В какую сторону усиливаются металлические свойства

1. Слева направо по периоду (см. Таблица Менделеева):
- металлические свойства простых веществ ослабевают (уменьшаются)
- неметаллические свойства усиливаются (увеличиваются)
- радиус атома уменьшается (атомное сжатие из-за увеличения заряда ядра)
- электроотрицательность элементов возрастает (самый ЭО элемент — фтор)
- восстановительные свойства уменьшаются
- окислительные свойства увеличиваются
- основные свойства оксидов и гидроксидов уменьшаются
- Кислотные свойства оксидов и гидроксидовусиливаются
- идет увеличение числа электронов на внешнем уровне
- увеличивается максимальная валентность элементов
2. Сверху вниз по группе (см. Таблица Менделеева)(для главной подгруппы):
- металлические свойства простых веществ усиливаются
- неметаллические свойства ослабевают
- радиус атома увеличивается
- электроотрицательность элементов уменьшается
- основные свойства оксидов и гидроксидов усиливаются
- кислотные свойства оксидов и гидроксидов убывают
- Число электронов на внешнем уровне не меняется
3. К основным оксидам относятся оксиды металлов со степенью окисления +1 и +2
4. К кислотным оксидам относятся оксиды неметаллов и оксиды металлов со степенью окисления +5, +6, +7
5. К амфотерным оксидам относятся Al2O3, BeO, ZnO, Cr2O3
Давайте порассуждаем вместе
1. Как изменяется радиус атома в ряду Be — Mg — Ca ?
1) уменьшается
2) увеличивается
3) не изменяется
4) сначала уменьшается, потом увеличивается
Ответ: все элементы находятся в одной группе, сверху вниз, значит радиус атома увеличивается
2. Как изменяются металлические свойства в ряду Li — Be — B?
1) не изменяются
2) сначала усиливаются, потом уменьшаются
3) ослабевают
4) усиливаются
Ответ: все элементы находятся в одном периоде слева направо, значит металлические свойства ослабевают
3. Как изменяется электроотрицательность в ряду F — O — N?
1) сначала усиливается, потом ослабевает
2) уменьшается
3) не изменяется
4) усиливается
Ответ: все элементы находятся в одном периоде справа налево, значит электроотрицательность уменьшается.
4. Как изменяются неметаллические свойства в ряду As — P — N?
1) уменьшаются
2) не изменяются
3) сначала усиливаются, потом уменьшаются
4) усиливаются
Ответ: все элементы находятся в одной группе снизу вверх, значит неметаллические свойства усиливаются
5. Как изменяется число валентных электронов в ряду Li — Na — K?
1) не изменяется
2) увеличивается
3) уменьшается
4) сначала уменьшается, затем увеличивается
Ответ: все элементы находятся в одной группе сверху вниз, значит число валентных электронов не изменяется
6. Как изменяются окислительные свойства в ряду O — S — Se?
1) увеличиваются
2) сначала уменьшаются, затем увеличиваются
3) не изменяются
4) уменьшаются
Ответ: все элементы находятся в одной группе сверху вниз, значит окислительные свойства уменьшаются
7. Как изменяются восстановительные свойства в ряду Si — Al — Mg?
