В клетках какой ткани листа содержатся хлоропласты
Хлоропла́сты (от греч. χλωρός — «зелёный» и от πλαστός — вылепленный) — зелёные пластиды, которые встречаются в клетках фотосинтезирующих эукариот. С их помощью происходит фотосинтез. Хлоропласты содержат хлорофилл. У зелёных растений являются двумембранными органеллами[Пр. 1]. Под двойной мембраной имеются тилакоиды (мембранные образования, в которых находится электронтранспортная цепь хлоропластов). Тилакоиды высших растений группируются в граны, которые представляют собой стопки сплюснутых и тесно прижатых друг к другу тилакоидов, имеющих форму дисков. Соединяются граны с помощью ламелл. Пространство между оболочкой хлоропласта и тилакоидами называется стромой. В строме содержатся хлоропластные молекулы РНК, пластидная ДНК, рибосомы, крахмальные зёрна, а также ферменты цикла Кальвина[1].
Происхождение[править | править код]
В настоящее время общепризнано[2] происхождение хлоропластов путём симбиогенеза.
Предполагают, что хлоропласты возникли из цианобактерий, так как являются двумембранным органоидом, имеют собственную замкнутую кольцевую ДНК и РНК, полноценный аппарат синтеза белка (причем рибосомы прокариотического типа–70S), размножаются бинарным делением, а мембраны тилакоидов похожи на мембраны прокариот (наличием кислых липидов) и напоминают соответствующие органеллы у цианобактерий. У глаукофитовых водорослей вместо типичных хлоропластов в клетках содержатся цианеллы — цианобактерии, потерявшие в результате эндосимбиоза способность к самостоятельному существованию, но отчасти сохранившие цианобактериальную клеточную стенку[3].
Давность этого события оценивают в 1 — 1,5 млрд лет[4].
Часть групп организмов получала хлоропласты в результате эндосимбиоза не с прокариотными клетками, а с другими эукариотами, уже имеющими хлоропласты[5]. Этим объясняется наличие в оболочке хлоропластов некоторых организмов более чем двух мембран[Пр. 2]. Самая внутренняя из этих мембран трактуется как потерявшая клеточную стенку оболочка цианобактерии, внешняя — как стенка симбионтофорной вакуоли хозяина. Промежуточные мембраны — принадлежат вошедшему в симбиоз редуцированному эукариотному организму. У некоторых[Пр. 3] групп в перипластидном пространстве между второй и третьей мембраной располагается нуклеоморф, сильно редуцированное эукариотное ядро[6].
Строение[править | править код]
1. наружная мембрана
2. межмембранное пространство
3. внутренняя мембрана (1+2+3: оболочка)
4. строма (жидкость)
5. тилакоид с просветом (люменом) внутри
6. мембрана тилакоида
7. грана (стопка тилакоидов)
8. тилакоид (ламела)
9. зерно крахмала
10. рибосома
11. пластидная ДНК
12. пластоглобула (капля жира)
У различных групп организмов хлоропласты значительно различаются по размерам, строению и количеству в клетке. Особенности строения хлоропластов имеют большое таксономическое значение[7]. В основном хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм.
Оболочка хлоропластов[править | править код]
У различных групп организмов оболочка хлоропластов отличается по строению.
У глаукоцистофитовых, красных, зелёных водорослей[8] и у высших растений оболочка состоит из двух мембран. У других эукариотных водорослей хлоропласт дополнительно окружён одной или двумя мембранами. У водорослей, обладающих четырёхмембранными хлоропластами, наружная мембрана обычно переходит в наружную мембрану ядра.
Перипластидное пространство[править | править код]
Граны[править | править код]
Граны представляют собой стопки дисковидных тилакоидов. Отдельные граны хлоропласта соединятся более длинными ламеллами, которые также называют межграновыми или строматическими тилакоидами. Грановые и межграновые тилакоиды различаются белковым составом.
Пиреноиды[править | править код]
Пиреноиды — центры синтеза полисахаридов в хлоропластах[9]. Строение пиреноидов разнообразно, и не всегда они морфологически выражены. Могут быть внутрипластидными и стебельчатыми, выступающими в цитоплазму. У зелёных водорослей и растений пиреноиды располагаются внутри хлоропласта, что связано с внутрипластидным запасанием крахмала.
Стигма[править | править код]
Стигмы, или глазки, встречаются в хлоропластах подвижных клеток водорослей. Стигмы содержат каротиноиды и состоят из липидных глобул. Располагаются вблизи основания жгутика и вместе с особым вздутием на нём выполняют роль фоторецептора, задействованного в осуществлении клеточного фототаксиса[10].
