В первом сплаве содержится 25 меди а во втором 45 в каком отношении
При решении задач на сплавы и смеси считают, что сумма масс сплавляемых веществ равна массе получаемого сплава, что сумма масс вещества, входящего в сплавы равна массе этого вещества в полученном сплаве. Аналогичное допущение принимаем и для сумм масс (объёмов) при смешивании жидкостей.
Рассмотрим подготовительную задачу.
Задача 1. Имеется уксусный раствор массой 1,5 кг, содержащий 40 % уксуса. Сколько килограммов воды нужно добавить в раствор, чтобы новый раствор содержал 10 % уксуса?
Решение. I способ.
1) 40 : 10 = 4 (раза) — во столько раз уменьшилась концентрация уксуса в растворе и увеличилась масса раствора,
2) 1,5 * 4 = 6 (кг) — масса нового раствора,
3) 6 – 1,5 = 4,5 (кг) — воды надо добавить.
II способ. 1) 0,4 * 1,5 = 0,6 (кг) — масса уксуса в первом растворе.
2) Пусть добавили x кг воды. Составим уравнение:
0,1(1,5 + x) = 0,6.
Оно имеет единственный корень 4,5. Значит, надо добавить 4,5 кг воды.
Ответ. 4,5 кг.
Рассмотрим способы решения задач на смеси и сплавы из сборников вариантов для подготовки к ЕГЭ.
Задача 2. (2017) В сосуд, содержащий 7 литров 15-процентного водного раствора некоторого вещества, добавили 8 литров воды. Определите процентную концентрацию того же вещества в новом растворе.
Задача 3. (2018) Имеется два сплава. Первый содержит 25 % никеля, второй — 30 % никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 28 % никеля. На сколько килограммов масса первого сплава меньше массы второго?
Решение. Пусть масса первого сплава x кг, второго (150 – x) кг, третьего — 150 кг. Найдём массу никеля в каждом из трёх сплавов. Никеля было
в первом сплаве 0,25x кг,
во втором — 0,3(150 – x) кг,
в третьем — 0,28 *150 = 42 (кг).
Составим уравнение:
0,25x + 0,3(150 – x) = 42.
Решив уравнение, получим его единственный корень x = 60. Теперь ответим на вопрос задачи. Масса первого сплава 60 кг, масса второго сплава 90 кг, первая меньше второй на 30 кг.
Ответ. На 30 кг.
Задача 4. (2019) Первый сплав содержит 5 % меди, второй — 14 % меди. Масса второго сплава больше массы первого сплава на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 10 % меди. Найдите массу третьего сплава.
Решение. Пусть масса первого сплава x кг, второго (x + 7) кг, третьего — (2x + 7) кг. Меди было в первом сплаве 0,05x кг, во втором — 0,14(x + 7) кг, в третьем — 0,1(2x + 7) кг. Составим уравнение:
0,05x + 0,14(x + 7) = 0,1(2x + 7).
Решив уравнение, получим его единственный корень x = 28. При x = 28 масса третьего сплава 2x + 7 равна 63 кг.
Ответ. 63 кг.
Задача 5. (2017) Смешав 70 %-й и 60 %-й растворы кислоты и добавив 2 кг чистой воды, получили 50 %-й раствор кислоты. Если бы вместо 2 кг воды добавили 2 кг 90 %-го раствора той же кислоты, то получили бы 70 %-й раствор кислоты. Сколько килограммов 70 %-го раствора кислоты использовали для получения смеси?
Решение. Пусть масса первого раствора x кг, второго y кг. Приравняв массы кислоты до смешивания и после смешивания, составим два уравнения:
0,7x + 0,6y = 0,5(x + y + 2),
0,7x + 0,6y + 0,9*2 = 0,7(x + y + 2).
Решив систему этих двух уравнений, получим её единственное решение:
x = 3, y = 4. Использовали 3 кг 70 %-го раствора кислоты.
Ответ. 3 кг.
Задача 6. (2017) Имеется два сосуда. Первый содержит 100 кг, а второй — 50 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 28 % кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 36 % кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Для второго смешивания возьмём 1 кг первого раствора и 1 кг второго, получим 2 кг смеси. Составим первое уравнение:
Решив систему уравнений (1) и (2), получим её единственное решение: x = 12, y = 60. В первом сосуде содержится x * 100 / 100 = 12 (кг) кислоты. Ответ. 12 кг.
Для самостоятельного решения
7. Имеется 400 г морской воды, содержащей 4 % соли. Сколько граммов чистой воды нужно добавить в эту морскую воду, чтобы новый раствор содержал 2 % соли?