1) сначала уменьшаются, затем усиливаются
2) увеличиваются
3) не изменяются
4) уменьшаются
Ответ: все элементы находятся в одном периоде справа налево, значит восстановительные свойства усиливаются
8. Как изменяются свойства оксидов в ряду MgO -> Al2O3 —> SiO2
1) от основных к кислотным
2) от кислотных к основным
3) от кислотных к амфотерным
4) от основных к амфотерным
Ответ: все элементы находятся в одном периоде слева направо, значит свойства оксидов изменяются от основных к кислотным
Задания повышенной сложности
1. В главных подгруппах периодической системы с увеличением заряда ядра атомов химических элементов происходит:
1) усиление неметаллических свойств
2) усиление металлических свойств
3) высшая валентность элементов остается постоянной
4) изменяется валентность в водородных соединениях
5) уменьшается радиус атомов
Ответ: 2, 3
2. В главных подгруппах периодической системы восстановительная способность атомов увеличивается по мере
1) уменьшения радиуса атома
2) увеличения числа электронных слоев в атомах
3) уменьшения заряда ядра атомов
4) увеличения числа валентных электронов
5) увеличения порядкового номера элемента
Ответ: 2, 5
3. В ряду химических элементов Be, Mg, Ca, Sr
1) усиливается способность атомов отдавать электроны
2) уменьшается заряд ядра атомов
3) усиливается восстановительная способность
4) уменьшаются металлические свойства
5) усиливается способность атомов принимать электроны
Ответ: 1, 3
4. В ряду химических элементов I, Br, Cl, F восстановительная способность атомов уменьшается, потому что
1) увеличивается радиус атома
2) увеличивается заряд ядра атомов
3) увеличивается число электронных слоев в атомах
4) уменьшается число электронных слоев в атомах
5) уменьшается способность атомов отдавать электроны
Ответ: 4, 5
5. В ряду химических элементов As, P, N
1) увеличивается радиус атома
2) увеличивается электроотрицательность
3) усиливаются кислотные свойства их высших оксидов
4) возрастает значение высшей степени окисления
5) увеличивается число электронов во внешнем электронном слое атомов
Ответ: 2, 3
6. В ряду химических элементов P, N, O
1) уменьшается число электронов во внешнем электронном слое
2) увеличивается электроотрицательность
3) возрастает значение высшей валентности
4) ослабевают неметаллические свойства
5) усиливается способность атомов принимать электроны
Ответ: 2, 5
7. В ряду гидроксидов NaOH, Ca(OH)2, Al(OH)3
1) увеличивается термическая стойкость
2) ослабевают основные свойства
3) увеличивается способность к электролитической диссоциации
4) ослабевают окислительные свойства
5) уменьшается растворимость в воде
Ответ: 2,5
§4.6. Некоторые закономерности в Периодической таблице Д.И. Менделеева.
Периодическая таблица систематизирует не только элементы, но и самые разнообразные их свойства. Химику часто бывает достаточно иметь перед глазами Периодическую таблицу для того, чтобы правильно ответить на множество вопросов (не только экзаменационных, но и научных).
Заглянем еще раз в Периодическую таблицу. Помимо глубокой фундаментальной связи между элементами, она отражает ряд полезных для изучения химии закономерностей. Рассмотрим важнейшие из них (рис. 4-6).
Рис.4-6. Закономерности Периодической таблицы, связанные с электроотрицательностью, металлическими и окислительно-восстановительными свойствами элементов.
а) Закономерности, связанные с металлическими и неметаллическими свойствами элементов.
1. При перемещении вдоль периода СПРАВА НАЛЕВО металлические свойства элементов УСИЛИВАЮТСЯ. В обратном направлении возрастают неметаллические.
Это объясняется тем, что правее находятся элементы, электронные оболочки которых ближе к октету. Элементы в правой части периода менее склонны отдавать свои электроны для образования металлической связи и вообще в химических реакциях.
Например, углерод — более выраженный неметалл, чем его сосед по периоду бор, а азот обладает еще более яркими неметаллическими свойствами, чем углерод.
Слева направо в периоде также увеличивается и заряд ядра. Следовательно, увеличивается притяжение к ядру валентных электронов и затрудняется их отдача.
Наоборот, s-элементы в левой части таблицы имеют мало электронов на внешней оболочке и меньший заряд ядра, что способствует образованию именно металлической связи. За понятным исключением водорода и гелия (их оболочки близки к завершению или завершены!), все s-элементы являются металлами; p-элементы могут быть как металлами, так и неметаллами, в зависимости от того — в левой или правой части таблицы они находятся.
У d- и f-элементов, как мы знаем, есть «резервные» электроны из «предпоследних» оболочек, которые усложняют простую картину, характерную для s- и p-элементов. В целом d- и f-элементы гораздо охотнее проявляют металлические свойства.
Подавляющее число элементов является металлами и только 22 элемента относят к неметаллам: это H, B, C, Si, N, P, As, O, S, Se, Te, а также все галогены и инертные газы.