См. также[править | править код]
- Фотосинтез
- Триозофосфатный транслокатор
- Хромопласты
- Цианеллы
Примечания[править | править код]
Комментарии[править | править код]
- ↑ Хлоропласты организмов, относящихся к группе хромистов, имеют четырёхслойную оболочку. Предполагается, что в истории их возникновения включение одной клетки в состав другой происходило дважды.
- ↑ Например, у динофитовых и эвгленовых имеется 3 мембраны, а у охрофитов — 4.
- ↑ У криптофитовых, хлорарахниофитовых и некоторых динофитовых.
Примечания[править | править код]
- ↑ Тихонов А. Н. Трансформация энергии в хлоропластах — энергопреобразующих органеллах растительной клетки // Соровский Образовательный Журнал. 1996. № 4. С. 24—32
- ↑ Карпов, 2001, с. 246.
- ↑ Карпов, 2001, с. 249,246.
- ↑ Белякова, 2006, с. 35.
- ↑ Карпов, 2001, с. 249.
- ↑ Карпов, 2001, с. 250.
- ↑ Карпов, 2001, с. 235.
- ↑ Белякова, 2006, с. 32—34.
- ↑ Карпов, 2001, с. 239.
- ↑ Карпов, 2001, с. 240.
Литература[править | править код]
- Белякова Г. А. Водоросли и грибы // Ботаника: в 4 т. / Белякова Г. А., Дьяков Ю. Т., Тарасов К. Л. — М.: Издательский центр «Академия», 2006. — Т. 1. — 320 с. — 3000 экз. — ISBN 5-7695-2731-5.
- Карпов С.А. Строение клетки протистов. — СПб.: ТЕССА, 2001. — 384 с. — 1000 экз. — ISBN 5-94086-010-9.
- Lee, R. E. Phycology, 4th edition. — Cambridge: Cambridge University Press, 2008. — 547 с. — ISBN 9780521682770.
- ХЛОРОПЛАСТЫ // Большая российская энциклопедия. Электронная версия (2017); https://bigenc.ru/biology/text/4694635 Дата обращения: 23.06.2018
Количество хлоропластов в клетках служит одним из важнейших физиологических показателей продуктивности листа, поскольку ассимиляционная поверхность клеток зависит, безусловно, от этого показателя. Отсюда понятен тот большой практический интерес, который помогает выяснению природы пластидообразования и возможности управления этим процессом с целью повышения продуктивности фотосинтеза.
Численность хлоропластов в клетке варьирует в очень широких пределах, от 1—2 до 100 и больше. У высших растений клетки с 1—2 хлоропластами встречаются очень редко, обычно их насчитывается несколько десятков. Причем в клетках разных тканей у одного и того же растения число пластид может быть различным. Таким образом, этот показатель исключительно лабилен и зависит, как это было экспериментально показано, не только от вида растения, его возрастного состояния, яруса листа, но также и от условий вегетации. Улучшение снабжения растений минеральными элементами, особенно азотом, содействует увеличению количества хлоропластов. Под влиянием усиленного питания азотом и другими элементами минерального питания повышается жизнедеятельность клеток в целом, что положительно отражается и на пластидообразовании.
На число пластид, образующихся в клетке, оказывает влияние и водный режим почвы. При хорошем водообеспечении растений наблюдается заметное увеличение количества хлоропластов. Данные Л. И. Онищенко, полученные для сахарной свеклы, показывают, что при влажности почвы, равной 30% от полной полевой влагоемкости, в клетках листьев 14-го яруса в среднем содержится по 139 хлоропластов, а при 60%-ной влажности — 174 хлоропласта.
Фотосинтетическая активность растений зависит не только от количества хлоропластов, но и от их линейных размеров, которые колеблются в довольно широких пределах у разных систематических групп растений, особенно у водорослей. Некоторые виды водорослей отличаются гигантскими пластидами — до 100 мкм. У большинства же высших растений хлоропласты далеко не столь велики — обычно от 3 до 10 мкм, а в среднем 4—6 мкм, причем у растений, произрастающих в затененных местах, они крупнее, чем у растущих на открытых, незатененных местах, даже в клетках разных тканей одного и того же листа хлоропласты могут отличаться по величине. Так, для губчатой паренхимы листа характерны более крупные хлоропласты, чем для столбчатой паренхимы этого же листа. Размеры пластид не остаются постоянными и на протяжении жизни растения: развитие и превращение пропластид в хлоропласты сопровождается их увеличением, а по мере старения пластид размеры их, наоборот, неуклонно уменьшаются.
Совсем недавно установили, что хлоропласты могут быстро изменять свои размеры в зависимости от освещения. На свету их объем резко уменьшается, в темноте происходит возвращение к первоначальному размеру, причем это сопряжено с перестройкой их внутренней структуры. Уменьшение объема на свету происходит с затратой энергии, которую поставляют молекулы такого чрезвычайно богатого энергией соединения, каким является аденозинтрифосфат (АТФ). Считается, что сократительная способность хлоропластов обусловлена наличием в них белка, аналогичного по своим свойствам сократительному белку мышц. Есть полное основание полагать, что дальнейшее изучение этого явления, как и вообще влияния различных факторов внешней среды на размеры и количество пластид, позволит найти пути, которые дадут возможность более активно управлять фотосинтетической деятельностью растений.
