В какую сторону кислотные свойства выражаются сильнее

В какую сторону кислотные свойства выражаются сильнее thumbnail

Кислотными свойствами называют те, которые наиболее сильно проявляются в данной среде. Их существует целый ряд. Необходимо уметь определять кислотные свойства спиртов и других соединений не только для выявления содержания в них соответствующей среды. Это также важно для распознавания изучаемого вещества.

кислотные свойства

Существует множество тестов на наличие кислотных свойств. Наиболее элементарный — погружение в вещество индикатора — лакмусовой бумаги, которая реагирует на содержание водорода, розовея или краснея. Причем более насыщенный цвет демонстрирует более сильную кислоту. И наоборот.

Кислотные свойства усиливаются вместе с увеличением радиусов отрицательных ионов и, следовательно, атома. Это обеспечивает более легкое отщепление частиц водорода. Это качество является характерным признаком сильных кислот.

Существуют наиболее характерные кислотные свойства. К ним относятся:

— диссоциация (отщепление катиона водорода);

— разложение (образование кислотного оксида и воды под воздействием температуры и кислорода);

— взаимодействие с гидроксидами (в результате которого образуются вода и соль);

— взаимодействие с оксидами (в результате также образуются соль и вода);

— взаимодействие с металлами, предшествующими водороду в ряду активности (образуется соль и вода, иногда с выделением газа);

— взаимодействие с солями (только в том случае, если кислота сильнее той, которой образована соль).

кислотные свойства спиртов

Часто химикам приходится самостоятельно получать кислоты. Для их выведения существует два способа. Один из них — смешение кислотного оксида с водой. Этот способ используется наиболее часто. А второй — взаимодействие сильной кислоты с солью более слабой. Его используют несколько реже.

Известно, что кислотные свойства проявляются и у многих органических веществ. Они могут быть выражены сильнее или слабее в зависимости от строения ядер атомов. К примеру, кислотные свойства спиртов проявляются в способности отщеплять катион водорода при взаимодействии с щелочами и металлами.

Алкоголяты — соли спиртов — способны гидролизоваться под действием воды и выделять спирт с гидроксидом металла. Это доказывает, что кислотные свойства этих веществ слабее, чем у воды. Следовательно, среда выражена в них сильнее.

Кислотные свойства фенола гораздо сильнее в связи с повышенной полярностью ОН-соединения. Поэтому данное вещество может реагировать также с гидроксидами щелочноземельных и щелочных металлов. В результате образуются соли — феноляты. Чтобы выявить фенол, наиболее эффективно использовать качественную реакцию с хлоридом железа (III), в которой вещество приобретает сине-фиолетовую окраску.

кислотные свойства фенола

Итак, кислотные свойства в различных соединениях проявляются одинаково, но с разной интенсивностью, что зависит от строения ядер и полярности водородных связей. Они помогают определять среду вещества и его состав. Наряду с данными свойствами, существуют также и основные, которые усиливаются с ослаблением первых.

Все эти характеристики проявляются в большинстве сложных веществ и составляют важную часть окружающего нас мира. Ведь именно за их счет проходят многие процессы не только в природе, но и в живых организмов. Поэтому кислотные свойства крайне важны, без них была бы невозможна жизнь на земле.

Источник

1. Слева направо по периоду (см. Таблица Менделеева):

    • металлические свойства простых веществ ослабевают (уменьшаются)
    • неметаллические свойства усиливаются (увеличиваются)
    • радиус атома уменьшается (атомное сжатие из-за увеличения заряда ядра)
    • электроотрицательность элементов возрастает (самый ЭО элемент — фтор)
    • восстановительные свойства уменьшаются
    • окислительные свойства увеличиваются
    • основные свойства оксидов и гидроксидов уменьшаются
    • Кислотные свойства оксидов и гидроксидовусиливаются
    • идет увеличение числа электронов на внешнем уровне
    • увеличивается максимальная валентность элементов

2. Сверху вниз по группе (см. Таблица Менделеева)(для главной подгруппы):

    • металлические свойства простых веществ усиливаются
    • неметаллические свойства ослабевают
    • радиус атома увеличивается
    • электроотрицательность элементов уменьшается
    • основные свойства оксидов и гидроксидов усиливаются
    • кислотные свойства оксидов и гидроксидов убывают
    • Число электронов на внешнем уровне не меняется

3. К основным оксидам относятся оксиды металлов со степенью окисления +1 и +2

4. К кислотным оксидам относятся оксиды неметаллов и оксиды металлов со степенью окисления +5, +6, +7

5. К амфотерным оксидам относятся Al2O3, BeO, ZnO, Cr2O3

Давайте порассуждаем вместе

1. Как изменяется радиус атома в ряду Be — Mg — Ca ?

