В каком случае полупроводник может проявлять свойства диэлектрика

В электроэнергетике можно выделить три главные группы материалов: проводник, полупроводник и диэлектрик. Основное их отличие в том, что у них различная проводимость электрического тока. В этой статье поговорим о различии таких материалов и их поведении в электрическом поле.
Что такое проводник
Итак, проводник это — материал (вещество, среда), отлично проводящий электрический ток. Присутствующие в веществе так называемые свободные заряженные частицы (электроны или ионы), способны свободно перемещаться по всему объему вещества, а при приложении электрического напряжения создают ток проводимости.
Главной характеристикой проводника является его «сопротивление» (R), измеряемое в Омах или же обратная величина под названием «проводимость», находится по формуле:
G = 1/R
И измеряется данная величина в Сименс.
К проводникам относится: большая часть металлов, углерод (уголь либо графит), разнообразные растворы солей и кислот.
Проводники, у которых перенос заряда выполняется преимущественно за счет движения электронов (электронная эмиссия), называются проводниками первого рода. Если в проводниках перемещение заряда выполняется за счет ионов (электролиты), то они называются проводниками второго порядка.
Наибольшее распространение получили металлы, так как они обладают самой лучшей проводимостью, а значит, имеют меньшее сопротивление протекающему электрическому току.
Так, например, жилы всех питающих проводов (шнуров) выполнены из металлов, являющихся проводниками.
Что такое диэлектрик
Диэлектриками называют те вещества, которые обладают большим сопротивлением и не пропускают электрический ток либо проводят его в незначительных количествах.
Это обусловлено тем, что в подобных материалах крайне мало находится свободных носителей заряда по причине довольно крепкой атомарной связи. Поэтому при воздействии электрического поля ток в диэлектрике просто отсутствует.
К диэлектрикам относятся такие материалы как: стекло, фарфор, керамика, текстолит, карболит, вода дистиллированная (без солевых примесей), сухое дерево, каучук и т.п.
Диэлектрики так же крайне широко используются в быту. Изоляция проводов, корпуса электроприборов выполнены из диэлектрических материалов.
yandex.ru
Но если создать определенные условия, например, сильно повысить рабочее напряжение, то диэлектрик может стать проводником. Наверняка вы слышали такое выражение как «пробой изоляции».
Главной характеристикой любого диэлектрика считается электрическая прочность (данная величина равна напряжению пробоя).
Что такое полупроводник
Как видно даже из самого названия полупроводники занимают промежуточное положение между проводниками и диэлектриками. Полупроводники в изначальном состоянии не пропускают электрический ток, но стоит приложить к полупроводниковому материалу энергию, то полупроводник из диэлектрика превращается в проводник.
Подобные элементы применяются в радиоэлектронике, из них производят транзисторы, тиристоры, диоды, светодиоды и т. д.
Разграничение веществ на проводники, полупроводники и диэлектрики объясняются с помощью Зонной теории твердых тел. Она, конечно, не всеми принимается просто, но познакомиться с ней крайне желательно.
Зонная теория твердых тел
Итак, различие между диэлектриками, проводниками и полупроводниками можно объяснить зонной теорией. Она звучит так:
Как известно из модели атома Бора в атоме электроны размещены на определенных орбитах
yandex.ru
В кристаллической решетке твердого тела орбиты электронов изменяются под неизбежным влиянием соседних атомов и электронов. И по этой причине происходит смещение энергетических уровней удержания электронов.
С орбит близких к ядру атома электроны могут перейти на другой уровень чисто теоретически, а вот уже с внешних орбит, которые в твердом теле размываются на подуровни, переход электронов между ними может осуществляться довольно легко.
А при приложении электрического потенциала электроны, хаотично перескакивающие по внешним орбитам соседствующих атомов, обретают единый вектор движения и мы наблюдаем электрический ток.
Поэтому нижний слой, где имеются свободно перемещающиеся электроны, называют зоной проводимости.
Валентной зоной называется область разрешенных энергий и располагается она под зоной проводимости.
Для того, чтобы электрон перешел из валентной зоны в зону проводимости, он должен пересечь так называемую запрещенную зону.
Численно она выражается в электрон–вольтах. А энергетические уровни полупроводников, проводников и диэлектриков схематично можно представить следующим образом:
Как видно из рисунка выше у проводника нет запрещенной зоны, то есть валентная зона и зона проводимости имеет область перекрытия. Это значит, что в таком материале даже при незначительном приложении энергии электроны начинают активно перемещаться в пределах тела проводника.