Источник: Н.Н. Овчинников, Н.М. Шиханова. Фотосинтез. Пособие для учителей. Изд-во «Просвещение». Москва. 1972
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Человек с трудом может представить, что клеточное строение листа – это сложная система. Любой организм живой природы состоит из мельчайших клеточек.
Каждая их группа имеет свои особенности, выполняет определенные функции и отвечает за определенные процессы.
Какие клетки образуют листовую пластину
В анатомии листовой пластины есть множество клеток, различных по форме и размеру.
Сверху и снизу находится кожица – эпидермис. Внутри размещена мякоть. На нижней поверхности имеются устьица.
Какую функцию выполняют жилки листа
Жилкование – это вид распределения жилок по листу. Жилки – это трубки в листьях. Они выполняют 2 функции – проводящую и опорную. В первом случае их можно сравнить с кровеносными сосудами человека. Они разносят вещества по всему организму.
Жилки бывают 2-х видов: ситовидные трубки и сосуды. По ситовидным трубкам от листьев к другим органам движутся вещества, образованные путем фотосинтеза.
По сосудам от корней из земли в другие части растения попадают растворенные в воде минеральные вещества. Иногда сосуды называют древесиной, а ситовидные трубки лубом.
По жилкованию листья разделяют на несколько типов. Ниже представлена таблица с примерами и кратким описанием.
Тип жилкования | Пояснение | Пример |
Перистое | В середине находится главная жилка, от которой отходят боковые. | Камелия, яблоня, береза |
Дуговидное | Главные жилки образуют дуги от одного края до другого. Жилки второго порядка являются поперечными. | Подорожник, ландыш |
Пальчатое | Главные жилки отходят от одной точки у основания листа. | Кленовый лист, герань |
Параллельное | Главные жилки идут от основания до конца листа почти параллельно. | Тростник, пшеница |
Вильчатое или дихотомическое | Все жилки выглядят одинаковыми по толщине. | Папоротник |
Сами трубки покрыты механической тканью, которая выполняет защитную функцию.
Какое строение имеют клетки мякоти листа
Мякоть состоит из 2-х типов клеток. Они образуют столбчатую и губчатую ткани.
Столбчатая расположена в верхней части. Она представляет собой ряды столбиков, плотно прижатых друг к другу.
Губчатая ткань находится ниже. Она имеет рыхлую структуру и содержит много пространства, заполненного воздухом. Эти пространства называют межклетниками. Через губчатую ткань испаряется вода, и происходит газообмен.
Обратите внимание: у листьев, находящихся в хорошей освещенности, больше слоев столбчатой ткани и лучше развита губчатая ткань, чем у листьев теневых растений.
В каких клетках листа особенно много хлоропластов
Хлоропласты представляют собой двумембранные пластиды зеленого цвета, слегка расплющенные в длине. Их размер может варьироваться от 2 мкм до 50 мкм.
В этих пластидах содержится хлорофилл. Он играет важную роль в процессе фотосинтеза, в результате которого выделяется кислород. Больше всего хлоропластов содержится в столбчатой ткани, т. к. она находится на поверхности, а значит, лучше всего освещена. На свету и происходит фотосинтез.
У высших растений в составе одной клетки может содержаться от 10 до 30 пластид. Однако, большое количество хлоропластов не входит в состав водорослей. У них бывает один хлоропласт на одну клетку. Но есть удивительные исключения. В клетках палисадной ткани махорки обнаружено около 1000 пластид.
Это интересно: теневые растения обычно имеют темно-зеленый цвет, потому что содержат больше хлорофилла, чем световые. Это нужно, для того чтобы при недостатке света было больше возможностей для фотосинтеза.
Какое значение имеет кожица листа
Кожица – это наружный слой. Она защищает от высыхания и повреждения. Кожицу можно легко подцепить иглой и снять. Тогда будет возможность увидеть, что она прозрачная. Благодаря этому свет легко проникает внутрь.
Сверху кожицы находится восковой слой. Он нужен для предотвращения потери воды. Чем толще восковой слой, тем меньше будет испаряться воды.
Рисунок и описание внутреннего строения листа
Здесь представлен срез листа. На схеме хорошо видны клетки кожицы и мякоти.
Свойства клеток устьица листа
В нижней части в нескольких местах кожицы образованы небольшие отверстия, расположенные между замыкающими клетками. Это отверстие называются устьицем. Оно является форточкой листа.