8. (2016) В сосуд, содержащий 10 литров 24-процентного водного раствора некоторого вещества, добавили 5 литров воды. Определите процентную концентрацию того же вещества в новом растворе.
9. (2009) В бидон налили 4 литра молока трёхпроцентной жирности и 6 литров молока шестипроцентной жирности. Сколько процентов составляет жирность молока в бидоне?
10. (2017) Имеется два сплава. Первый содержит 5 % никеля, второй — 20 % никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 15 % никеля. На сколько килограммов масса первого сплава меньше массы второго?
11. (2017) Первый сплав содержит 5 % меди, второй — 11 % меди. Масса второго сплава больше массы первого сплава на 4 кг. Из этих двух сплавов получили третий сплав, содержащий 10 % меди. Найдите массу третьего сплава.
12. В первом сплаве отношение массы олова к массе свинца 2 : 3, во втором 1 : 5. В каком отношении надо взять массы этих сплавов, чтобы получить третий сплав с отношением массы олова к массе свинца 1 : 2?
13. В первом сплаве отношение массы олова к массе свинца 2 : 3, во втором 1 : 5. В каком отношении надо взять массы этих сплавов, чтобы получить третий сплав с отношением массы олова к массе свинца 1 : 2?
Ответы. 7. 400 г. 8. 16 %. 9. 4,8 %. 10. На 75 кг. 11. 6 кг. 12. 5 : 2. 13. 5 : 2.
Для работы с задачами в классе можно использовать вариант заметки в виде презентации: Сплавы и смеси. Задачи 11 из ЕГЭ.
Задачи на концентрацию смесей и сплавов с решениями
перейти к содержанию курса текстовых задач
- Имеется кусок сплава меди с оловом общей массой 12 кг, содержащий 45% меди. Сколько чистого олово надо добавить к этому куску сплава, чтобы получившийся новый сплав содержал 40% меди? Решение
- Имеются два раствора кислоты разной концентрации. Объем одного раствора 4 л, другого — 6 л. Если их слить вместе, то получится 35%-й раствор кислоты. Если же слить равные объемы этих растворов, то получится 36%-й раствор кислоты. Сколько литров кислоты содержится в каждом из первоначальных растворов? Решение
- Имеются два раствора соли в воде, первый 40%-й, второй — 60%-й. Их смешали, добавили 5 кг воды и получили 20%-й раствор. Если бы вместо 5 кг воды добавили 5 кг 80%-ого раствора, то получился бы 70%-й раствор. Сколько было 40%-го и 60%-го растворов? Решение
- К раствору, который содержит 40 г соли, добавили 200 г воды, после чего его концентрация уменьшилась на 10%. Сколько воды содержал раствор и какая была его концентрация? Решение
- Сплав магния и алюминия содержит магния на 16 кг меньше, чем алюминия. Он сплавлен с 5 кг алюминия, в результате чего содержание алюминия увеличилось на 2%. Сколько алюминия было в сплаве первоначально, если известно, что вес сплава не превышал 30 кг? Решение
- Имеются три слитка. Первый слиток имеет массу 5 кг, второй — 3 кг, и каждый из этих двух слитков содержит 30% меди. Если первый слиток сплавить с третьим, то получится слиток, содержащий 56% меди, а если второй слиток сплавить с третьим, то получится слиток, содержащий 60% меди. Найдите массу третьего слитка и процент содержания меди в нем. Решение
- В двух сплавах медь и цинк относятся как 5:2 и 3:4 (по массе). Сколько нужно взять килограммов первого сплава и сколько второго, чтобы после переплавки получить 28 кг нового сплава с равным содержанием меди и цинка? Решение
- Вычислить вес и пробу сплава серебра с медью, зная, что, сплавив его 3 кг чистого серебра, получим сплав 900-й пробы, а сплавив его с 2 кг сплава 900-й пробы, получим сплав 840-й пробы. Решение
- Имеются три смеси, составленные из трех элементов А, В, С. В первую смесь входят только элементы А и В в весовом отношении 3:5, во вторую смесь входят только элементы В и С в весовом отношении 1:2, в третью смесь входят только элементы А и С в весовом отношении 2:3. В каком отношении нужно взять эти смеси, чтобы во вновь полученной смеси элементы А, В и С содержались в весовом отношении 3:5:2? Решение
- Для наполнения резервуара сначала была открыта первая труба, через которую в каждую минуту поступает 600 л 30%-го раствора спирта. Затем через 45 мин вступила в действие вторая труба, дающая в минуту 800 л 40%-го раствора спирта. Через сколько времени после открытия второй трубы в резервуаре получится 35%-й раствор спирта? Решение
