессиональная вредность.
  6. Переедание.
  7. Чрезмерное употребление табака и алкоголя.
  8. Возрастные нарушения.

Несмотря на небольшое процентное содержание в пище, роль минеральных солей нельзя переоценить. Некоторые из ионов являются строительным материалом скелета, другие заняты регуляцией водно-солевого баланса, третьи участвуют в накоплении и выделении энергии. Недостаток, так же как и избыток минералов, наносит вред организму.

роль минеральных солей

При ежедневном употреблении растительной и животной пищи нельзя забывать про воду. Некоторые продукты питания, например, морские водоросли, злаки, морепродукты, могут неправильно концентрировать минеральные соли в клетке, что наносит вред организму. Для хорошей усваиваемости необходимо делать перерывы между приемами одних и тех же солей на семь часов. Сбалансированное питание – залог здоровья нашего организма.

Источник