Замыкающие клетки периодически открываются и закрываются, благодаря чему происходит газообмен и испарение воды. При недостатке влаги устьице закрыто, и открывается оно только с поступлением воды.
Количество устьиц на поверхности листа огромно. Оно может достигать 500 только на 1 кв. мм.
У растений, живущих на поверхности воды, устьица расположены на верхней части листа. У большинства наземных растений – на нижней. Но встречаются и такие растения, у которых устьица находятся и наверху, и внизу. К ним относятся дуб, берёза, липа, ромашка, паприка, шалфей и др.
Из представленной статьи мы узнали, каково строение листа. Благодаря слаженной работе всех клеток и работе каждой отдельной клетки, образуется кислород, которым мы дышим.
Хлоропласты – двухмембранные органоиды растительных клеток, именно они играют ключевую роль в одном из самых важных биологических процессов в природе – фотосинтезе. В частности именно хлоропласты в процессе фотосинтеза выделяют зеленый пигмент хлорофилл, благодаря которому листья деревьев приобретают зеленый цвет (впрочем, не только листья, но и многие другие представители растительного мира, например водоросли). Какое строение хлоропластов, какие функции и процессы они осуществляются в жизнедеятельности клетки, об этом читайте далее.
Количество хлоропластов в растительной клетке может быть разным, у некоторых водорослей в клетке содержится лишь один большой хлоропласт, часто причудливой формы, в то время как в клетках некоторых высших растений находится множество хлоропластов. Особенно их много в так званных мезофильных тканях листьев, там одна клетка может иметь в себе до сотни хлоропластов.
Строение хлоропластов
Устройство хлоропласта включает в себя внутреннюю и внешнюю мембрану, (как и в клетке, они играют роль защитного барьера), межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.
Вот так строение хлоропласта выглядит на картинке.
Как видим с картинки внутри хлоропласта имеется полужидкое пространство, именуемое стромой и приплюснутые диски – это тилакоиды. Последние объединены в стопки, названные гранамы, и сами граны соединены друг с другом при помощи длинных тилакоид, которые называют ламеллами. Именно в тилакоидах находится важный зеленый пигмент – хлорофилл.
В полужидкой строме хлоропласта находятся его молекулы ДНК и РНК, а также рибосомы, обеспечивающие этому важному органоиду некую автономность внутри клетки. Помимо этого в строме хлоропласта есть зерна крахмала, которые образуются при избытке углеводов, образованных при фотосинтетической активности.
Функции хлоропластов
Самая важная функция хлоропласта – это, конечно же, осуществление фотосинтеза. Об этом удивительном процессе на нашем сайте есть отдельная большая статья. Тем не менее, напомним, что при фотосинтезе хлоропластами растительных клеток при помощи солнечного света осуществляется синтез глюкозы из углекислого газа и воды. При этом в качестве важного «побочного продукта» выделяется кислород.
Основным фотосинтезирующим пигментом в этом процессе является хлорофилл, локализированный в мембранах тилакоидов, именно здесь проходят световые реакции фотосинтеза. Кроме хлорофилла тут же присутствуют ферменты и переносчики электронов.
Интересный факт: хлоропласты стараются расположиться в клетке таким образом, чтобы их тилакоидные мембраны находились под прямым углом к солнечному свету. Или говоря простым языком, хлоропласты в клетке всегда тянутся на свет.
Строение хлорофилла
Что же касается строения самого хлорофилла, то он состоит из длинного углеводного хвоста и порфириновой головки. Хвост его гидрофобен, то есть боится влаги, поэтому погружен в тилакоид, головка наоборот любит влагу и находится в жидкой субстанции хлоропласта – строме. Поглощение солнечного света осуществляется именно головкой хлорофилла.
К слову биологами различается несколько разных видов хлорофилла: хлорофилл a, хлорофилл b, хлорофилл c1, хлорофилл c2 и так далее, все они обладают разным спектром поглощения солнечного света. Но больше всего в растениях именно хлорофилла а.
Рекомендованная литература и полезные ссылки
- Белякова Г. А. Водоросли и грибы // Ботаника: в 4 т. / Белякова Г. А., Дьяков Ю. Т., Тарасов К. Л. — М.: Издательский центр «Академия», 2006. — Т. 1. — 320 с. — 3000 экз. — ISBN 5-7695-2731-5.
- Карпов С.А. Строение клетки протистов. — СПб.: ТЕССА, 2001. — 384 с. — 1000 экз. — ISBN 5-94086-010-9.
- Lee, R. E. Phycology, 4th edition. — Cambridge: Cambridge University Press, 2008. — 547 с. — ISBN 9780521682770.
Хлоропласты, видео
И в завершение образовательное видео по теме нашей статьи.
Автор: Павел Чайка, главный редактор журнала Познавайка
При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.