Некоторые элементы в связи с тем, что они могут проявлять лишь слабые металлические свойства, относят к полуметаллам.
Что такое полуметаллы? Если выбрать из Периодической таблицы p-элементы и записать их в отдельный «блок» (это сделано в “длинной” форме таблицы), то обнаружится закономерность, показанная на рис. 4-7. Левая нижняя часть блока содержит типичные металлы, правая верхняя — типичные неметаллы. Элементы, занимающие места на границе между металлами и неметаллами, иногда называют полуметаллами.
Рис. 4-7. Полуметаллы расположены примерно вдоль диагонали, проходящей от левого верхнего к правому нижнему углу блока р-элементов в Периодической таблице.
Полуметаллы имеют ковалентную кристаллическую решетку при наличии металлической проводимости (электропроводности). Валентных электронов у них либо недостаточно для образования полноценной «октетной» ковалентной связи (как в боре), либо они не удерживаются достаточно прочно (как в тeллуре или полонии) из-за больших размеров атома. Поэтому связь в ковалентных кристаллах этих элементов имеет частично металлический характер.
Некоторые полуметаллы (кремний, германий) являются полупроводниками. Полупроводниковые свойства этих элементов объясняются многими сложными причинами, но одна из них — существенно меньшая (хотя и не нулевая) электропроводность, объясняемая слабой металлической связью. Роль полупроводников в электронной технике чрезвычайно важна.
2. При перемещении СВЕРХУ ВНИЗ вдоль групп УСИЛИВАЮТСЯ МЕТАЛЛИЧЕСКИЕ свойства элементов. Это связано с тем, что ниже в группах расположены элементы, имеющие уже довольно много заполненных электронных оболочек. Их внешние оболочки находятся дальше от ядра. Они отделены от ядра более толстой «шубой» из нижних электронных оболочек и электроны внешних уровней удерживаются слабее.
б) Закономерности, связанные с окислительно-восстановительными свойствами. Изменения электроотрицательности элементов.
3. Перечисленные выше причины объясняют, почему СЛЕВА НАПРАВО УСИЛИВАЮТСЯ ОКИСЛИТЕЛЬНЫЕ свойства, а при движении СВЕРХУ ВНИЗ — ВОССТАНОВИТЕЛЬНЫЕ свойства элементов.
Последняя закономерность распространяется даже на такие необычные элементы, как инертные газы. У «тяжелых» благородных газов криптона и ксенона, которые находятся в нижней части группы, удается «отобрать» электроны и получить их соединения с сильными окислителями (фтором и кислородом), а для «легких» гелия, неона и аргона это осуществить не удается.
В правом верхнем углу таблицы находится самый активный неметалл-окислитель фтор (F), а в левом нижнем углу — самый активный металл-восстановитель цезий (Cs). Цезий настолько активен, что самовозгорается на воздухе (посмотрите опыт из «Единой коллекции цифровых образовательных ресурсов»). Элемент франций (Fr) должен быть еще более активным восстановителем, но его химические свойства изучать крайне трудно из-за быстрого радиоактивного распада.
4. По той же причине, что и окислительные свойства элементов, их ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ ВОЗРАСТАЕТ тоже СЛЕВА НАПРАВО, достигая максимума у галогенов. Не последнюю роль в этом играет степень завершенности валентной оболочки, ее близость к октету.
5. При перемещении СВЕРХУ ВНИЗ по группам ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ УМЕНЬШАЕТСЯ. Это связано с возрастанием числа электронных оболочек, на последней из которых электроны притягиваются к ядру все слабее и слабее.
в) Закономерности, связанные с размерами атомов.
6. Размеры атомов (АТОМНЫЕ РАДИУСЫ) при перемещении СЛЕВА НАПРАВО вдоль периода УМЕНЬШАЮТСЯ. Это объясняют тем, что электроны все сильнее притягиваются к ядру по мере возрастания заряда ядра. Даже увеличение числа электронов на внешней оболочке (например, у фтора по сравнению с кислородом) не приводит к увеличению размеров атома. Наоборот, размеры атома фтора меньше, чем атома кислорода (рис. 4-8).