- От двух сплавов массой 7 кг и 3 кг с разным процентным содержанием магния отрезали по куску одинаковой массы. Затем кусок, отрезанный от первого сплава, сплавили с остатком второго сплава, а кусок, отрезанный от второго сплава, сплавили с остатком первого сплава. Определить массу каждого из отрезанных кусков, если новый сплавы получились с одинаковым процентным содержанием магния. Решение
Задачи для самостоятельного решения
- Смешали 22 кг 15%-го раствора кислоты и 18 кг 25%-го раствора той же кислоты. Определить концентрацию нового раствора. Ответ: 19,5%
- Имеются два сплава, состоящие из цинка, меди и олова. Известно, что первый сплав содержит 40% олова, а второй — 26% меди. Процентное содержание цинка в первом и втором сплавах одинаково. Сплавив 150 кг первого сплава и 250 кг второго, получили новый сплав, в котором оказалось 30% цинка. Определите, сколько килограммов олова содержится в получившемся новом сплаве. Ответ: 170 кг
- Один бак содержит смесь кислоты с водой в отношении 4 : 7, а другой — в отношении 3 : 8. Сколько килограммов смеси нужно взять из каждого бака, чтобы получить смесь в количестве 110 кг и чтобы кислота и вода в ней были бы в отношении 71 : 149? Ответ: 60,5 кг и 49,5 кг
- Имеются два сплава меди с другим металлом, причем относительное содержание меди в одном из этих сплавов на 40% меньше, чем во втором. После того как сплавили кусок первого сплава, содержащий 6 кг меди, с куском второго сплава, содержащим 12 кг меди, получили слиток, содержащий 36% меди. Определить процентное содержание меди в первом сплаве. Ответ: 20%
- Имеются два слитка сплавов золота с серебром. Процентное содержание золота в первом слитке в 2,5 раза больше, чем во втором. Если сплавить оба слитка вместе, то получится слиток, в котором содержится 40% золота. Во сколько раз первый слиток тяжелее второго, если известно, что при сплавке равных по массе частей первого и второго слитков получается слиток, в котором содержится 35% золота? Ответ: в 2 раза
- Из сосуда, наполненного медом, отлили 2 кг, а к оставшемуся меду долили 2 кг воды. После перемешивания отлили 2 кг смеси и долили 2 кг воды. Наконец, перемешав еще раз, снова отлили 2 кг смеси и долили 2 кг воды. После этих операций воды в сосуде стало на 3 кг больше, чем меда. Определить массу меда, находившегося в сосуде с самого начала. Ответ: 4 кг
- Из сосуда, наполненного чистым глицерином, отлили 1 л, а затем долили 1 л воды. После перемешивания отлили 1 л смеси и долили 1 л воды. Наконец, снова после перемешивания отлили 1 л смеси и долили 1 л воды. В результате этих операций количество воды в сосуде оказалось в 7 раз больше по объему, чем оставшегося в нем глицерина. Сколько литров глицерина и воды оказалось в сосуде после всех операций? Ответ: 0,25 л, 1,75 л
- Из сосуда вместимостью 54 л, наполненного кислотой, вылили несколько литров и долили сосуд водой, затем снова вылили столько же литров смеси. Оставшаяся в сосуде смесь содержит 24 л чистой кислоты. Сколько кислоты вылили в первый раз? Ответ: 18 л
- Проценты содержания (по массе) спирта в трех растворах образуют геометрическую прогрессию. Если смешать первый, второй и третий растворы в новом отношении 2 : 3 : 4, то получится раствор, содержащий 32% спирта. Если же смешать их в отношении 3 : 2 : 1, то получится раствор, содержащий 22% спирта. Сколько процентов спирта содержит каждый раствор? Ответ: 12%; 24%; 48%
- Из полного бака, содержащего 729 кг кислоты, отлили a кг и долили бак водой. После тщательного перемешивания отлили a кг раствора и снова долили бак водой. После того как такая процедура была проделана 6 раз, раствор в баке стал содержать 64 кг кислоты. Найти величину a, а также количество чистой кислоты, которое отливали каждый раз. Ответ: 243 кг
- Имеется раствор, содержащий 20% примесей.Найти наименьшее число фильтров, через которые нужно пропустить раствор так, чтобы окончательное содержание примесей не превышало 0,01%. Известно, что каждый фильтр поглощает 80% примесей. Ответ: 5 фильтров
- Из сосуда, до краев наполненного чистым глицерином, отлили 2 л, а к оставшемуся глицерину долили 2 л воды. После перемешивания отлили 2 л смеси и долили 2 л воды. В результате этих операций объем воды в сосуде стал на 3 л больше объема оставшегося в нем глицерина. Сколько глицерина и сколько воды оказалось в сосуде в результате проведенных операций? Ответ: 0,5 л глицерина; 3,5 л воды.