1) уменьшается

2) увеличивается

3) не изменяется

4) сначала уменьшается, потом увеличивается

Ответ: все элементы находятся в одной группе, сверху вниз, значит радиус атома увеличивается

2. Как изменяются металлические свойства в ряду Li — Be — B?

1) не изменяются

2) сначала усиливаются, потом уменьшаются

3) ослабевают

4) усиливаются

Ответ: все элементы находятся в одном периоде слева направо, значит металлические свойства ослабевают

3. Как изменяется электроотрицательность в ряду F — O — N?

1) сначала усиливается, потом ослабевает

2) уменьшается

3) не изменяется

4) усиливается

Ответ: все элементы находятся в одном периоде справа налево, значит электроотрицательность уменьшается.

4. Как изменяются неметаллические свойства в ряду As — P — N?

1) уменьшаются

2) не изменяются

3) сначала усиливаются, потом уменьшаются

4) усиливаются

Ответ: все элементы находятся в одной группе снизу вверх, значит неметаллические свойства усиливаются

5. Как изменяется число валентных электронов в ряду Li — Na — K?

1) не изменяется

2) увеличивается

3) уменьшается

4) сначала уменьшается, затем увеличивается

Ответ: все элементы находятся в одной группе сверху вниз, значит число валентных электронов не изменяется

6. Как изменяются окислительные свойства в ряду O — S — Se?

1) увеличиваются

2) сначала уменьшаются, затем увеличиваются

3) не изменяются

4) уменьшаются

Ответ: все элементы находятся в одной группе сверху вниз, значит окислительные свойства уменьшаются

7. Как изменяются восстановительные свойства в ряду Si — Al — Mg?

1) сначала уменьшаются, затем усиливаются

2) увеличиваются

3) не изменяются

4) уменьшаются

Ответ: все элементы находятся в одном периоде справа налево, значит восстановительные свойства усиливаются

8. Как изменяются свойства оксидов в ряду MgO -> Al2O3 —> SiO2

1) от основных к кислотным

2) от кислотных к основным

3) от кислотных к амфотерным

4) от основных к амфотерным

Ответ: все элементы находятся в одном периоде слева направо, значит свойства оксидов изменяются от основных к кислотным

Задания повышенной сложности

1. В главных подгруппах периодической системы с увеличением заряда ядра атомов химических элементов происходит:

1) усиление неметаллических свойств

2) усиление металлических свойств

3) высшая валентность элементов остается постоянной

4) изменяется валентность в водородных соединениях

5) уменьшается радиус атомов

Ответ: 2, 3

2. В главных подгруппах периодической системы  восстановительная способность атомов увеличивается по мере

1) уменьшения радиуса атома

2) увеличения числа электронных слоев в атомах

3) уменьшения заряда ядра атомов

4) увеличения числа валентных электронов

5) увеличения порядкового номера элемента

Ответ: 2, 5

3. В ряду химических элементов Be, Mg, Ca, Sr

1) усиливается способность атомов отдавать электроны

2) уменьшается заряд ядра атомов

3) усиливается восстановительная способность

4) уменьшаются металлические свойства

5) усиливается способность атомов принимать электроны

Ответ: 1, 3

4. В ряду химических элементов I, Br, Cl, F восстановительная способность атомов уменьшается, потому что

1) увеличивается радиус атома

2) увеличивается заряд ядра атомов

3) увеличивается число электронных слоев в атомах

4) уменьшается число электронных слоев в атомах

5) уменьшается способность атомов отдавать электроны

Ответ: 4, 5

5. В ряду химических элементов As, P, N

1) увеличивается радиус атома

2) увеличивается электроотрицательность

3) усиливаются кислотные свойства их высших оксидов

4) возрастает значение высшей степени окисления

5) увеличивается число электронов во внешнем электронном слое атомов

Ответ: 2, 3

6.  В ряду химических элементов  P, N, O

1) уменьшается число электронов во внешнем электронном слое

2) увеличивается электроотрицательность

3) возрастает значение высшей валентности

4) ослабевают неметаллические свойства

5) усиливается способность атомов принимать электроны

Ответ: 2, 5

7. В ряду гидроксидов NaOH, Ca(OH)2, Al(OH)3

1) увеличивается термическая стойкость

2) ослабевают основные свойства

3) увеличивается способность к электролитической диссоциации

4) ослабевают окислительные свойства

5) уменьшается растворимость в воде

Ответ: 2,5

Источник

Читайте также:  Какими физическими свойствами обладают вещества с ионной кристаллической решеткой

rafael ahmetov

Высший разум

(122181)