Рис. 4-8. Изменение атомных радиусов на примере элементов 2-го периода и 1-й группы Периодической таблицы. Атомные радиусы даны в ангстремах (1 А = 10-8 см).
7. При перемещении СВЕРХУ ВНИЗ АТОМНЫЕ РАДИУСЫ элементов РАСТУТ, потому что заполнено больше электронных оболочек.
г) Закономерности, связанные с валентностью элементов.
8. Элементы одной и той же подгруппы (в короткой форме таблицы) или группы (в длинной) имеют аналогичную конфигурацию внешних электронных оболочек и, следовательно, одинаковую валентность в соединениях с другими элементами.
9. s-Элементы имеют валентности, совпадающие с номером их группы (в любой форме таблицы).
10. p-Элементы имеют наибольшую возможную для них валентность, равную номеру группы в короткой форме Периодической таблицы. Кроме того, они могут иметь валентность, равную разности между числом 8 (октет) и номером их группы в короткой форме таблицы (этот номер совпадает с числом электронов на внешней оболочке).
11. d-Элементы обычно обнаруживают несколько разных валентностей, которые нельзя точно предсказать по номеру группы.
12. Не только элементы, но и многие их соединения — оксиды, гидриды, соединения с галогенами — обнаруживают периодичность. Для каждой ГРУППЫ элементов можно записать формулы соединений, которые периодически «повторяются» (то есть могут быть записаны в виде обобщенной формулы). Например:
LiCl | BeO | BCl3 | H2O | . HF | |
NaCl | MgO | AlCl3 | H2S | … HCl | |
KCl | CaO | GaCl3 | H2Se | … HBr | |
. . . . . . | . . . . . . | . . . . . . | . . . . . . | . . . . | |
Обобщенная формула | RCl | RO | RCl3 | H2R | HR |
хлориды | оксиды | хлориды | гидриды | гидриды |
Мы с вами рассмотрели важнейшие закономерности, наблюдаемые внутри периодов и групп Периодической таблицы Д. И. Менделеева. Теперь мы сможем их активно использовать в дальнейшем изучении химии. Как вы убедитесь, это во многом облегчит понимание и даже предсказание свойств самых разнообразных химических веществ.
Усиление металлических свойств в таблице Менделеева наблюдается с право на лево. В противоположном направлении возрастают неметаллические ионы.
Это связано с тем, что справа находятся элементы, электронные оболочки которых ближе к октету. Элементы с правой стороны периода редко выделяют свои электроны для образования металлической связи и, как правило, химических реакций.
Например, углерод является более выраженным неметаллием, чем его сосед в период бора, а азот даже имеет более яркие неметаллические свойства, чем углерод.
Слева направо ядерный заряд также увеличивается за этот период. В результате притяжение к сердечнику валентных электронов возрастает и их отталкивание затруднено.
Напротив, s-элементы в левой части таблицы имеют немного электронов на внешней оболочке и более низкий заряд ядра, что способствует образованию металлической связи. С понятным исключением из водорода и гелия (их оболочки близки к завершению или полны!), Все s-элементы — это металлы; p элементы могут быть либо металлами, либо неметаллами, в зависимости от того, находятся ли они на левой или правой стороне таблицы.
Как известно, элементы d и f имеют «резервные» электроны из «предпоследних» оболочек, что усложняет простой образ, типичный для s и p элементов. В общем случае d- и f-элементы обладают гораздо более вероятными металлическими свойствами.
Подавляющее число элементов — это металлы, и только 22 элемента классифицируются как неметаллы: H, B, C, Si, N, P, As, O, S, Se, Te и все галогены и инертные газы.
Некоторые элементы называются полуметаллами из-за того, что они могут проявлять только слабые металлические свойства.
Что такое полуметаллы?
Если вы выбираете p элементов из периодической системы и записываете их в отдельный «блок» (это происходит в «длинной» форме таблицы), регулярность показана на рисунке 4-7. Левая нижняя часть блока содержит типичные металлы, правая верхняя часть содержит типичные неметаллы. Элементы, занимающие места на границе между металлами и неметаллами, иногда называют полуметаллами.