У полупроводника между уровнями присутствует запрещенная зона. Ее ширина показывает, какую энергию нужно приложить к полупроводнику, чтобы электроны начали свое перемещение, то есть стал протекать ток.
А у диэлектрика запрещенная область настолько широка, что переход электронов из валентной области в проводимую практически исключен. Так как потребуется значительная энергия для преодоления этого барьера, которая вызовет разрушение диэлектрика.
Заключение
Это все, что я хотел вам рассказать о диэлектриках, проводниках и полупроводниках. Если вам статья оказалась интересна и полезна, то оцените ее. И спасибо за ваше внимание!
Иное название этого понятия — «изолятор»; см. также другие значения.
Диэле́ктрик (изолятор) (от греч. dia — через и англ. electric — электрический) — вещество (материал), относительно плохо проводящее электрический ток. Электрические свойства диэлектриков определяются их способностью к поляризации во внешнем электрическом поле. Термин введён английским физиком М. Фарадеем[1].
Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. С точки зрения электродинамики диэлектрик — среда с малым на рассматриваемой частоте значением тангенса угла диэлектрических потерь ()[2], в такой среде сила тока проводимости[3] много меньше силы тока смещения. Под идеальным диэлектриком понимают среду со значением , прочие диэлектрики называют реальными или диэлектриками (средами) с потерями. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.
Физические свойства
Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ < 10−5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10−8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10−5—108 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причём двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Чёткую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков — возбуждённым.
Развитие радиотехники потребовало создания материалов, в которых специфические электромагнитные свойства на радиочастотах сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов.
Удельное сопротивление деионизированной воды (см. также: бидистиллят) — 18 МОм·см.
Параметры
Параметры диэлектриков определяют их механические (упругость, прочность, твердость, вязкость), тепловые (тепловое расширение, теплоемкость, теплопроводность), электрические (электропроводность, поляризация, поглощение энергии, электрическая прочность), магнитные, оптические свойства, а также определяют их электрический, механический, тепловой отклики на воздействие электрического поля, механического напряжения, температуры[4].
Примеры
К диэлектрикам относятся воздух и другие газы, стёкла, различные смолы, пластмассы.
Ряд диэлектриков проявляют интересные физические свойства. К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики.
Использование
При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств.
Диэлектрики используются не только как изоляционные материалы.
Пассивные свойства
Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных ёмкостей. Если материал используется в качестве диэлектрика конденсатора определённой ёмкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.
Активные свойства диэлектриков
Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др.
Примечания
Ссылки
- Диэлектрик // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- Характеристики электроизоляционных материалов
- Производство диэлектриков
Литература
- Рез И. С., Поплавко Ю. М. Диэлектрики. Основные свойства и применения в электронике. — М.: Радио и связь, 1989. — 288 с. — ISBN 5-256-00235-X.
- Богородицкий Н. П., Волокобинский Ю. М., Воробьев А. А., Тареев Б. М. Теория диэлектриков. — М.Л.: Энергия, 1965. — 344 с. — 10 000 экз.
- Орешкин П. Т. Физика полупроводников и диэлектриков. — М.: Высшая школа, 1977. — 448 с. — 22 000 экз.
Диэлектрики — это вещества, которые не проводят электрический ток, до определенной поры. При определенных условиях проводимость в них зарождается. Этими условиями выступают механические, тепловые — в общем, энергетические виды воздействий. Кроме диэлектриков, вещества также классифицируются на проводники и полупроводники.
Теоретическую разницу между этими тремя видами материалов можно представить, и я это сделаю, на рисунке ниже:
Рисунок красивый, знакомый со школьной скамьи, но что-то практическое из него не особо вытянешь. Однако, в этом графическом шедевре четко определена разница между проводником, полупроводником и диэлектриком.
И отличие это в величине энергетического барьера между валентной зоной и зоной проводимости.
В проводниках электроны находятся в валентной зоне, но не все, так как валентная зона — это самая внешняя граница. Точно, это как с мигрантами. Зона проводимости пуста, но рада гостям, так как у неё полно для них свободных рабочих мест в виде свободных энергетических зон. При воздействии внешнего электрического поля, крайние электроны приобретают энергию и перемещаются в свободные уровни зоны проводимости. Это движение мы еще называем электрическим током.