6 лет назад

Сначала про плавиковую кислоту. Она стекло не плавит, а «разъедает». Дело в том, что стекло, а также керамика, многие эмали — соли кремниевой кислоты (например Na2SiO3), а кварцевое стекло — просто двуокись кремния SiO2. А анион плавиковой кислоты F(-) обладает особо сильным сродством к катионам металлов, поэтому он может «вытеснять» кислород из силикатов и двуокиси кремния.
Na2SiO3 + 6 HF ——> SiF4 + 2 NaF + 3 H2O,
SiO2 + 4 HF ——> SiF4 + 2 H2O.
Этому еще способствует то, что соединение SiF4 — это газ.
Теперь относительно силы кислот.
Если написать электронные формулы внешних слоев анионов галогенов (галоидов) , то это выглядит так:
F(-) — .2s2 2p6,
Cl(-) — .3s2 3p6
Br(-) — .4s2 4p6
I(-) — .5s2 5p6.
Поскольку чем больше главное квантовое число (количество энергетических уровней, или упрощенно — «слоев» электронов) , тем больше размер орбиталей внешнего слоя. А размер 1s орбитали водорода постоянный. Поэтому степень перекрывания внешних орбиталей ионов галогенов при переходе от фтора к иоду — уменьшается, а значит меньше электронная плотность, заключенная в перекрываемой области.
Наглядный образный пример: пусть имеется четыре поляны одинаковой формы но разного размера. На каждой поляне выросло одинаковое количество ягод. А желающие собирать ягоды, поставлены в такие условия. В любом месте поляны можно очертить круг одинакового для всех полян диаметра, и собирать ягоды только в этом кругу. Ясно, что больше ягод можно собрать на самой маленькой поляне. А количество ягод — отображает электронную плотность, которая удерживает протон в составе кислоты. Понятно, что ион иода удерживает протон слабее всего, т. е протон наиболее легко покидает ион иода, и труднее всего ион фтора. Поэтому сила кислот возрастает именно в 1 ряду.

Читайте также:  Какое свойство нехарактерно для алюминия

Дмитрий Д.Просветленный (34740)

6 лет назад

Вот это самый точный ответ!
Слышишь, Сильдерея? Оставь школьные учебники 20-30 летней давности., есть же нормальная литература по химии.

Закон Кулона для объяснения силы кислот — полный маразм. Если потребуется это доказать — не вопрос. Вообще, не изучайте схему Косселя, ей уже больше 100 лет. В те годы вообще про хим. связь имели очень смутные представления.

Дивергент

Высший разум

(1299129)

6 лет назад

Ты допустила типичную ошибку. Плавиковая кислота вовсе не сильная, это кислота средней силы. Она просто взаимодействует со стеклом, а это вовсе не показатель ее силы. А в ряду галогеноводородных кислот самой сильной является, естественно, йодоводородная. Потому что в первом ряду заряды ионов галогеноводородов одинаковы, а РАДИУСЫ ионов возрастают. Так это же элементарная физика! Закон Кулона! Сила взаимодействия между зарядами прямо пропорциональна величинам зарядов и обратно пропорциональна квадрату расстояния между ними! Значит, где связь самая слабая и рвется легче всего? У иодоводородной кислоты!
А ведь я тебе говорила, и не раз, что для хотя бы ХОРОШЕГО знания химии необходимо ОТЛИЧНО знать математику и физику.. . Без них в химии делать просто нечего…

БабайкаМыслитель (8339)

6 лет назад

Им блин хоть кол на голове чеши….

Они все думают: «зачем учить, разбираться, пойду на Ответы, там подскажут».

Вы думаете, она Ваш ответ осмыслила? Хрена с два. Готов держать пари, что из всего ответа она прочитала только фразу, что самая сильная к-та — иодоводородная.