Полуметаллы имеют ковалентную кристаллическую решетку при металлической проводимости (электропроводность). Валентные электроны либо недостаточны для образования полной «октетной» ковалентной связи (как в боре), либо они недостаточно захвачены (как в пластинах или полонии) из-за больших размеров атома. Поэтому связывание в ковалентных кристаллах этих элементов имеет частичный металлический характер.
Некоторые полуметаллы (кремний, германий) являются полупроводниками. Полупроводниковые свойства этих элементов объясняются многими сложными причинами, но одна из них представляет собой гораздо меньшую (хотя и не нулевую) электропроводность, объясненную слабой металлической связью. Роль полупроводников в электронной технике чрезвычайно важна.
Если вы перемещаете вниз вдоль групп, свойства металла элементов улучшаются. Это связано с тем, что в группах ниже групп есть элементы, у которых уже есть много заполненных электронных лотков. Их внешние оболочки удаляются из ядра. Они отделены от ядра более толстой «оболочкой» от нижних электронных оболочек, а электроны внешних плоскостей слабее ослаблены.
Анонимный вопрос · 6 марта 2019
8,4 K
Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме… · vk.com/mendo_him
☘️Что такое восстановительные свойства? ☘️
Это способность атома отдавать электроны????
????При движении по периоду слева направо восстановительные свойства уменьшаются???? Потому что электроотрицательность (способность отбирать электроны) возрастает, и атомы всё неохотнее отдают электроны????
????При движении по группе сверху вниз восстановительные свойства возрастают???? Потому что увеличиваются радиус атома и заряд ядра, а число электронов на внешнем уровне не меняется
Вот полезная табличка. Она показывает, как меняются свойства элементов в таблице Менделеева. С ней точно не запутаетесь????
Почему таблица химических элементов Менделеева выглядит именно так и почему ее создание было так важно?
Отличник, спортсмен, просто красавец
Идеи периодической системы химических элементов возникали и до Менделеева, но то были не более чем красивые представления списка этих самых элементов, и их свойства просто описывались на основе эмпирических данных. Уникальность варианта Менделеева в том, что он построен на валентности этих элементов, которая раньше не учитывалась, а ищо можно предсказывать их свойства (об этом чуть позже).
[ниже пойдет крайне упрощенное объяснение для тех, кому необязательно знать и объяснять это подробно]
Суть в том, что все атомы стремятся к полному заполнению своих орбиталей — чтобы не оставалось лишних электронов. Те, что уже их заполнили — ,благородные (инертные) газы (гелий, неон, аргон и так далее) — они уже живут хорошо, и потому в реакции вступать не любят, потому и инертные. А вот остальные стремятся к конфигурации инертных газов. Почему именно так — это частично объясняется в квантовой теории, частично постулируется.
Тем, что в правой части (неметаллы), до полного заполнения нужно еще несколько электронов. К примеру, возьмем хлор. По таблице видно, что электронов у него на один меньше, чем у аргона и на семь больше, чем у неона. Даже на основе бытовых представлений понятно, что один электрон передать легче, чем семь — поэтому атом хлора в степени окисления -1 Cl(-1) [атом хлора плюс один электрон] встречается куда чаще, чем в степени окисления +7 (например, оксид хлора (VII) Cl2O7), ведь отодрать семь электронов у атома, который сам хочет себе один, очень сложно. А еще можно посмотреть на фтор — у него электронов еще меньше -> расстояние до положительно заряженного ядра меньше -> электроны притягиваются сильнее, чем к хлору -> получаем, что нет такого элемента, который мог бы забрать электроны у фтора без дополнительного приложения энергии извне.
А тем, что в левой части (металлы), для конфигурации инертного газа проще отдать электроны, чем забрать. Возьмем натрий — ему стоит отдать всего лишь один электрон, чтобы получить конфигурацию неона! А когда вокруг столько всяких хлоров, он легко отдает его и переходит в ион Na+.