В диэлектриках и проводниках всё аналогично, за исключением того, что имеется “забор” — запрещенная зона. Эта зона расположена между валентной и зоной проводимости. Чем больше эта зона, тем больше энергии требуется для преодоления электронами этого расстояния. У диэлектриков величина зоны больше, чем у полупроводников. Этому есть даже условие: если дЭ>3Эв (электронвольт) — то это диэлектрик, в обратном случае дЭ
В данной статье речь далее пойдет только о диэлектриках. И раз уж мы чуть углубились в науку, то поговорим далее о свойствах и величинах, которые характеризуют эти электротехнические материалы в общем.
Классификация диэлектриков довольна обширная. Тут встречаются жидкие, твердые и газообразные вещества. Далее они делятся по определенным признакам. Ниже приведена условная классификация диэлектриков с примерами в форме списка.
- — полярные
- — неполярные (воздух, элегаз)
- — полярные (вода, аммиак)
- — жидкие кристаллы
- — неполярные (бензол, трансформаторное масло)
- — центросимментричные
- — аморфные
- — смолы, битумы (эпоксидная смола)
- — стекла
- — неупорядоченные полимеры
- — поликристаллы
- — нерегулярные кристаллы
- — керамика
- — упорядоченные полимеры
- — ситаллы
- — монокристаллы
- — молекулярные
- — ковалентные
- — ионные
- — параэлектрики смещения
- — параэлектрики „порядок-беспорядок”
- — дипольные
- — нецентросимментричные
- — монокристаллы
- — пироэлектрики
- — сегнетоэлектрики смещения
- — сегнетоэлектрики „порядок-беспорядок”
- — линейные пироэлектрики
- — пьезоэлектрики
- — с водородными связями
- — ковалентные
- — ионные
- — текстуры
- — электронных дефектов
- — ионных дефектов
- — полярных молекул
- — макродиполей
- — сегнетоэлектрических доменов
- — кристаллов в матрице
Если брать жидкие и газообразные диэлектрики, то основная классификация лежит в вопросе полярности. Разница в симметричности молекул. В полярных молекулы несимметричны, в неполярных — симметричны. Несимметричные молекулы называются диполями. В полярных жидкостях проводимость настолько велика, что их невозможно использовать в качестве изоляционных веществ. Поэтому для этих целей используют неполярные, тоже трансформаторное масло. А наличие полярных примесей даже в сотых долях значительно снижает планку пробоя и негативно сказывается на изоляционных свойствах неполярных диэлектриков.
кристаллы представляют собой нечто среднее между жидкостью и кристаллом, как следует из названия.
Еще популярным вопросом о свойствах и применении жидких диэлектриков будет следующий: вода — диэлектрик или проводник? В чистой дистиллированной воде отсутствуют примеси, которые могли бы вызвать протекание тока. Чистую воду можно создать в лабораторных, промышленных условиях. Эти условия сложны и трудновыполнимы для обычного человека. Есть простой способ проверить проводит ли дистиллированная вода ток.
Создать электрическую цепь (источник тока — провод — вода — провод — лампочка — другой провод — источник тока), в которой одним из участков для протекания тока будет сосуд с дистиллированной водой. При включении схемы в работу, лампочка не загорится — следовательно ток не проходит. Ну а если загорится, значит вода с примесями.
Поэтому любая вода, которую мы встречаем: из крана, в озере, в ванной — будет проводником за счет примесей, которые создают возможность для протекания тока. Не купайтесь в грозу, не работайте влажными руками с электричеством. Хотя чистая дистиллированная вода — полярный диэлектрик.
Для твердых диэлектриков классификация в основном лежит в вопросе активности и пассивности что ли. Если свойства постоянны, то диэлектрик используют в качестве изоляционного материала, то есть он пассивен. Если свойства меняются, в зависимости от внешних воздействий (тепло, давление), то этот диэлектрик применяют для других целей. Бумага является диэлектриком, если вода пропитана водой — то ток проводится и она проводник, если бумага пропитана трансформаторным маслом — то это диэлектрик.
Фольгой называют тонкую металлическую пластину, металл — как известно является проводником. В продаже имеется например ПВХ-фольга, тут слово фольга для наглядности, а слово ПВХ — для понимания смысла — ведь ПВХ это диэлектрик. Хотя в википедии — фольгой называется тонкий лист металла.