Потом такие диплом получают, а потом у нас ядерные электростанции взрываются…

Источник

После прочтения статьи Вы сможете разделять вещества на соли, кислоты и основания. В статье описано, что такое
pH раствора, какими общими свойствами обладают кислоты и основания.

Простым языком, кислота — это всё что с H, а основание — c OH. НО! Не всегда. Что бы отличать кислоту от основания
необходимо… запомнить их! Сожалею. Что бы хоть как то облегчить жизнь, три наших друга, Аррениус и Бренстед с
Лоури, придумали две теории, которые зовутся их именем.

Как металлы и неметаллы, кислоты и основания — это разделение веществ по схожим свойствам. Первая теория кислот
и оснований принадлежала швецкому учёному Аррениусу. Кислота по Аррениусу — это класс веществ, которые
в реакции с водой диссоциируют (распадаются), образовывая катион водорода H+. Основания Аррениуса в водном растворе образуют
анионы OH-. Следующая теория в 1923 году была предложена учёными Бренстедом и Лоури. Теория Бренстеда-Лоури
определяет кислотами вещества, способные в реакции отдавать протон (протоном в реакциях называют катион водорода). Основания,
соответственно, — это вещества, способные принять протон в реакции. Актуальная на данный момент теория — теория Льюиса.
Теория Льюиса определяет кислоты как молекулы или ионы, способные принимать электронные пары, тем самым формируя
аддукты Льюиса (аддукт — это соединение, образующееся соединением двух реагентов без образования побочных продуктов).

В неорганической химии, как правило, под кислотой имеют ввиду кислоту Бренстеда-Лоури, то есть вещества, способные отдать
протон. Если имеют ввиду определение кислоты по Льюису, то в тексте такую кислоту называют кислотой Льюиса. Данные правила
справедливы для кислот и оснований.

Диссоциация

Диссоциация – это процесс распада вещества на ионы в растворах или расплавах. Например, диссоциация соляной кислоты — это распад
HCl на H+ и Cl-.

Свойства кислот и оснований

Кислоты, содержащие водород, в водном растворе выделяют катионы водорода. Основания, содержащие гидроксид-ион,
в водном растворе выделяют анион OH-.

Основания, как правило, мыльные на ощупь, кислоты, в большинстве своём, имеют кислый вкус.

При реакции основания со многими катионами формируется осадок. При реакции кислоты с анионами, как правило, выделяется
газ.

Часто используемые кислоты:

H2O, H3O+, CH3CO2H, H2SO4,
HSO4−, HCl, CH3OH, NH3

Часто используемые основания:
OH−, H2O, CH3CO2−,
HSO4−, SO42−, Cl−

Сильные и слабые кислоты и основания

Сильные кислоты

Такие кислоты, которые полностью диссоциируют в воде, производя катионы водорода H+ и анионы.
Пример сильной кислоты — соляная кислота HCl:

Читайте также:  Какое свойство воздуха доказывает этот опыт 3 класс

HCl(р-р) + H2O(ж) → H3O+(р-р) + Cl-(р-р)

Примеры сильных кислот: HCl, HBr, HF, HNO3, H2SO4, HClO4

Список сильных кислот

  • HCl — соляная кислота
  • HBr — бромоводород
  • HI — йодоводород
  • HNO3 — азотная кислота
  • HClO4 — хлорная кислота
  • H2SO4 — серная кислота

Слабые кислоты

Растворяются в воде только частично, например, HF:

HF(р-р) + H2O(ж) → H3O+(р-р) + F-(р-р) —
в такой реакции более 90% кислоты не диссоциирует:
[H3O+]=[F-] < 0,01M для вещества 0,1М

Сильную и слабую кислоту можно различить измеряя проводимость растворов: проводимость зависит от количества ионов,
чем сильнее кислота тем она более диссоциирована, поэтому чем сильнее кислота тем выше проводимость.

Список слабых кислот

  • HF фтороводородная
  • H3PO4 фосфорная
  • H2SO3 сернистая
  • H2S сероводородная
  • H2CO3 угольная
  • H2SiO3 кремниевая

Сильные основания

Сильные основания полностью диссоциируют в воде:

NaOH(р-р) + H2O ↔ NH4

К сильным основаниям относятся гидроксиды металлов первой (алкалины, щелочные металы) и второй (алкалинотеррены,
щёлочноземельные металлы) группы.