Ну вот реагируют они и реагируют, а при чем тут таблица-то? И валентность? А при том, что без них никуда в химичеких расчетах. Кроме того, периодическая таблица — это еще и справочник величин (атомные массы, заряды, вот это все). Знание периодического закона — это вообще знание чуть ли не половины неорганической химии. При понимании периодического закона можно предсказывать свойства элементов, даже еще не открытых (что Менделеев, собственно, и сделал, и это добавило его творению еще больше авторитета).
А еще таблица Менделеева — это таблица не совсем Менделеева, и до него, и во время него вроде как были именно такие. Поэтому в иностранных вариантах ее называют просто Periodic Table.
Можно ли в теории синтезировать 1000 или 10000 элемент таблицы Менделеева или есть какой-то предел?
Физик-теоретик, PhD студент в Университете Уппсалы, Швеция
Может показаться странным, но у таблицы Менделеева действительно существует предел и он равен 137.
Это неожиданное число берется из значения постоянной тонкой структуры. Последняя, в свою очередь, характеризует силу электромагнитного взаимодействия и равна почти точно 1/137 в любой системе единиц.
Постоянная тонкой структуры дает предел для максимального числа протонов в ядре, при котором электроны еще могут иметь стабильные орбиты. Другими словами эта постоянная позволяет определить последний возможный нейтральный атом таблицы Менделеева — 137й.
Я напомню, что на сегодняшний день в периодической таблице открыто 118 элементов, из которых 24 последних синтезированы искуссвенно.
Прочитать ещё 1 ответ
При каких условиях меняется валентность?
Увлекаюсь историей, публицистикой и компьютерными играми, а также понемногу…
Валентость определяет число химических связей, а оно определяется числом заряженных частиц. Так что валентность может измениться у ионизированных (потерявших электроны) атомов.
Зачем и как открываются новые элементы в таблице Менделеева?
Researcher, Institute of Physics, University of Tartu
Новые элементы, которые открывают в последние годы, все как один короткоживущие. Делают их на ускорителях соударением других атомов (меньшего веса, известных). Например, элемент рентгений был получен соударением ядер изотопов висмута и никеля, нобелий — ядер углерода и кого-то тяжелого, не помню кого, ну и т.д. Период полураспада последних элементов — это какие-то там миллисекунды, их только успевают зарегистрировать и они тут же разваливаются.
Зачем это делают — вопрос более сложный. Ну, простой ответ такой — существует довольно много групп ученых, которые только этим и занимались всю жизнь и которым раньше давали под это огромные деньги. Отчего бы и не позаниматься, если платят? Сейчас им кислород подприкрыли, поэтому, я думаю, что количество элементов в ближайшее время сильно не изменится. Если хотите знать мое мнение — бессмысленное спускание денег в унитаз. Раньше эти ученые любили рассказывать сказки про то, что вот еще чуть-чуть продвинуться вперед по номерам и начнутся опять долгоживущие элементы, из которых можно будет чего-то сделать прекрасное и удивительное. Но теперь, я надеюсь, в эти сказки уже никто не верит, поэтому смысла нет вообще. Никакой научной ценности, на мой взгляд, эти исследования не представляют, поскольку и так понятно, что если прибавить еще один протон к самому последнему известному ядру, то получится ядро элемента с номером на один больше, которое моментально развалится обратно.
Как определить степень окисления по таблице Менделеева?
Химик. Пытаюсь сделать мир немножко лучше. · koa.su
Самая высокая положительная степень окисления элемента, которую он может принять, равна номеру его группы в периодической системе, например:
N +5 (HNO3)
S +6 (H2SO4)
Mn +7 (KMnO4)
Ru +8 (RuO4)
Однако нужно помнить, что для элементов с высокой электроотрицательностью высшие степени окисления могут не достигаться, например, для кислорода соединения со степенью окисления +6 не известны, хотя для серы, селена и теллура – известны. Фтор в соединениях проявляет только одну степень окисления –1, тогда как для йода – элемента той же седьмой группы известны степени окисления до +7. Взято отсюда.
Прочитать ещё 1 ответ