Аморфные жидкости — это и смола, и стекло, и битум, и воск. При повышении температуры этот диэлектрик тает, это замороженные вещества — это дикие определения, которые характеризуют лишь одну грань правды.
Поликристаллы — это, как бы сросшиеся кристаллы, объединенные в один кристалл. Например, соль.
Монокристалл — это цельный кристалл, в отличие от вышеупомянутого поликристалла имеющий непрерывную кристаллическую решетку.
Пьезоэлектрики — диэлектрики, у которых при механическом воздействии (растяжении-сжатии), возникает процесс ионизации. Применяется в зажигалках, детонаторах, УЗИ-обследовании.
Пироэлектрики — при изменении температуры в этих диэлектриках происходит самопроизвольная поляризация. Также она происходит при механическом воздействии, то есть пироэлектрики являются еще и пьезоэлектриками, но не наоборот. Примерами служат янтарь и турмалин.
Физические свойства диэлектриков
Чтобы оценить качество и степень пригодности диэлектрика, необходимо как-то описать его параметры. Если следить за этими параметрами, то можно вовремя предотвратить аварию, заменив элемент на новый с допустимыми параметрами. Этими параметрами выступают: поляризация, электропроводность, электрическая прочность и диэлектрические потери. Для каждого из этих параметров существует своя формула и постоянная величина, в сравнении с которой производится заключение о степени пригодности материала.
Главными электрическими свойствами диэлектриков являются поляризация (смещение зарядов) и электропроводность (способность проводить электрический ток)
Смещение связанных зарядов диэлектрика или их ориентация в электрическом поле называется поляризацией. Это свойство диэлектрических материалов характеризуется относительной диэлектрической проницаемостью ε. При поляризации на поверхности диэлектрика образуются связанные электрические заряды.
В зависимости от типа диэлектрика поляризация может быть: электронной, ионной, дипольно-релаксационной, спонтанной. Более подробно про их свойства на инфографике ниже.
Под электропроводностью понимают способность диэлектрика проводить электрический ток. Ток, протекающий в диэлектрике называется током утечки. Ток утечки состоит из двух составляющих — тока абсорбционного и тока сквозного. Сквозные токи обусловлены наличием свободных зарядов в диэлектрике, абсорбционный ток — поляризационными процессами до момента установления равновесия в системе.
Величина электропроводности зависит от температуры, влажности и количества свободных носителей заряда.
При увеличении температуры электропроводность диэлектриков увеличивается, а сопротивление падает.
Зависимость от влажности вновь возвращает нас к классификации диэлектриков. Ведь, неполярные диэлектрики не смачиваются водой и на изменение влажности им нет дела. А у полярных диэлектриков при увеличении влажности повышается содержание ионов, и электропроводность увеличивается.
Проводимость диэлектрика состоит из поверхностной и объемной проводимостей. Известно понятие удельной объемной проводимости, обозначается буквой сигма σ. А обратная величина называется удельное объемной сопротивление и обозначается буквой ро ρ.
Резкое увеличение проводимости в диэлектрике при возрастании напряжения может привести к электрическому пробою. И аналогично, если сопротивление изоляции падает, значит изоляция не справляется со своей задачей и необходимо применять меры. Сопротивление изоляции состоит из поверхностного и объемного сопротивлений.
Под диэлектрическими потерями в диэлектриках понимают потери тока внутри диэлектрика, которые рассеиваются в виде тепла. Для определения этой величины вводят параметр тангенс дельта tgδ. δ — угол, дополняющий до 90 градусов, угол между током и напряжением в цепи с емкостью.
Диэлектрические потери бывают: резонансные, ионизационные, на электропроводность, релаксационные. Теперь подробнее поговорим про каждый тип.
Электрическая прочность это отношение пробивного напряжения к расстоянию между электродами (или толщина диэлектрика). Эта величина определяется минимальной величиной напряженности электрического поля, при которой произойдет пробой.
Пробой может быть электрическим (ударная ионизация, фотоионизация), тепловым (большие диэлектрические потери, следовательно много тепла, и обугливание с оплавлением может произойти) и электрохимическим (в результате образования подвижных ионов).
И в конце таблица диэлектриков, как же без нее.
В таблице выше приведены данные по электрической прочности, удельному объемному сопротивлению и относительной диэлектрической проницаемостью для различных веществ. Также тангенс угла диэлектрических потерь не обошли стороной.
Сохраните в закладки или поделитесь с друзьями
Последние статьи
Самое популярное