Список сильных оснований

  • NaOH гидроксид натрия (едкий натр)
  • KOH гидроксид калия (едкое кали)
  • LiOH гидроксид лития
  • Ba(OH)2 гидроксид бария
  • Ca(OH)2 гидроксид кальция (гашеная известь)

Слабые основания

В обратимой реакции в присутствии воды образует ионы OH-:

NH3 (р-р) + H2O ↔ NH+4 (р-р) + OH-(р-р)

Большинство слабых оснований — это анионы:

F-(р-р) + H2O ↔ HF(р-р) + OH-(р-р)

Список слабых оснований

  • Mg(OH)2 гидроксид магния
  • Fe(OH)2 гидроксид железа (II)
  • Zn(OH)2 гидроксид цинка
  • NH4OH гидроксид аммония
  • Fe(OH)3 гидроксид железа (III)

Реакции кислот и оснований

Сильная кислота и сильное основание

Такая реакция называется нейтрализацией: при количестве реагентов достаточном для полной диссоциации кислоты и
основания, результирующий раствор будет нейтральным.

Пример:
H3O+ + OH- ↔ 2H2O

Слабое основание и слабая кислота

Общий вид реакции:
Слабое основание(р-р) + H2O ↔ Слабая кислота(р-р) + OH-(р-р)

Сильное основание и слабая кислота

Основание полностью диссоциирует, кислота диссоциирует частично, результирующий раствор имеет слабые свойства
основания:

HX(р-р) + OH-(р-р) ↔ H2O + X-(р-р)

Сильная кислота и слабое основание

Кислота полностью диссоциирует, основание диссоциирует не полностью:

NH3 (р-р) + H+ ↔ NH4

Диссоциация воды

Диссоциация — это распад вещества на составляющие молекулы. Свойства кислоты или основания зависят от
равновесия, которое присутствует в воде:

H2O + H2O ↔ H3O+(р-р) + OH-(р-р)
Kc = [H3O+][OH-]/[H2O]2
Константа равновесия воды при t=25°: Kc = 1.83⋅10-6, также имеет место следующее
равенство: [H3O+][OH-] = 10-14, что называется константой
диссоциации воды. Для чистой воды [H3O+] = [OH-] = 10-7,
откуда -lg[H3O] = 7.0.

Данная величина (-lg[h3O]) называется pH — потенциал водорода. Если pH < 7, то вещество
имеет кислотные свойства, если pH > 7, то вещество имеет основные свойства.

Способы определения pH

Инструментальный метод

Специальный прибор pH-метр — устройство, трансформирующее концентрацию протонов в растворе в электрический
сигнал.

Индикаторы

Вещество, которое изменяет цвет в некотором интервале значений pH в зависимости от кислотности раствора,
используя несколько индикаторов можно добиться достаточно точного результата.

Соль

Соль — это ионное соединение образованное катионом отличным от H+ и анионом отличным от O2-.
В слабом водном растворе соли полностью диссоциируют.

Что бы определить кислотно-щелочные свойства раствора соли, необходимо определить, какие ионы присутствуют
в растворе и рассмотреть их свойства: нейтральные ионы, образованные из сильных кислот и оснований не влияют на pH:
не отдают ионы ни H+, ни OH- в воде. Например, Cl-, NO-3,
SO2-4, Li+, Na+, K+.

Анионы, образованные из слабых кислот, проявляют щелочные свойства (F-, CH3COO-,
CO2-3), катионов с щелочными свойствами не существует.

Все катионы кроме металлов первой и второй группы имеют кислотные свойства.

Буфферный раствор

Растворы, которые сохраняют уровень pH при добавлении небольшого количества сильной кислоты или сильного
основания, в основном состоят из:

  • Смесь слабой кислоты, соответствующей соли и слабого основания
  • Слабое основание, соответствующая соль и сильная кислота

Для подготовки буфферного раствора определённой кислотности необходимо смешать слабую кислоту или основание
с соответствующей солью, при этом необходимо учесть:

  • Интервал pH в котором буфферный раствор будет эффективен
  • Ёмкость раствора — количество сильной кислоты или сильного основания, которые можно добавить не повлияв
    на pH раствора
  • Не должно происходить нежелаемых реакций, которые могут изменить состав раствор

Тест:

Источник